

السيد العقيد/ رئيس الادارة المركزية للمنطقة الخامسة (غرب الدلتا) " الهيئة العامة للطرق و الكباري "

الموضوع

عمليه " استكمال تنفيذ أعمال الجسر الترابي لمشروع انشاء الخط الأول لشبكة القطار الكهربائي السريع (العين السخنة - العاصمة الادارية -العلمين - مطروح - القيوم) بالأمر المباشر لتنفيذ المسافة من الكم ١ ٢٢٠٠٠ وإلى الكم ٢٠٠٠ و بطول ٨ كم اتجاه الاسكندرية "

تحية طيبة وبعد...

الحاقاً بخطابنا المؤرخ ٢٠٢/٠٧/١٦ م ومرفقاته (مرفق صورة لسهولة الاستدلال) بخصوص طلب مد فترة تنفيذ العملية بعاليه لمدة (٦) أشهر وفقاً للقرار الوزارى رقم ٢٣٠ المؤرخ ٢٣/٠٢/٢٦ ٢٥ تتشرف بالافادة أنه منذ استلام الموقع الخاص بالمشروع وكانت وما زالت هناك العديد من المعوقات التي تحول دون تنفيذ المشروع خلال المدة المحددة له ، ونود فيما يلى أهم تلك المعوقات :-

- وجود منازل في المسار المحدد للمشروع ولم يتم اخلائها وازالتها حتى تاريخه .
- وجود أعمدة انارة تعوق حركة العمل بالمشروع حيث تم ازالة جانب منها ومتبقى جانب من تلك
 الأعمدة لم يتم ازالتها حتى تاريخه .
- العوامل الجوية بالمنطقة الواقع بما المشروع من تقلبات مناخية (سيول وأمطار وعواصف رعدية)
 والتي أدت إلى توقف العمل بالمشروع.

لذا تلتمس من سيادتكم التكرم بالموافقة على مد فترة تنفيذ المشروع لمدة (٦) أشهر أخرى ليصبح تاريخ النهو الفعلي ٢٢/٠٤/٠٤/ .

> ونحن اذ نشكركم على صادق تعاونكم معنا . وتخطوا وقبول وافر التهدير و الاحتراء...

رئيس مجلس الادارة

مهندس/

The said

CICHINHA - JAT

GARB (المُلِكِ) Monday, July 31, 2023 الرقم البريدي 11711

Contractor Consultant

Plate Load Test Results

Layer:

EMBANKMENT

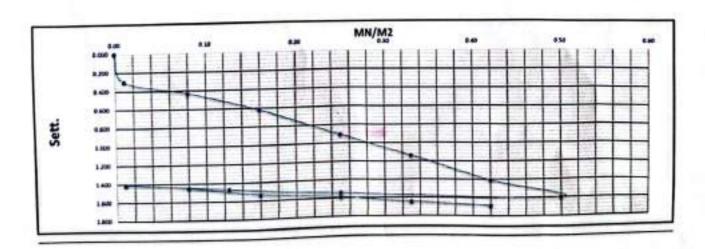
Station:

-5.50 TO 528+040 528+120

Date:

17-07-23

COMPANY	AGR COMPANY				
Location	528+090				


Landing	Lood	Lend	Street	Die 1	Dist	Diel3	Sett. 1	Sett. 2	Sett ,)	Avg.
Stage No.	Bar	KN	MNMI	-	1965	Name of	-	***	***	-
0.000	0.0	0.000	0.00	8.57	7.94		0.000	0.000		0.000
1.000	1.0	0.707	0.01	8.35	7.56		0.220	0.380		0.300
2.000	7.9	5.652	0.08	8.23	7.42		0.340	0.520		0.430
0.080	15.8	11.304	0.16	8.08	7.19		0.490	0.750		0.620
4.000	24.7	17.663	0.25	7.80	6.89	3	0.770	1.050		0.910
5.000	32.6	23.315	0.33	7.60	6.63	-	0.970	1.310		1.140
6.000	41.5	29.673	0.42	7.31	6.38		1.260	1.560		1.410
7.000	49.4	35.325	0.50	7.10	6.21	132	1.470	1.730	1	1.600
8.000	24.7	1,7.663	0.25	7.19	6.23	1400	1.380	1.710		1.545
9.000	12.4	8.831	0.12	7.25	6.32	TRUEN	1.320	1.620	19年	1.470
9.000	1.0	0.707	0.01	7,28	6.41	1997	1.290	1.530	1960	1.410
10.000	1.0	0.707	0.01	7.28	6.41	140	1.290	1.530		1.410
11.000	7.9	5.652	0.08	7.25	6.36	100	1.320	1,580	1	1.45
12.000	15.8	11.304	0.16	7.15	6.29	15	1,420	1.650		1.53
13.000	24.7	17.663	0.25	7.10	6.23	100	1,470	1.710	1997	1.59
14.000	32.6	23.315	0.33	7.05	6.17	1	1.520	1.770		1.64
15,000	41.5	29.673	0.42	7.01	6.12	R	1.560	1.820		1.69

	- V		45	he		
0.7 o ₁	0.35	1.24375				
6.3 e ₁	0.15	9.59625	0.6475	0.2		
0.701	0.35	1.655				
0.3a ₁	0.15	1.49	0.165	-		
D (mm)	300					
Ev,	69.50	1				
Ev.	272.73					
Arra (Sq.m)	0.07965					

E+28+1 3.9	1
------------	---

LOAD UN LOAD RELOAD

Lab. Specialist

Name :

Sign :

Name:

Sign :

Company Name Location

AGR 529+320

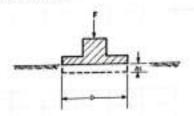
To

529+400

529+360

Taste Date

21-06-2023


Layer level

UPPER EMBANK MENT-1.5

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 9.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

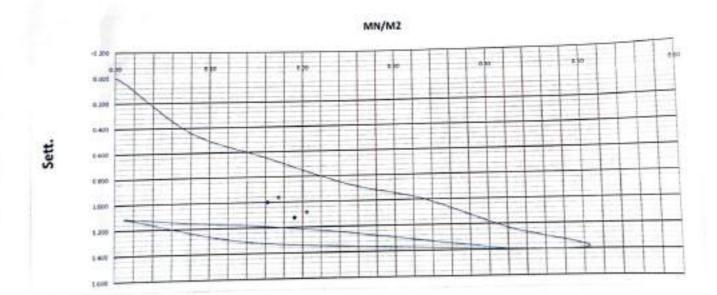
Diameter = 300mm

neter =	300m	Land	Street	Didt	Dial 2	Dall	Sen. 1	Sen. 2	Sett , 3	Avg.
Stage No.	Ber	KN	MNMI	-		600	-	***	mm	-
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.96	19.96		0.040	0.040		0.040
2.000	17.1	5.652	0.08	19.44	19.68		0.560	0.320		0.440
0.080	34.2	11,304	0.16	19,20	19.51		0.860	0.490		0.645
4.000	53.3	17.663	0.25	18.96	19.30		1.040	0.700		0.870
5.000	70.5	23.315	0.33	18.77	19.24		1.230	0.760		0.995
6.000	89.8	29.673	0.42	18.50	19.04		1.500	0.960		1.230
7.000	106.8	35.325	0.50	18.28	18.93		1.720	1.070		1,395
8.000	53.4	17.663	0.25	18.33	18.96		1.670	1.040		1.355
9.000	26.7	8.831	0.12	18.41	19.00		1.590	1.000		1.295
9.000	2.1	0.707	10.0	18.63	19.15		1.370	0.850		1.110
10.000	2.1	0.707	0.01	18.63	19.15		1.370	0.850		1.110
11.000	17.1	5.652	0.08	18.58	19.11		1,420	0.890		1.155
12.009	34.2	11.304	0.16	18.54	19.08		1.460	0.920		1.190
13.000	53.3	17.663	0.25	18.47	19.03		1.530	0.970	-	1.250
14.000	70.5	23.315	0.33	18.38	18.98		1.620	1.020	-	1.320
15.000	89.8	29.673	0.42	18.29	18.92		1.710	1.080		1.39

			AS	10	
0.7 €	0.35	0.35 1.08563		0.1	
0.3 o ₁	0.15	0.61938	0.46625	.0.2	
0.7e ₁	0.35	1.33467		0.2	
0.3+1	0.15	1.2	0.13666		
D (mm)	300				
Evi	96,51				
Ev ₁	329.28	-			
Area (Sq.m)	6.07065				

EvilEst	3,41	

£	è	- 8.7	4 -	D	20	Δσ	1	di	
	_		-		_		_		$\overline{}$


= deformation modulus

- load increment 0.

* settlement increment Ds

- diameter of the plate, generally 0.30 m.

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist

Name:

Sign:

Lab. Engineer

.....

Sign:

Consultant Engineer

Name :

Sign ;

529+100

Plate Load Test Results

To

Company Name Location

AGR 528+940

Taste Date 21-06-2023 Layer level FERMA Station 529+020

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel hearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

p = lead

gr = settlement

b = diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

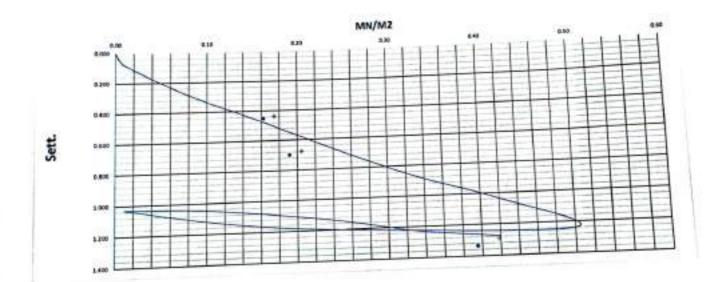
Diameter = 300mm

Louding	Laud	Load	Steres	Diate	Diel 2	Dial 3	Sett. 1	Sett. 2	Sest . 3	Avg.
Stage No.	Ber	RN.	30N/M2	me	PROF	200	2000	***	***	nom
0.000	0,0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.91	19,93		0.090	0.070		0.080
2,660	17.1	5.652	0.08	19.65	19.78		0.350	0.220		0.285
0.080	34.2	11.304	0.16	19.38	19.68		0.620	0.320		0.470
4.000	53.3	17.663	0.25	19.07	19.55		0.930	0.450		0.690
5.000	70.5	23.315	0.33	18.80	19.46		1.200	0.540		0.870
6.000	89.8	29.673	0.42	18.55	19.38		1.450	0.620		1.035
7.009	106.8	35.325	0.50	18.27	19.25		1.730	0.750		1.240
8.000	53.4	17.663	0.25	18.31	19.29	DEC.	1.690	0.710		1.200
9.000	26.7	8.831	0.12	18.39	19.33		1,610	0.670		1.140
9.000	2.1	0.707	0.01	18.55	19.39		1,450	0.610		1.030
10.000	2.1	0.707	0.01	18.55	19.39		1,450	0.610		1.030
11.000	17.1	5.652	0.08	18.54	19.38		1,460	0.620		1.040
12.000	34.2	11.304	0.16	18.48	19.36		1.520	0.640		1.080
13.000	53.3	17.663	0.25	18.41	19.30		1.590	0.700		
14.000	70.5	23.315	0.33	18.30	19.25		1.700	0.750		1.145
15.000	89.8	29.673	0.42	18.25	19.20		1.750	0.750		1.22

			48	Ar.	
0.7 σ,	0.35	0.85563			
0.3 e ₁	0.15	0.44688	0.40875	0.2	
0.701	0.35	1.23611	0.18611		
0.302	0.15	1.05		0.2	
D(mm)	300				
Ev ₁	110,09				
Eve	241,79				
Arra (Sq.m)	6,01065				

Ex2454 1.30		
-------------	--	--

E. = 0.75 + D + A0 / A1


E. = deformation modulus

da = load increment

As = settlement increment

b = diameter of the plate, generally 0.30 m

For this calculation do and de are usually taken from the load span between 0.3 one and 0.7 one

Lab. Specialist

Name:

Sign:

Name:

Constitut Fasings

Name: 40350

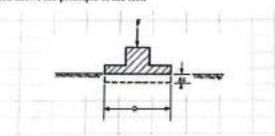
Sign:

Company Name Location

AGR 528+940

To 529+100

Station 529+060


Taste Date Layer level

21-06-2023 FERMA

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

= load

4. * settlement

0 = diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

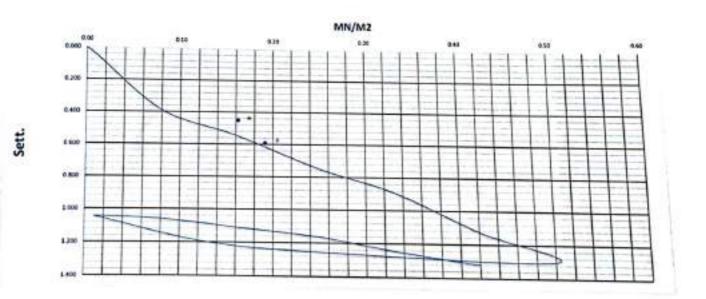
Diameter = 300mm

Loading	Load	Load	Street	Dist1	Dial I	Dul 3	Sen, 1	Sett. 1	Sett. 3	Avg. Sett.
Stage No.	Bar	KN	MNNE	-	1000	mm	***	me	-	ren.
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	10.0	19.96	19,95		0.040	0.050		0.045
2.000	17,1	5.652	0.08	19.54	19.68		0.460	0.320		0.390
0.080	34.2	11,364	0.16	19.37	19.54		0.630	0.460		0.545
4.000	53.3	17.663	0.25	19.12	19.38		0.880	0.620		0.750
5.000	70.5	23.315	0.33	18.95	19.27		1.050	0.730		0.890
6.000	89.8	29,673	0.42	18.65	19.10		1.350	0.900		1.125
7,000	106.8	35.325	0.50	18.45	18.95		1.550	1.050		1.300
8.000	53.4	17.663	0.25	18.50	18.99		1.500	1.010	100	1,255
9.000	26.7	8.831	0.12	18.57	19.04		1.430	0.960		1.195
9.000	2.1	0.707	0.01	18.75	19.16		1.250	0.840		1.045
10.000	2.1	0.707	0.01	18.75	19.16		1.250	0.840		1.045
11.000	17.1	5.652	0.08	18.74	19.14		1.260	0.860		1.060
12.000	34.2	11.304	0.16	18,66	19.12		1.340	0.880		1.110
13.000	53.3	17.663	0.25	18.61	19.06		1.390	0.940		1.165
14.600	70.5	23.315	0.33	18.50	19.01		1.500	0.990		1.245
15.000	89.8	29,673	0.42	18.46	18.90		1.540	1.100	-	1.320

			AS	An .	
0.7 01	0.35	0.97187			
0.3 01	0.15	0.52563	0.44012	0.2	
0.70;	0.35	1.26167	0.13667		
0.301	0.15	1.075		0.2	
D (mm)	300				
Evi	100.84				
Ev	241.07				
Area (Sq.m)	0.07065				

	522	
Er2/Evi	2.30	

E, -0.75 . D . Ao / As


E. = deformation modulus

Δσ = load increment

As = settlement increment

b = diameter of the plate, generally 0.30 m

For this calculation $A\sigma$ and As are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist

Name:

Sign:

Name:

Consultant Engineer

Name: Hascall

Sion:

529+100

Station

528+970

Plate Load Test Results

To

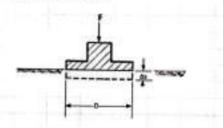
Company Name

AGR

Location

528+940

21-06-2023


Taste Date Layer level

FERMA

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

d'a land

At I selfenner

B = diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

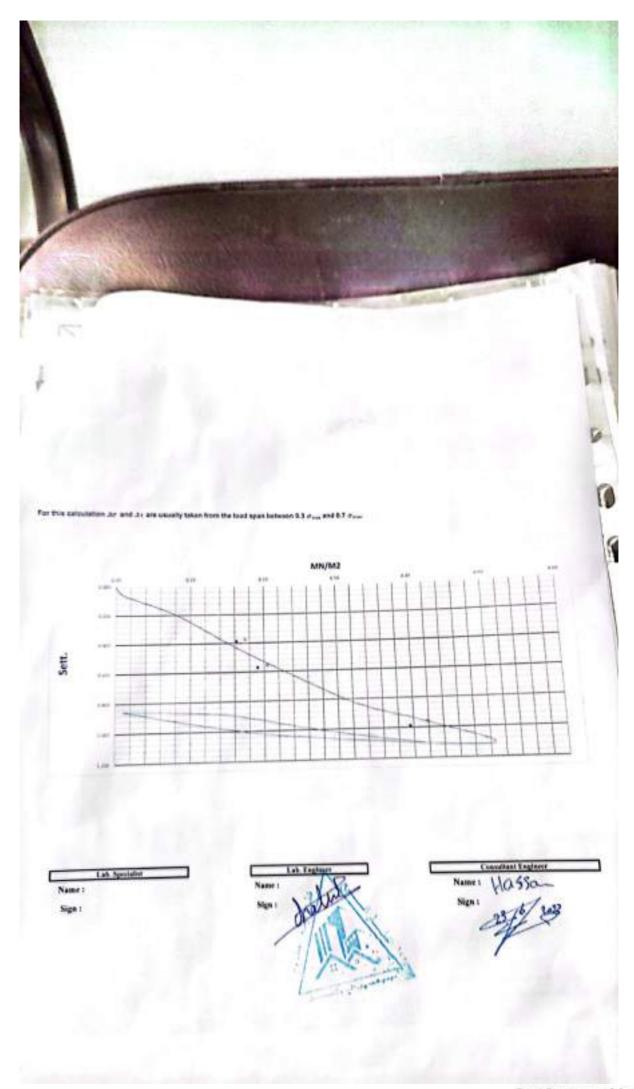
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

Diameter = 300mm

			-							
Looding	Lord	Land	Stens	Dutl	Dist 2	Dul)	Sett. 1	Sett. 2	Sett. 3	Avg.
Stage Na.	Bur	KN	MNM2		ma	-	-			-
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	10.0	19.90	19.98		0.100	0.020		0.060
2.600	17.1	5.652	0.08	19.69	19.92		0.310	0.080		0.195
0.089	34.2	11.304	0.16	19.41	19.74		0.590	0.260		0.425
4.000	53.3	17.663	0.25	19.10	19.59		0.900	0.410		0.655
5.000	70.5	23.315	0.33	18.88	19.44		1.120	0.560		0.840
6.000	89.8	29.673	0.42	18.70	19,37		1.300	0.630		0.965
7.000	106.8	35,325	0.50	18.53	19.24		1,470	0.760		
8.000	53.4	17.663	0.25	18.63	19.28		1.370	0.720		1.115
9.000	26.7	8.831	0.12	18.74	19.33			10000		1.045
9.000	2.1	0.707	0.01	18.88	19.41	-	1.260	0.670	-	0.965
10.000	2.1	9.707	0.01	18.88	100000000000000000000000000000000000000	-	1.120	0.590	9	0.855
11.000	17.1	5.652	0.08		19.41		1.120	0.590	0	0.855
12.000	34.2	11.304	-	18.87	19.40		1.130	0.600		0.865
13.000	53.3		0.16	18.83	19.38		1.170	0.620		0.895
14.000		17.663	0.25	18.71	19,33		1.290	0.670		0.980
111111111111111111111111111111111111111	70.5	23.315	0.33	18.63	19.28		1.370	0.720		1.045
15.000	89.8	29.673	0.42	18.54	19.25		1.460	0.750		1.105

			1	
	100	1	35	3.0
0.7 o ₁	0.35	0.83375		
0.3 o ₃	0.15	0.39625	0.4375	9.2
0.7a ₃	0.35	1.05833		
0.302	0.15	0.875	0.18333	0.2
D (mm)	340			
Ev	102.86			
Ev ₂	245,46			
Area (Sq.m)	0.07065	1		. V.

E-DE-1	1.39	7 - 14	


E. - 875 . D - 50 / 61

deformation modulus

D. . load increment

Ds = settlement increment

D = diameter of the plate, generally 0.30 m.

Company Name

Layer level

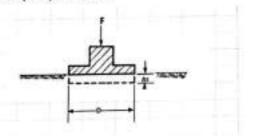
Location Taste Date AGR

529+400

upper embankment -1.5

19-06-2023

To


529+500

529+440

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of clasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

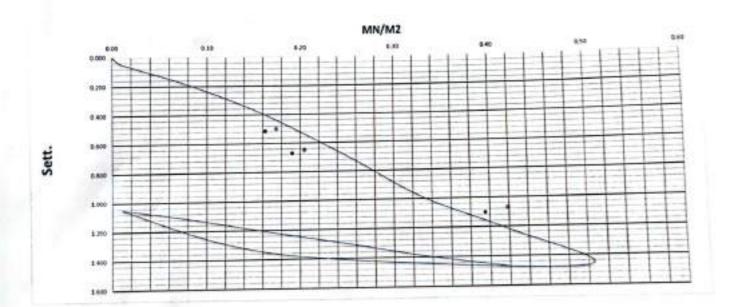
iar	neter =	300m	um			_	_	_	_		Avg.
	Landing	Lond	Load	Stress	Dall	Diel 2	Dull	Sett, 1	Set. 2	Sett , 3	Sett.
- 1	Stage No.	Bar	KN	MNMI	***	mm	-	- 100	ma	-	mn.
Ì	0.000	0.0	0.000	0.00	28.00	20.00	2 3	0.000	0.000	5	0.000
Ì	1.000	2.1	0.707	0.01	19.95	19.95		0.050	0.050		0.050
t	2.000	17.1	5.652	0.08	19.82	19.80		0.180	0.200		0.190
t	0.080	34.2	11.304	0.16	19.66	19.55		0.340	0.450		0.395
t	4.000	53.3	17.663	0.25	19.29	19.32		0.710	0.680		0.695
ŀ	5.000	70.5	23,315	0.33	19.00	19.02		1.000	0.980		0.990
ŀ	6.000	89.8	29,673	0.42	18.76	18.80		1.240	1,200		1.220
t	7,000	106.8	35.325	0.50	18.55	18.51		1.450	1.490	4.5	1.470
t	8.000	53.4	17.663	0.25	18.60	18.58		1.400	1,420	-	1.410
r	9,000	26.7	8.831	0.12	18.70	18.70		1,300	1.300		1.300
r	9,000	2.1	0.707	0.01	18.94	18.96		1.060	1.040		1.050
r	10.000	2.1	0.707	0.01	18.94	18.96		1.060	1.040		1.050
H	11.000	17.1	5.652	0.08	18.87	18.90		1.130	1.100		1.115
	12.000	34.2	11.304	0.16	18.79	18.80		1.210	1.200		1.205
	13.000	53.3	17.663	0.25	18.70	18.70		1.300	1.300		1.300
	14,000	70.5	23.315	0.33	18.62	18.60		1.380	1,400		1.390
				_					Part of the		1.470
13	15.000	89.8	29.673	0.42	18.55	18.51		1.450	1.490		1.470

		- (AS	Ast.	
0.7 e ₁	0.35	1.00125	A 45197	0.2	
03 e,	0.15	0.36938	4.63147	9.1	
0.7e ₁	0.35	1.40778	A 11777	9.2	
0.301	0.15	1.18001	0.21777		
D (mm)	300				
Ev ₁	71.22		8 8		
Eq	197.57				
Area (Sq.m)	0.07065				

EvilEvi	1.77	
EvDEvl	1.77	

E. = 0.75 - D - Aa / As

deformation modulus


= load increment D.

- settlement increment 01

= diameter of the plate, generally 0.30 m.

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist

Name:

Sign:

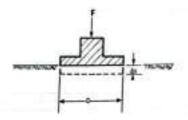
Company Name

Location Taste Date

Layer level

AGR 525+000

17/6/2023 -1.5


525+080

525+650

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

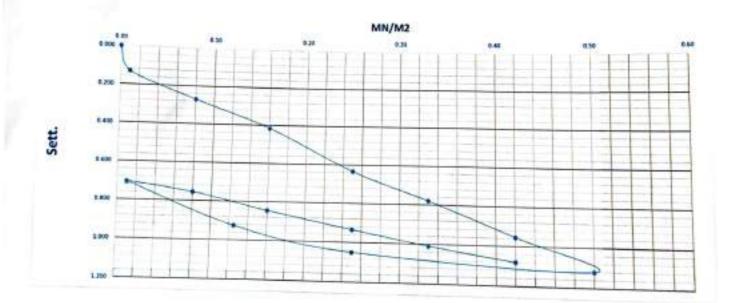
Diameter = 300mm

Louding.	Lond		Street	Diel 1	Dia 2	Data	Sett, 1	Set. 1	Sea.)	Avg.
Stage No.		KN	MNM	-	-	-	***		mm	***
0.000	0.0	0.000	0.00	18.39	18.04		0.000	0.000		0.000
1,000	2.1	0.707	0.01	18.22	17.95		0.170	0.090		0.130
2.000	17.1	5.652	0.08	18.01	17.88		0.380	0.160		0.270
0.050	34.2	11,304	0.16	17.81	17.79		0.580	0.250		0.415
4.000	53.4	17.663	0.25	17.47	17.69		0.920	0.350		0.635
5.000	70.5	23.315	0.33	17.28	17.59		1.110	0.450		0.780
6.000	89.7	29,673	0.42	17.04	17,48	7	1.350	0.560		0.955
7,000	106.8	35.325	0.50	16.83	17.36		1.560	0.680		1.120
8.000	53.4	17.663	0.25	16.93	17.40		1,460	0.640		1.050
9,000	26.7	8.831	0.12	17.13	17.45		1.260	0.590		0.925
9.000	2.1	0.707	0.01	17,43	17.59		0.960	0.450		0.705
10.000	2.1	0.707	0.01	17.43	17.59		0.960	0.450		0,705
11.000	17.1	5.652	0.08	17.36	17.56	6.5	1.030	0.480		0.755
12,000	34.2	11.304	0.16	17.23	17.51		1.160	0.530		0,845
13.000	53.4	17.663	0.25	17.10	17.46		1.290	0.580		0.935
14.000	-	23.315	0.33	17.00	17.41		1.390	0.630		1.010
15,000		29.673	0.42	16.90	17.37		1,490	0.670		1.080

		1	45	50	
0.7 01	0.35	0.81062	0.41374		
0.3 0,	0.15	0,39688	6,41373	9.2	
0.701	0.35	1.02556	0.22055	0.2	
0.301	0,15	0.80501	0.22000	- 4.2	
D (mm)	300				
Eve	108,76	/		4	
Dr ₁	204.03				
Area (Sq.m)	8,87965				

		_	
Evident	1,88		

E. = 0.75 + D - da f de


deformation modulus

load increment

- settlement increment

= diameter of the plate, generally 0.30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist

Name:

Sign:

Lab, Engineer

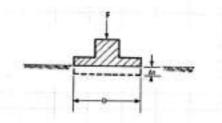
Company Name

Location

AGR

upper embankment -1.5

Taste Date 19-06-2023 Layer level


529+400 529+500 To

519+480

EQUIPMENT AND TEST PROCEDURE:

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

D = character of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 men/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

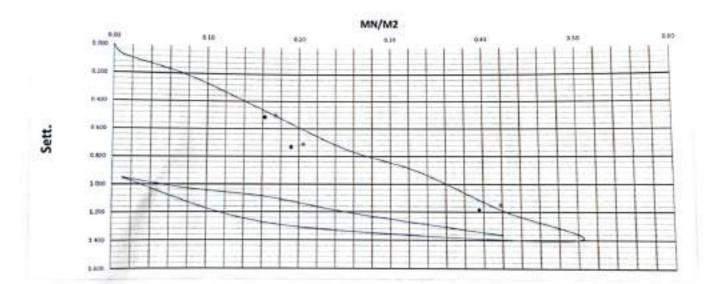
Diameter	-	300	mm

Loading	Lord	Lord	Stress	Dutt	Dialit	Diel 3	Sett. 1	Sett. 2	Sett. 3	Avg.
Stage No.	Bar	KN	MNMI	nn			***	- m	-	Sett.
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.96	19.90		0.040	0.100		0.070
2.000	17.1	5.652	0.08	19.85	19.72		0.150	0.280		0.215
0.080	34.2	11.304	0.16	19.68	19.40		0.320	0.600		0.460
4.000	53.3	17.663	0.25	19.41	19.10		0.590	0.900		0.745
5.000	70.5	23.315	0.33	19.35	18.83		0.650	1.170		0.910
6.000	89.8	29.673	0.42	19.11	18,51		0.890	1.490		1.190
7.000	106.8	35.325	0.50	19.01	18.19	- 1	0.990	1.810		1,400
8.000	53.4	17.663	0.25	19.08	18.25		0.920	1.750		1.335
9.000	26.7	8,831	0.12	19.18	18.38		0.820	1.620		1.220
9.000	2.1	0.707	0.01	19.44	18.66		0.560	1.340	-	0.950
10.000	2.1	0.707	0.01	19.44	18.66		0.560	1.340		0.950
11.000	17.1	5.652	0.08	19.40	18.54		0,600		-	
12.000	34.2	11.304	0.16	-	-			1.460		1.030
13.000	53.3	17.663	0.25	19.36	18.47		0.640	1.530	-	1.085
14,000	70.5	23.315	-	19.22	18.38		0.780	1.620		1.200
15.000		The second second	0.33	19.16	18.28		0.840	1.720		1.280
13.000	89.8	29.673	0.42	19.10	18.17		0.900	1.830		1.365

			35	3.0	
0.7 e ₁	0.35	1.00625		1 31	
0.3 e ₁	0.15	0.42938	0.57688	0.2	
0.7ez	0.35	1.29889		0.2	
0.3e ₁	9.15	1.11001	0.18888		
D (mm)	300				
Ev ₁	78.01				
Ev ₂	238.25-	-			
Area (Sq.m)	9.97945			_	

THE RESERVE OF THE PERSON NAMED IN		
Ev2/Ev1	3.05	

E, = 0.75 - D . AT / As


 deformation modulus E.

= load increment D.

= settlement increment Ds

= diameter of the plate, generally 0.30 m

For this calculation $d\sigma$ and dx are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist

Name:

Sign:

Name: Hassow

Sign:

526+280

Plate Load Test Results

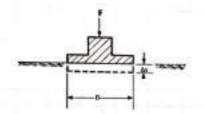
To

Company Name

Location Taste Date

Layer level

AGR


526+200 19-06-2023

19-06-2023 p.s.g +0.5 Station 526+220

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = load

Jr = settlement

F = diameter of the plan

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter - 300mm

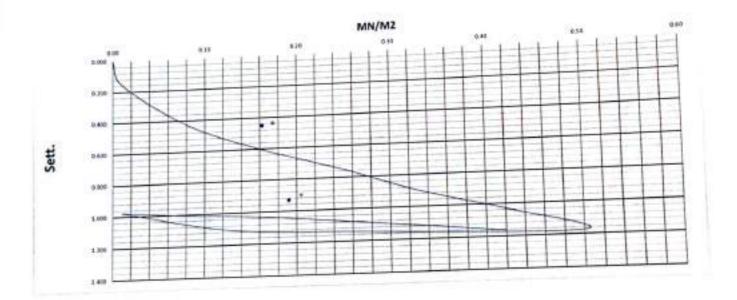
Loading	Load	Load	Stem	Buil	Dul 2	Dut3	Sen. 1	Set. 2	Sett. 3	Avg.
Stage No.	Bar	KN	MNMI	***		-	-	200	***	-
0.000	0.0	0.000	0.00	20.00	20.00	- 4	0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.74	19.95		0.260	0.050		0.155
2.000	17.1	5.652	0.08	19.30	19.85		0.700	0.150		0.425
0.080	34.2	11,304	0.16	19.10	19.70		0.900	0.300		0.600
4.000	53.3	17.663	0.25	18.90	19.60	3 %	1.100	0.400		0.750
5.000	70.5	23.315	0.33	18.70	19.50		1.300	0.500		0.900
6.000	89.8	29.673	0.42	18.56	19.38		1.440	0.620		1.030
7.000	106.8	35.325	0.50	18.47	19.18	- 5	1.530	0.820		1.175
8.000	53.4	17.663	0.25	18.52	19.20		1.480	0.800	1	1.140
9.000	26.7	8.831	0.12	18.54	19.25		1.460	0.750		1.105
9.000	2.1	0.707	0.01	18.63	19.42		1.370	0.580		0.975
10.000	2.1	0.707	0.01	18.63	19.42	7 0	1.370	0.580		0.97
11.000	17.1	5,652	0.08	18.60	19.39		1.400	0.610		1.00
12.000	34.2	11.304	0.16	18.58	19,36	2 -3	1.420	0.640	100	1.03
13.000	53.3	17.663	0.25	18.55	19.30	1	1.450	0.700		1.07
14.000	70.5	23.315	0.33	18.51	19.26		1,490	0.740		1.11
15.000	89.8	29,673	0.42	18.48	19.19		1.520	0.810		1.16

_		1	AS	Se	
0.7 e,	0.35	0.90313			
93 o ₁	0.15	0.57813	0.325	0.2	
0.7ez	0.35	1.12611			
0.3a ₁	0.15	1.035	9.09111	0.2	
D (mm)	300				
Evi	138.46				
Evy	493.92				
Area (Sq.m)	0.07945				

		_	_
Erl/Erl	3.57		W 3

E, +4.75 - D - Se / As

deformation modulus


D. . load increment

Ds = settlement increment

p = diameter of the plate, generally 0.30 m

1

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist

Name:

Sign:

Lab. Engineer

iame :

Sign:

7 223

526+280

Plate Load Test Results

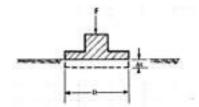
To

Company Name Location Taste Date

Layer level

AGR

526+200


19-06-2023

526+368

p.s.g +0.5 EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of clasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.40 m and D = 0.752 m are

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

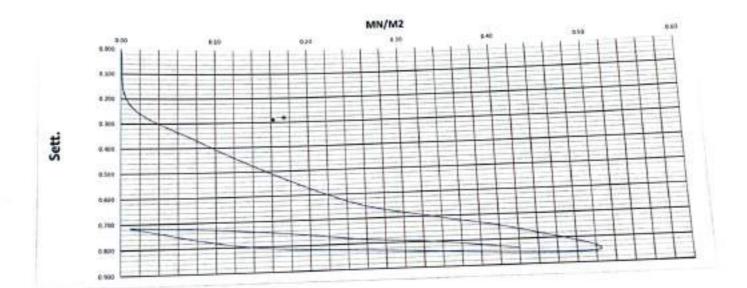
ameter =	300m	m	10 70						_	_
Loading	Load	Load	Street	Did1	Dial I	Data	Set 1	Sett. 1	Sen.3	Sett.
Stage No.	Bar	KN	MNNE		-	***	mm	***		-
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.80	19.75		0.200	0.250		0.225
2.000	17.1	5.652	0.08	19.66	19.60		0.340	0.400		0.370
0.080	34.2	11.304	0.16	19.59	19.39		0.410	0.610		0.510
4.900	53.3	17,663	0.25	19.51	19.21		0.490	0.790		0.640
5.000	70.5	23.315	0.33	19.48	19.12		0.520	0.880		0.700
6.600	89.8	29,673	0.42	19.46	19.02		0.540	0.980		0.760
7.000	106.8	35.325	0.50	19.38	18.91		0.620	1.090		0.855
8.000	53.4	17.663	0.25	19.39	18.96		0.610	1.040		0.825
9,000	26.7	8.831	0.12	19,41	19.00		0.590	1.000		0.795
9.000	2.1	0.707	0.01	19.49	19.08		0.510	0.920		0.715
10.000	2.1	0.707	0.01	19.49	19.08		0.510	0.920		0.715
11,000	17.1	5.652	0.08	19.48	19.07		0.520	0.930		0.725
12.000	34.2	11.364	0.16	19.45	19.06		0.550	0.940	ġ.	0.745
13.000	53.3	17.663	0.25	19.42	19.02		0.580	0.980	8	0.78
14.000	70.5	23,315	0.33	19.40	19.00		0.600	1.000		0.80
15,000	89.8	29.673	0.42	19,38	18.95	-	0.620	1.050	H II	0.83

			77	34	
0.70,	0.35	0.67687	9.18438	9.2	
63 e ₁	0.15	0.4925	4.14438	***	
6.Ta ₃	0.35	0.80778	6 62223		
9.361	0.15	0.735	0.07214	-	
D (mm)	360				
Evi	244.87				
Eva	618.33				
Area (Sq. m)	9.97645				

		_	$\overline{}$
Ex24x1	1.53		

E. - 475 - D - A0 / At

deformation modulus


0. load increment

- settlement increment D.

= diameter of the plate, generally 0.30 m.

1

For this calculation do and do are usually taken from the load spen between 0.3 c. ... and 0.7 c....

Lab. Specialist

Name:

Sign :

Sign :

Consultant Engineer

Name

Hassan

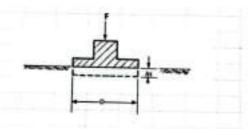
Cian :

2376 203

Company Name

Location Taste Date AGR 526+200

To 526+280


Station 526+240

Layer level 19-06-2023 p.s.g +0.5

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

/ = load

dr * bettement

O - diameter of the plats

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

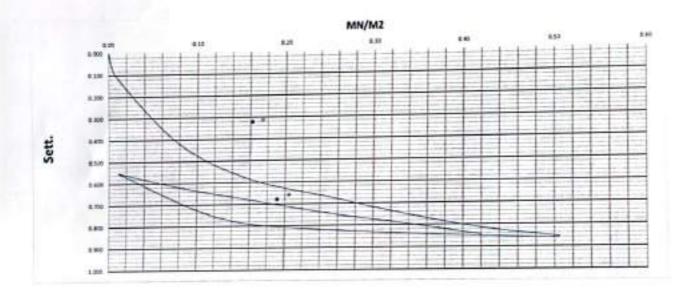
Leading	Loui	Lord	Stress	Diel 1	Dial 2	Dut3	Sett, 1	Sen. 1	Sett. 3	Avg
Stage No.	Bar	KN	MNM2	-	-		-	-		Sett.
0.000	0.0	6.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.85	19.92		0.150	0.080		0.115
2.600	17.1	5,652	0.08	19.42	19.74		0.580	0.260		0.420
0.080	34.2	11.304	0.16	19.22	19.61		0.780	0,390		0.585
4.000	53,3	17.663	0.25	19.14	19.52		0.860	0.480		0.670
5.000	70.5	23.315	0.33	19.06	19.45		0.940	0.550		0.745
6.000	89.8	29.673	0.42	19.03	19.34		0.970	0.660		0.815
7.000	106.8	35.325	0.50	18.97	19.31		1.030	0.690		0.860
8.000	53,4	17.663	0.25	19.01	19.35		0.990	0.650	-	0.820
9.000	26.7	8.831	0.12	19.07	19.41		0.930	0.590		0.760
9.000	2.1	0.707	0.01	19.36	19.54		0.640	0,460		0.550
10.000	2.1	0.707	0.01	19.36	19.54		0.640	0.460		1,000
11.000	17.1	5.652	0.08	19.28	19.48		0.720		-	0.550
12.000	34.2	11.304	0.16	19.22	19.42			0.520		0.620
13.000	53.3	17.663	0.25				0.780	0.580		0.680
14.000	70.5	23.315		19.12	19.39		0.880	0.610		0.745
15.000		_	0.33	19.06	19.36	- 4	0.940	0.640		0.790
10000	97.8	29.673	0.42	18,99	19.32	7.	1.010	0.680	1	0.845

_			AS	50	
0.7 m	0.35	0.77562			
0.3 e ₁	0.15	0.56438	9.21125	0.2	
0.702	0.35	0.80222		1000	
9.3e,	0.15	0.69001	0.11222	0.2	
D (mm)	300				
Ev	213.021	/			
Ev ₁	401.02				
Arra (Sq.m)	0.07065				

Evalent	LH /	
		_

E, = 4.75 - D - Aa / As

F, • deformation modulus


D. . load increment

D: settlement increment

D = diameter of the plate, generally 0.30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist

Name :

Sign:

Tab Faviness

Sien :

Consultant Engineer

Name: Hassaw

Sign:

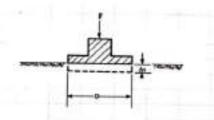
Company Name Location

AGR 526+100

To 526+200

Station

536+120


Taste Date Layer level

19-06-2023 p.s.g +0.5

EQUIPMENT AND TEST PROCEDURE:

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

Feload

de - patriament

D = diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydrautic jack.

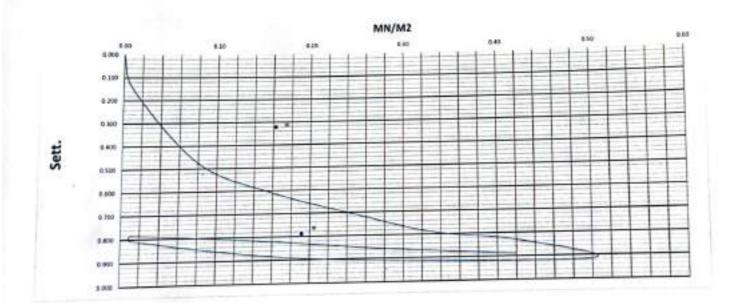
Diameter = 300mm

Landing	Les	Land	Stren	Dialit	Dist 2	Diel3	Sett. 1	Set, 1	Sett . 3	Avg.
Stage No.	Bur	KN	MNMG	***	-	mm	***		mm	-
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.767	0.01	19.90	19.80		6.100	0.200		0.150
2.000	17.1	5.652	0.08	19.75	19.30		0.250	0.700		0.475
0.080	34.2	11.304	0.16	19,59	19.19		0.410	0.810		0.610
4.000	53.3	17.663	0.25	19.48	19.10		0.520	0.900	-	0.710
5.000	70.5	23.315	0.33	19,38	19.04		0.620	0.960		0.790
6.000	89.8	29,673	0.42	19.34	19.00		0.660	1.000		0.830
7,000	106.8	35.325	0.50	19.26	18.91		0.740	1.090		0.915
8.000	53.4	17.663	0.25	19.27	18.92		0.730	1.080		0.905
9.000	26.7	8.831	0.12	19.31	18.95		0.690	1.050		0.870
9.000	2.1	0.707	0.01	19.39	19.00		0.610	1.000		0.805
10.000	2.1	0.707	0.01	19,39	19.04		0.610	0.960		0.78
11.000	17.1	5.652	0.08	19.38	19.02		0.620	0.980		0.80
12.000	34.2	11.304	0.16	19.36	19.00		0.640	1.000		0.82
13.000	53.3	17.663	0.25	19.32	18.98		0.680	1.020		0.85
14.000	70.5	23,315	0.33	19.30	18.96		0.700	1.040		0.87
15.000	89.8	29.673	0.42	19.28	18.94		0.720	1.060		0.89

		_ 1	45	he
0.7 at	0.35	0.75563		
9.3 m	0.15	0.59312	0.1625	0.2
0.7a ₁	0.35	0.87444		25.00
930;	9.15	0.815	0.05944	0.1
D (mm)	300			
Eva	276.92			
Ev ₁	757.03			
Aren (Sq.m)	6.97045			

_		_	
Del/Del	1.73		7

E. = 4.75 + D + Ad / As


E. e deformation modulus

D. = load increment

Ds = settlement increment

D = diameter of the plate, generally 0.30 m

For this calculation do and do are usually taken from the load soon between 0.3 and 0.7 does

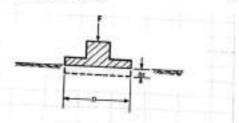
Name:
Sign:

Consultant Engineer

Name:
Sign:

Sign:

Company Name Location Taste Date Layer level


AGR 526+100 To 526+200 19-06-2023

Station 526+185

EQUIPMENT AND TEST PROCEDURE:

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a The load is settlement of a settlement of

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = load
At = sellement
B = diameter of the piote

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are

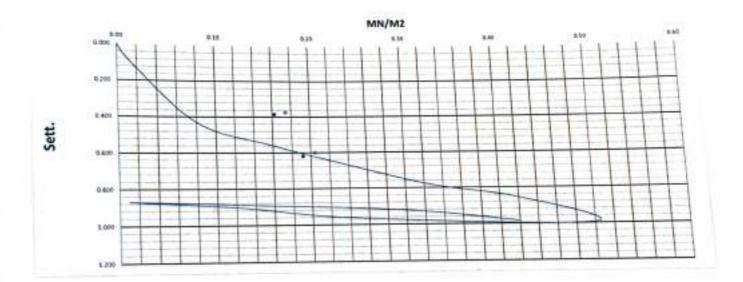
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 moviminute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

Lead	tog t	end L	and Street	to Diet i	Dist 2	Dist	Sett 1	1 -		4.0
Stage	No. 1	lar K	N MNS	er		-	-	Sett. 3	Sem. 3	Avg. Sett.
0.00	0 0	.0 0.0	00 0.00	-	70.00		PAR.	-	***	ma
1.00	0 2	1 0.7		20.00	20,00		0.000	0.000		0.000
2.00	-		2.01		19.94		0.090	0.060		0.07
200	-		-	19,46	19.68		0.540	0.320		0.43
0.080	-	.2 11.3	0.16	19.30	19.58		0.700	0.420		0.56
4.000	53.	3 17.6	63 0.25	19.12	19.51		0.880	0.490		771000
5.000	70,	5 23.3	15 0.33	18,95	19.48		1.050	0.520		0.68
6.000	89.	29.67	3 0.42	18.85	19,44		-		_	0.78
7.000	106.	8 35.32	5 0.50	18.71		_	1.150	0.560		0.85
8.000	53.4	-			19.30		1.290	0.700		0.99
9.000	-	7,100		18.75	19.32	100	1.250	0.680		0.965
	26.7	8.831	0.12	18.81	19.38		1.190	0.620		0.90
9.000	2.1	0.707	0.01	18.86	19.40		1.140	0.600		0.87
10.000	2.1	0.707	0.01	18.86	19,40		1.140	0.600		-
11.000	17.1	5.652	0.08	18.85	19.39				_	0.870
2.000	34.2	11.304					1.150	9.610		0.88
		-	7110	18.83	19.38		1.170	0.620		0.895
3.000	53.3	17.663	0.25	18.81	19.37		1.190	0.630	6	0.910
4.000	70.5	23.315	0.33	18.78	19.35		1.220	0.650		0.935
5.000	89.8	29,673	0.42	18.71	19.32		1.290	0.680		0.985

-	-		33	3.e
0.7 e ₁	0.35	0.7325	Ser.	1200
0.3 o ₁	0.15	0.54375	0.18875	9.2
0.74	0.35	0.94611		
0.303	0.15	0.89	0.05611	0.2
D (mm)	300			
Evi	238.41			
Ev ₁	881.99			
Ares (Sq.m)	8.07945			

Ev2/Evt	3.34	


E, =0.75 . D . da / 41

c, « deformation modulus

D. • load increment

Ds = settlement increment

D = diameter of the plate, generally 0.30 m

Name:

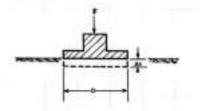
Sign:

526+200

Company Name Location

Layer level

AGR 526+100 Taste Date


19-06-2023

526+185

p.s.g +0.5 EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

A . settlement

If y diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

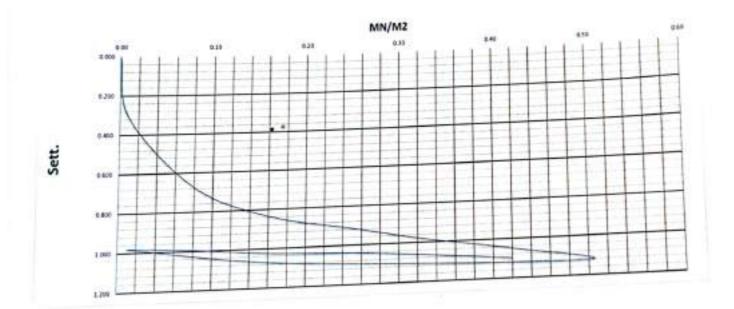
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter -300mm

Leading	Land	Lood	Stress	Diel I	Diel 1	Dal3	Sett. 1	5en. 2	Sett . 3	Avg. Sett.
Stage No.	Bar	KN	MN902	-	***	mm	***	mm	-	***
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.63	19.74		0.370	0.260		0.315
2.000	17.1	5.652	0.08	19.30	19.35		0.700	0.650		0.675
0.680	34.2	11.304	0.16	19.08	19.25		0.920	0.750		0.835
4.000	53.3	17.663	0.25	18.97	19.20		1.030	0.800		0.915
5.000	70.5	23,315	0.33	18.85	19.18	3	1.150	0.820		0.985
6.000	89.8	29.673	0.42	18.78	19.12		1.220	0.880		1.050
7.000	106.8	35.325	0.50	18.65	19.10		1.350	0.900		1.125
8.000	53.4	17.663	0.25	18.69	19.12		1.310	0.880		1.095
9.000	26.7	8.831	0.12	18.74	19.15		1.260	0.850		1.055
9.000	2.1	0.707	0.01	18.82	19.22		1.180	0.780		0.98
10.000	2.1	0.707	0.01	18.82	19.22		1.180	9.789		0.98
11.000	17.1	5,652	0.08	18.80	19.21		1.200	0.790		0.99
12.000	34.2	11.304	0.16	18.76	19.19	-	1.240	0.810	8	1.02
13.000	53.3	17.663	0.25	18.75	19.17		1.250	0.830		1.04
14.000	70.5	23.315	0.33	18.72	19.15		1.280	0.850		1.06
15.000	89.8	29.673	0.42	18.67	19.13		1.330	0.87		1.10

			45	he .
0.7 σ ₁	0.35	9.98437		0.1
63 e _i	0.15	0.815	W.14937	***
9.7e ₁	0.35	1.07278		
0.307	0.15	1.01	0.00278	0.2
D (mm)	300			
Ev ₁	265.68	+		
Ev,	T16.83			
Area (Sq.m)	9.07965			

Ev2/Ev4	2.70	


	E. = 8.75 · D · Ao / As	
8.	- deformation modulus	

- load increment 0.

- settlement increment Du

diameter of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and $\Delta\tau$ are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist

Name:

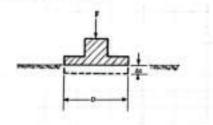
Sign:

Name:

Consultant Engineer

Company Name Location AGR 526+100

To 526+200


Station 526+145

Taste Date Layer level 19-06-2023 p.s.g +0.5

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

Fried

o diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

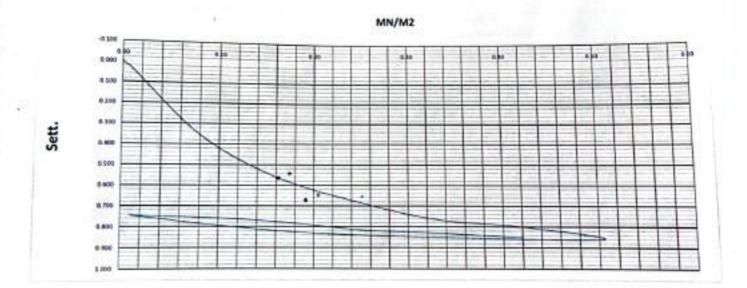
The load is applied in 5 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

Leading	Load	Lord	Street	DW1	Dial 2	Dist3	Sett, 1	5en. 2	5m.3	Arg.
Stage No.	Bar	KN	MNMI		***	***	ma	200	nn.	ten
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.95	19,98		0.050	0.020		0.035
2.600	17.1	5.652	0.08	19.54	19.75		0.460	0.250		0.355
0.080	34.2	11,304	0.16	19.30	19.58		0.700	0.420		0.560
4.000	53,3	17.663	0.25	19.15	19.48		0.850	0.520		0.685
5.000	70.5	23.315	0.33	19.04	19.43		0.960	0.570		0.765
6.000	89.8	29.673	0.42	19.00	19.40		1.000	0.600		0.800
7.000	106.8	35,325	0.50	18.92	19.36		1.080	0.640		0.860
8.000	53.4	17.663	0.25	18.94	19.38		1.060	0.620		0.840
9.400	26.7	8.831	0.12	19.00	19.39		1.000	0.610		0.805
9.000	2.1	0.707	0.01	19.08	19.43		0.920	0.570		0.745
10.000	2.1	0.707	0.01	19.08	19.43		0.920	0.570	- 7	0.745
11.000	17.1	5.652	0.08	19.07	19.42		0.930	0.580		0.755
12.000	34.2	11.384	0.16	19.04	19.41		0.960	0.590		1000
13.000	53.3	17.663	0.25	18.98	19.39		1.020	0.610		0.775
14.000	70.5	23,315	0.33	18.96	19.38		1.040			0.815
15.000	89.8	29.673	0.42	18.94	19.36		1.060	0.620		0.850

		1	AS	As:	
9.7 e ₁	0.35	0.7475			
6.3 e,	0.15	0.53438	071313	0.2	
0.7a ₁	0.35	0.83444			
6.301	0.15	0.765	0.00344	***	
D (mm)	300				
Ev ₁	211.14				
Ev ₁	648.91				
Arm (Sq.mi	0.07045		7.0		

_	_	
Evilevi	1.07	


E. - 4.75 - D - de / ds

E, edeformation modulus

D. = load increment

Dr - settlement increment

D = diameter of the plate, generally 0.30 m

Lab. Specialist

Name:

Sign :

Name: Hassan

To

Company Name Location

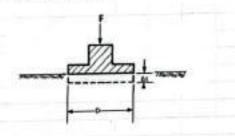
AGR 529+900

530+000

529+970

Taste Date

15/6/2023


Layer level

Ferma

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F-load

As - settlement

On diameter of the pint

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is resched the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

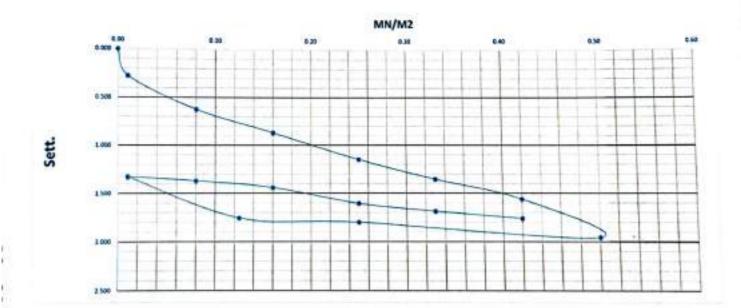
Diameter = 300mm

ameter -	Joon	_		1277	12000			6.0.5	Sett . 3	Arg
Loading	Load	Load	Stress	Diel 1	Dial 2	Diel 3	Sett, 1	Sett. 2	5H1,3	Sett.
Stage No.	Bur	KN	MNMI			***	***	me		***
0.000	0.0	0.000	0.00	7.38	8.50		0.000	0.000		0.000
1.000	2.1	0.707	0.01	7.26	8.07		0.120	0.430		0.275
2.000	17.1	5.652	0.08	7.14	7.49		0.240	1.010		0.625
0.080	34.2	11,304	0.16	6.95	7.19		0.430	1.310		0.870
4.000	53.4	17.663	0.25	6.85	6.73		0.530	1.770		1.150
5.000	70.5	23.315	0.33	6.73	6.44		0.650	2.060		1.355
6.000	89.7	29.673	0.42	6.61	6.15		0.770	2,350		1.560
7.000	106.8	35.325	0.50	6.28	5.69		1.100	2.810	-	1.955
8.000	53.4	17.663	0.25	6.49	5.79		0.890	2.710		1.800
9.000	26.7	8.831	0.12	6.53	5.84		0.850	2.660		1.755
9.000	2.1	0.707	10.0	6.68	6.55		0.700	1.950		1.325
10.000	2.1	0.707	0.01	6.68	6.55		0.700	1.950		1.325
11.000	17.1	5.652	0.08	6.64	6.50		0.740	2.000		1.370
12.000	34.2	11.304	0.16	6.62	6.38		0.760	2.120		1,440
13.000	53.4	17.663	0.25	6.55	6.12		0.830	2.380		1,605
14.000	70.5	23.315	0.33	6.50	6.01		0.880	2,490		1.685
15.000	89.7	29.673	0.42	6.45	5.91		0.930	2.590		1.760

			AS	Air.	
0.7 e ₁	0.35	1.21438	0.375	0.2	
0.3 o,	0.15	0.83938	13.5	0.4	
0.701	0.35	1.70167		0.2	
0.301	0.15	1.415	0,10000	-	
D (mm)	300				
Eve	120.00			J.	
Eve	156.98				
Area (Sq.m)	0.07065				

11	
	31

E, = 0.75 - D - 40 / As


E, e deformation modulus

dσ = load Increment

4s = settlement increment

p - diameter of the plate, generally 0.30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist

Name:

Sign:

Si

Consultant Engineer

Name :

Sign: ve

Contractor Consultant

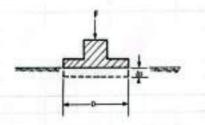
Plate Load Test Results

Company Name

AGR

Location 529+900

To 530+000


Surion 529+920

Taste Date Layer level 15/6/2023 Ferma

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

Felord

As a petterneri

D = Gameter of the plats

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

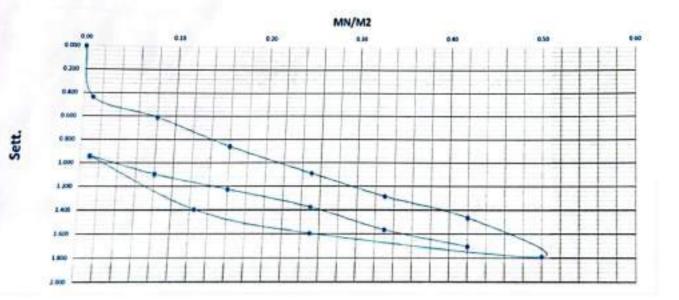
Diameter = 300mm

Louding	Lead	Load	Street	Diel 1	Dial 2	Diel 3	Sett. 1	Sett. 2	Sett.3	Avg. Sett.
Stage No.	le:	KN	MNMI		**		***	-	-	-
0.000	0.0	0.000	0.00	8.23	6.52		0.000	0.000		0.000
1.000	2.1	0.707	0.01	7.81	6.07		0,420	0.450		0.435
2.000	17.1	5.652	0.08	7.65	5.88		0.580	0.640		0.610
0.080	34.2	11.304	0.16	7.30	5.73		0.930	0.790		0.860
4.000	53.4	17.663	0.25	7.11	5.46		1.120	1.060		1.090
5.000	70.5	23.315	0.33	6.91	5.27		1.320	1.250		1.285
6.000	89,7	29.673	0.42	6.68	5.14		1.550	1.380		1.465
7.000	106.8	35.325	0.50	6.20	4.97		2.028	1.550		1.78
8,000	53.4	17.663	0.25	6,52	5.04		1.710	1,480		1.595
9.000	26.7	8.831	0.12	6.85	5.11		1.388	1,410		1.395
9.000	2.1	0.707	0.01	7.30	5.57		0.930	0.950		0.94
10.000	2.1	0.707	0.01	7.36	5.57		0.930	0.950		0.94
11.000	17.1	5.652	0.08	7.22	5.34		1.010	1.180		1.09
12.000	34.2	11.304	0.16	7.18	5.12		1.050	1.400		1.22
13.000	53.4	17.663	0.25	7.11	4.89		1.120	1.630		1.37
14.000	70.5	23.315	0.33	7.07	4.55		1.160	1.970		1.56
15.000	89.7	29.673	0.42	7.05	4.29		1,180	2.230		1.70

			AS	Art .	
0.7 o ₁	0.35	1.18154	0.35279		
0.3 o,	0.15	0.82875	0.35479	0.2	
0.701	0.35	1.59611	9,3461	0.2	
0.30,	0.15	1,25002	6.5461		
D (mm)	300				
Evi	127.56				
Eva	130.02	/			
Area (Sq.m)	8,97948		011		

E+2/E+1	1.02	-	
	1000		

E. - 0.75 - D - Ao / As


, • deformation modulus

da = load increment

Ar - settlement increment

D = diameter of the plate, generally 0.30 m

For this calculation do and do are usually taken from the load span between 0.3 g. and 0.7 g.

Lab. Specialist

Name:

Th mr tru

Di

Sign:

Lab. Engineer

Name :

المارية

Consultant Engineer

Name:

Sign :

Contractor Correction

Plate Load Test Results

To

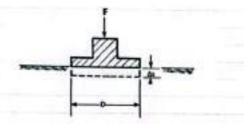
Company Name

Location

AGR 527+000

Taste Date Layer level

15/6/2023 Ferma


527+060

527+020

EQUIPMENT AND TEST PROCEDURE:

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of clasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

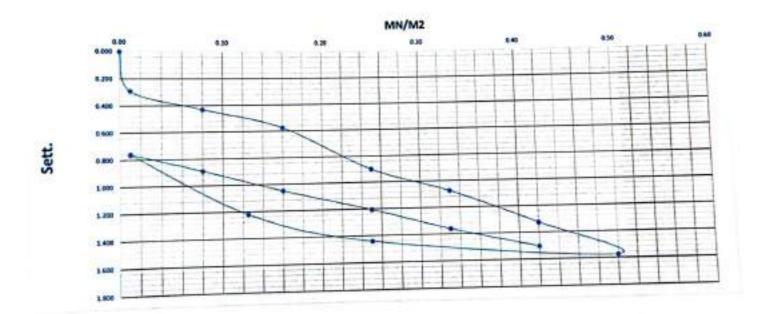
Diameter = 300mm

Loading	Load	Land	Strese	DW 1	Dial 1	Dial 3	Sett. 1	Sett, 2	Sett . 3	Avg. Sett.
Stage No.	Bar	KN	MNMI							
0.000	0.0	0.000	0.00	5.81	6.67		0.000	0.000		0.000
1.000	2.1	0.707	0.01	5.74	6.16		0.070	0.510		0.290
2.000	17.1	5.652	0.08	5.56	6.06		0.250	0.610		0.430
0.080	34.2	11.304	0.16	5.34	5.99		0.470	0.680		0.575
4.000	53.4	17.663	0.25	4.97	5.71		0.840	0.960		0.900
5.000	70.5	23.315	0.33	4.80	5.53		1.010	1.140		1.075
6.000	89.7	29.673	0.42	4.42	5.41		1.390	1.260		1.325
7.000	106.8	35.325	0.50	4.11	5.22		1.700	1.450	3-	1.575
8.000	53.4	17.663	0.25	4.32	5.28	Name of	1.490	1.390	-	1.44
9.000	26.7	8.831	0.12	4.70	5.34		1.110	1.330		1.22
9.000	2.1	0.707	0.01	5.10	5.86		0.710	0.810		0.76
10.000	2.1	0.707	0.01	5.10	5.86	-	0.710	0.810	1.0	0.76
11.000	17.1	5.652	80.0	5.00	5.70		0.810	0.970		0.89
12.000	34.2	11,304	0.16	4.95	5.43		0.860	1.240		1.05
13.000	53.4	17.663	0.25	4.85	5.22		8.960	1.450		1.20
14.000	70.5	23.315	0.33	4.78	4.98	1	1.030	1.690		1.36
15.000	89.7	29.673	0.42	4.75	4.72		1.060	1.950		1.50

			AS	he	
0.7 01	0.35	1.10625			
030,	0.15	0.55688	0.54938	6.3	
0,70;	0.35	1.39222			
(C)o ₂	0.15	1,02001	0.37211		
D(mm)	300				
Ev	81.91				
Ev ₃	120.90				
Arra (Sq.m)	0,07045			10.	

Delitera	1.48	

E. - 0.75 - D - Ac / As


deformation modulus

· load increment

- settlement increment

- diameter of the plate, generally 0.30 m

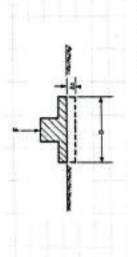
For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist

Name:

Sign:

Lab. Engineer



526+200 To AGR 526+100 19-06-2023 p.s.g +0.5 Company Name Layer level Taste Date Location

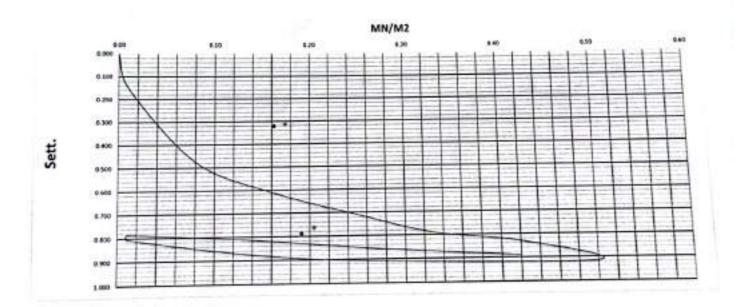
EQUIPMENT AND TEST PROCEDURE:

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

or D = 0.60 m and D = 0.762 m are

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 montminute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded buck, an excavator or a rotter usually serve as counterweight for the hydraulic jack.


SHL SHL
0.000
0.100
1
20.00
0.00 10.00 0.01 19.90 0.01 19.75
0.000
2

6.7 e, 6.15 6.7564 6.1625 6 6.3 e, 6.15 6.59312 6.1625 6 6.7 e, 6.15 6.2544 6.25e4 6.15 6.315 6.	Ī				34
8.3 e, 15 e,	0.70,	873	0.75563	*****	•
6.7c ₁ 6.35 6.87444 9.85444 9.35 ₁ 6.15 9.85544 9.35 6.35 6.35 6.35 6.35 6.35 6.35 6.35 6	030,	6.15	0.59312		1
0.367 0.15 0.315	0.70,	838	0.87444	0.00044	9
Er, 276,924 Er, 757,83 Grat Squa & 47645	5.50	8.15	0.815		1
Er, 1952), Gracity, 20165	D (mm)	300			
Entry terns	E)	276.92			
Gracing Actions Faithre 2.15	1/3	157,03			
Pathal 235	ura (Sąm)	8.67965	L		
	Patra	2	L		_
E 673 - D - do / ds	f.	- 67.8 - 4	. 401	-	

6 0

For this calculation $d\sigma$ and dz are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist

Name:

Sign:

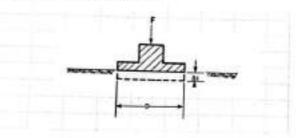
Name:

Consultant Engineer

Name: Unstan

Company Name Location Taste Date

Layer level


AGR 526+100 To 526+200 19-06-2023

States 526+145

EQUIPMENT AND TEST PROCEDURE:

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = hind As = nelflectors D = clameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

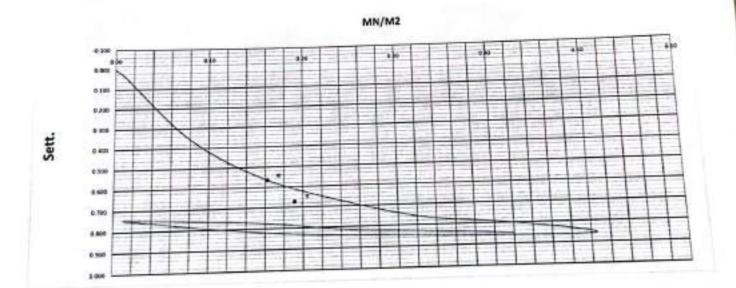
Diameter = 300mm

nameter -	- 30	umm								
Losdi	og L	and Las	d Street	Dist1	Dial 2	Diel 3	Sen, 1	Sett. 2	Sett. 3	Avg.
Stage?	No. B	ar KS	MNM	2	mm	-	-	na	-	-
0.00	0 0	.0 0.00	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.	1 0.70	7 0.01	19.95	19.98		0.050	0.020		0.035
2.000	17	.1 5.65	2 0.08	19.54	19.75		0.460	0.250		0.355
0.080	34.	.2 11.36	0.16	19.30	19.58	-	0.700	0.420		0.560
4,000	53.	3 17.66	3 0.25	19.15	19.48	-	0.850	0.520		0.685
5.000	70.	5 23.31	5 0.33	19.04	19.43		0.960	0.570		0.765
6.000	89.8	29.67	0.42	19.00	19.40		1.000	0.600		0.800
7.000	106.	8 35.325	0.50	18.92	19.36		1.080	0.640		0.860
8.000	53.4	17.663	0.25	18.94	19.38		1.060	0.620		0.840
9.000	26.7	8.831	0.12	19.00	19.39		1.000	0.610		0.805
9.000	2.1	0.707	0.01	19.08	19.43		0.920	0.570		0.745
10.000	2.1	0.707	0.01	19.08	19.43		0.920	0.570	1	0.745
11.000	17.1	5.652	0.08	19.07	19.42		0.930	0.580	1	0.755
12.000	34.2	11.304	0.16	19.04	19.41		0.960	0.590	. 3.	0.775
13.000	53.3	17.663	0.25	18.98	19.39		1.020	0.610		0.815
14.000	70.5	23.315	0.33	18.96	19.38		1.040	0.620		0.830
15.000	89.8	29.673	0.42	18.94	19.36		1.060	0.640		0.850

			AS	he .
0.7 e,	0.35	0.7475		
0.3 e,	0.15	0.53438	0.21313	0.2
0.703	0.35	0.83444		
0.3e ₁	0.15	0.765	0.06944	0.2
D (sum)	300			
Ev,	211.14	/		
Ev	645.01			
tres (Sq.m)	9.07045			

_		 _
Evalent	3.97	

E. - 0.75 . D . da / ds


E, edeformation modulus

D. = load increment

Ds - settlement increment

p = diameter of the plate, generally 0.30 m

For this calculation $d\sigma$ and dz are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}

Lab. Specialist

Name:

Sign:

Name: Sign: Consultant Engineer

Stani L

526+165

Plate Load Test Results

To

Company Name

AGR

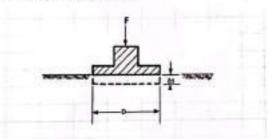
Location

526+100

526+200

Taste Date

19-06-2023


Layer level

p.s.g +0.5

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of clasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel hearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

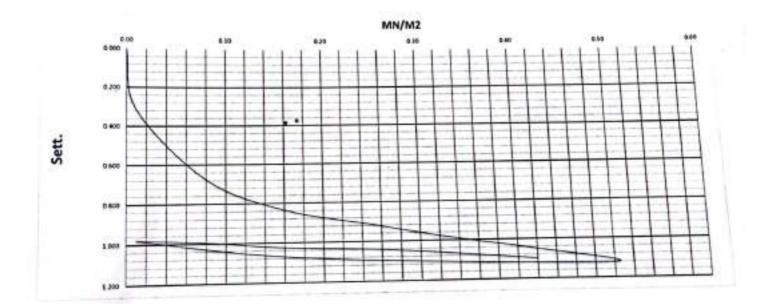
Diameter = 300mm

Landing	Lord	Last	Stress	Dul 1	Dial 2	Dial 3	Sett, 1	Sett. 2	Sett. 3	Avg.
Stage No.	Ber	KN	MNMI		•	na	***	-	mm	9669
0.000	0.0	0.000	0.00	20.00	20.00		0.000	9,000		0.000
1.000	2.1	0.707	0.01	19.63	19.74		0.370	0.260		0.315
2.000	17.1	5.652	0.08	19.30	19.35		0.700	0.650		0.675
0.080	34,2	11.304	0.16	19.08	19.25		0.920	0.750		0.835
4.000	53.3	17.663	0.25	18.97	19.20		1.030	0.800	- 9	0.915
5.000	70.5	23.315	0.33	18.85	19.18		1.150	0.820	-	0.985
6.000	89.8	29.673	0.42	18.78	19.12		1.220	0.880		1.050
7.000	106.8	35,325	0.50	18.65	19.10		1.350	0.900		1.125
8,000	53.4	17.663	0.25	18.69	19.12		1.310	0.880		1.095
9,000	26.7	8.831	0.12	18.74	19.15		1.260	0.850		1.055
9,000	2.1	0.707	0.01	18.82	19.22	-	1.180	0.780		0.980
10.000	2.1	0.707	0.01	18.82	19.22		1.180	0.780		0.980
11.000	17.1	5.652	0.08	18.80	19.21		1.200	0.790		0.995
12.000	34.2	11.304	0.16	18.76	19.19		1.240	0.810		1.025
13.000	53.3	17.663	0.25	18.75	19.17		1.250	0.830		1.04
14.000	70.5	23.315	0.33	18.72	19.15		1.280	0.850		1.065
15.000	89.8	29.673	0.42	18.67	19.13		1.330	0.870		1.10

		- 1	AS	34
0.7 e ₁	0.35	0.98437	0.16937	
0.3 o ₁	0.15	0.815	0.10737	
0.70,	0.35	1.07278	0.06278	0.2
0.Je ₁	0.15	1.01	8.00276	-
D (mm)	300			
Evi	265.68	-		
Ev ₁	716.83			
Area (Sq. m)	0.07045			

E-2E-1 279

E. - 8.75 . D . Ad / As


- deformation modulus ₽.

. load increment

- settlement increment D.

diameter of the plate, generally 0.30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist

Name:

Sign:

Name:
Sign Value 1

Convoltant Engineer

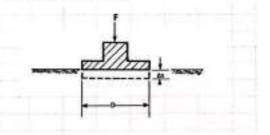
Name: Has

Company Name Location AGR

526+100 19-06-2023 526+200

Station

526+185


Taste Date Layer level

p.s.g +0.5

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = load

As = satisment

D = diameter of the pion

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

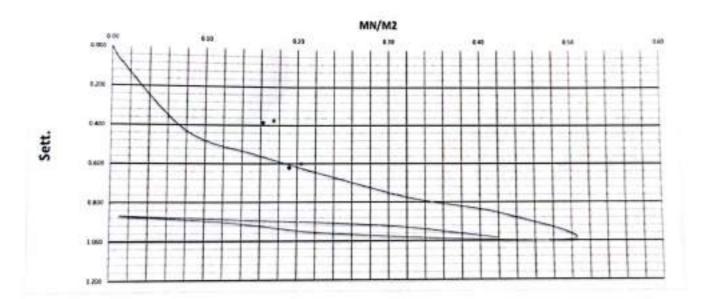
Diameter = 300mm

Looding	Lord	Lond	Stress	Disti	Dist 2	Dist.3	Sett. 1	Sep. 2	Sett . 3	Avg.
Stage No.	Bar	KN	MNMI	***		***	-	-	-	-
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	10.0	19.91	19.94		0.090	0.060		0.075
2.000	17.1	5.652	0.08	19.46	19.68	9	0.540	0.320		0.430
0.080	34.2	11.304	0.16	19.30	19.58	8	0.700	0.420		0.560
4.000	53.3	17.663	0.25	19.12	19.51		0.880	0.490		0.685
5.000	70.5	23.315	0.33	18.95	19.48		1.050	0.520		0.785
6.000	89.8	29.673	0.42	18.85	19.44		1.150	0.560		0.855
7.000	106.8	35.325	0.50	18.71	19.30		1.290	0.700		0.995
8.000	53.4	17.663	0.25	18.75	19.32		1.250	0.680		0.965
9.000	26.7	8.831	0.12	18.81	19.38		1.190	0.620		0.905
9.000	2.1	0.707	0.01	18.86	19.40	â-	1.140	0.600		0.870
10.000	2.1	0,707	0.01	18.86	19.40		1.140	0.600		0.870
11.000	17.1	5.652	0.08	18.85	19.39		1.150	0.610		0.880
12.000	34.2	11.304	0.16	18.83	19.38		1.170	0.620		0.895
13.000	53.3	17.663	0.25	18.81	19.37		1.190	9.630		0.910
14.000	70.5	23.315	0.33	18.78	19.35		1.220	0.650		0.93
15.000	89.8	29.673	0.42	18.71	19.32		1.290	0.680		0.98

		1	AS :	A.
0.7 o ₁	0.35	0.7325		
0.3 0,	0.15	0.54375	0.18875	0.2
0.701	0.35	0.94611		
0.302	0.15	0.89	0.05611	0.2
D (mm)	300			
Ev ₁	238.41-			
Ev	801.99			
Area (Sq.m)	0.07045			

		_	
E-DE-1	3.36		

E. = 2.75 · D · Ao / As


E, e deformation modulus

D. = load increment

Ds * settlement increment

p = diameter of the plate, generally 6.30 m

To this Executation der and dis are usually taken from the load span between 6.3 a ... and 6.7 a

Lab. Specialist

Name:

Sign:

Name:

Consultant Engineer

Name: Wasson

Sign: 23/6/ 2023

Contractor Consultant

Plate Load Test Results

To

526+460

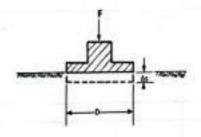
Company Name

Location Taste Date

AGR 526+380

15/6/2023

Layer level


Ferma

526+400

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

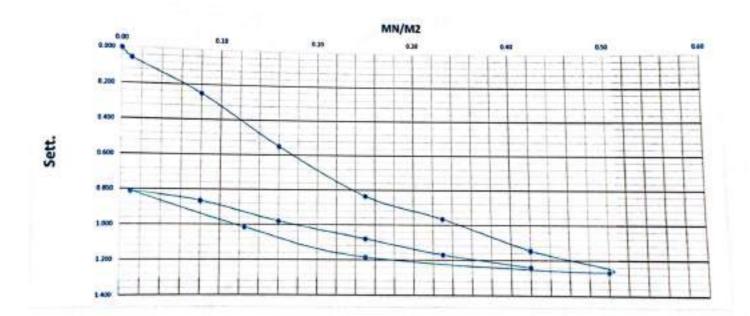
200mi		_		_					ANG
Load	Land	Stress	Dial 1	Dial 2	Dial 3	Sett. 1	Sett. 1	Sett , 3	Sett.
Ber	KN	MNM2	**	-	**				
0.0	0.000	0.00	10.93	11.08		0.000	0.000		0.000
2.1	0.707	0.01	10.89	11.01		0.040	0.070		0.055
17.1	5.652	0.08	10.78	10.73		0.152	0.350		0.251
_	-	0.16	10.61	10.30	-3	0.320	0.780		0.550
-	-	0.25	10.43	9.91		0.500	1.170		0.835
	-	-	10.34	9.74		0.590	1.340		0.965
-		-	10.21	9.51	/	0.720	1.570		1.145
-	-	0.50		9.37		0.820	1.710		1.265
		_		-	-	0.750	1.620		1.185
	-		The second	CONTRACTOR OF THE PARTY OF THE		0.620	1,410		1.015
and the same of			-	The same of			1,150		0.810
			Contract of	THE REAL PROPERTY.		THE REAL PROPERTY.	The Parket		0.810
2.1	-	0.01	-A-CC-	10000			-		0.865
17.1	5.652	0.08	10.43	9.85		-		-	-
34.2	11.304	0.16	10.35	9.70		0.580	1.380	-	0.980
53.4	17.663	0.25	10.28	9.57		0.650	1.510		1.080
70.5	23,315	0.33	10.20	9.47		0.730	1.610		1.170
	-	0.42	10.13	9.40	7-5-3	0.800	1.680		1.240
	100d 100 100 17.1 17.1 17.2 100.8 100	8er KN 0.0 0.000 2.1 0.707 17.1 5.652 34.2 11.304 53.4 17.663 70.5 23.315 89.7 29.673 106.8 35.325 53.4 17.663 26.7 8.831 2.1 0.707 17.1 5.652 34.2 11.304 53.4 17.663 70.5 23.315	Load Load Stress Bar KN MANM2 0.0 0.000 0.00 2.1 0.707 0.01 17.1 5.652 0.08 34.2 11.304 0.16 53.4 17.663 0.25 70.5 23.315 0.33 89.7 29.673 0.42 106.8 35.325 0.50 53.4 17.663 0.25 26.7 8.831 0.12 2.1 0.707 0.01 17.1 5.652 0.08 34.2 11.304 0.16 53.4 17.663 0.25 70.5 23.315 0.33	Load Load Stress Dial 1 Bar KN MNNM2 mm 0.0 0.000 0.00 10.93 2.1 0.707 0.01 10.89 17.1 5.652 0.08 10.78 34.2 11.304 0.16 10.61 53.4 17.663 0.25 10.43 70.5 23.315 0.33 10.34 89.7 29.673 0.42 10.21 106.8 35.325 0.50 10.11 53.4 17.663 0.25 10.18 26.7 8.831 0.12 10.31 2.1 0.707 0.01 10.46 17.1 5.652 0.08 10.43 34.2 11.304 0.16 10.35 53.4 17.663 0.25 10.28 70.5 23.315 0.33 10.20	Load Stress Dial 1 Dial 2 Bar KN MNNM2 mm mm 0.0 0.000 0.00 10.93 11.08 2.1 0.707 0.01 10.89 11.01 17.1 5.652 0.08 10.78 10.73 34.2 11.304 0.16 10.61 10.30 53.4 17.663 0.25 10.43 9.91 70.5 23.315 0.33 10.34 9.74 89.7 29.673 0.42 10.21 9.51 106.8 35.325 0.50 10.11 9.37 53.4 17.663 0.25 10.18 9.46 26.7 8.831 0.12 10.31 9.67 2.1 0.707 0.01 10.46 9.93 17.1 5.652 0.08 10.43 9.85 34.2 11.304 0.16 10.35 9.70 53.4 17.663 0.25 10.28 </td <td> Load Stress Dial Dial Dial </td> <td> Hara KN MNNM2 mm mm mm mm mm mm mm </td> <td> Diam Diam </td> <td> </td>	Load Stress Dial Dial Dial	Hara KN MNNM2 mm mm mm mm mm mm mm	Diam Diam	

		1	AS	Le	
0.7 e,	0.35	1.04	0.52737	0.2	
0301	0.15	0.51263	454151		
0.701	0.35	1,18556	0.26555	0.2	
6301	0.15	0.92001	0.24555		
D (mm)	300				
Ev ₁	85,33				
Ev ₃	169.46				
Area (Sq.m)	0.07065				

6.000.1	1.00	V	
D/2/D/I	100		_

E. - 0.75 . D . As / As

deformation modulus


- load increment

- settlement increment

= diameter of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist

Name:

Contractor Consults

Plate Load Test Results

Company Name

AGR

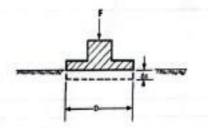
Location

526+380

To

526+460

Station


526+450

Taste Date Layer level 15/6/2023 Ferma

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = load

As w partitions of

0 = diameter of the piets

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 6.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

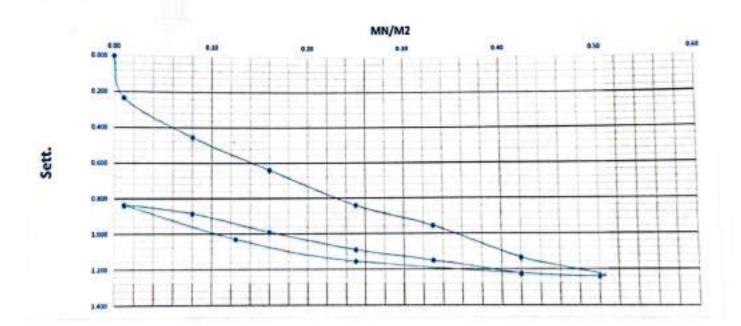
Diameter = 300mm

Leading	Lord	Load	Stress	Diel 1	8643	Did 3	Sett. 1	Sett, 2	Sett . 3	Avg.
Stage No.	Bar	KN	MN/M2	-	***	-		***	-	-
0.000	0.0	0.000	0.00	10.18	12.11		0.000	0.000		0.000
1.000	2.1	0.707	0.01	10,15	11.67		0.030	0.440		0.235
2.000	17.1	5.652	0.08	10.09	11.29	- 10	0.090	0.820		0.455
0.080	34.2	11,304	0.16	10.00	11.01		0.180	1.100		0.640
4.000	53.4	17.663	0.25	9.82	10.79		0.360	1.320		0.840
5.000	70.5	23.315	0.33	9.72	10.66		0.460	1,450		0.955
6.000	89.7	29.673	0.42	9.57	10.45		0.610	1.660		1.135
7,000	106.8	35,325	0.50	9.49	10.32		0.690	1.790		1.240
8.000	53.4	17.663	0.25	9.56	10.42		0.620	1.690		1.155
9.000	26.7	8.831	0.12	9.65	10.58		0.530	1.530		1.030
9.000	2.1	0.707	0.01	9.79	10.83		0.390	1.280		0.835
10.000	2.1	0.707	0.01	9.79	10.83		0.390	1.280		0.835
11.000	17.1	5.652	0.08	9.75	10.77		0.430	1.340		0.885
12.000	34.2	11.304	0.16	9.67	10.64		0.510	1.470		0.990
13.000	53.4	17.663	0.25	9.61	10.50		0.570	1.610		1.090
14.000	70.5	23.315	0.33	9.56	10.43		0.620	1.680		1.150
15,000	89.7	29.673	0.42	9.50	10.34		0,680	1.770		1.225

			AS	Are:
0.7 e ₁	0.35	1.04313	8.42625	0.2
0.3 01	0.15	0.61688	0.42023	9.2
0.702	0.35	1.16667		0.2
0.30,	0.15	0.93501	arpise.	
D (mm)	300			
Evi	105.57			
Ey ₁	194.25			
Area (Sq.m)	0.07065			

	_	_	_
E-28-1	1.84		

E. = 0.75 . D . Ad / As


E. = deformation modulus

Arr . load increment

Ar - settlement increment

D = diameter of the plate, generally 9.30 m

For this calculation As and As are usually taken from the load span between 0.3 s and 0.7 s

Lab. Specialist

Name:

Sign :

Lab. Engineer

Name :

Name :

 $\overline{}$

Conveltant Engineer

Name: Wassaux

Sien :

gn: 02

2023

Contactor Contractor Consultant

Plate Load Test Results

Layer: Station:

Date:

EMBANKMENT

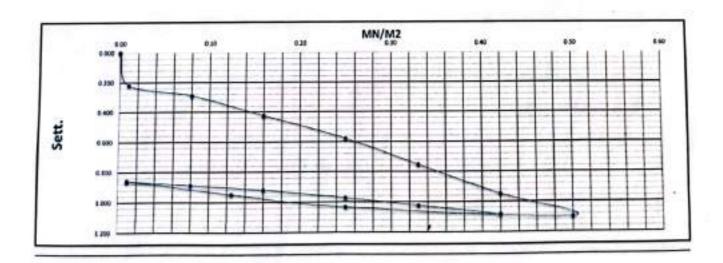
13-06-23

529+520

-1.5 TO

529+620

AGR COMPANY COMPANY 519+600 Location


Landing	Leed	Lord	Street	Diel I	Diel 2	9643	Sett. 1	Sett. 2	Set . 3	Avg.
Stage Nu.	Ber	KN	мямя	mm	me	-	***	jan.	mm	mm
0.000	0.0	0.000	0.00	7.30	7.50		0.000	0.000		0.000
1.000	1.0	0.707	0.01	7.10	7.56		0.200	0.240	50	0.220
2.000	7.9	5.652	0.08	7.03	7.49	(2.7)	0.270	0.310		0.290
0.080	15.8	11.304	0.16	6.91	7.34		0.390	0.460		0.425
4.000	24.7	17.663	0.25	6.77	7.17		0.530	0.630		0.580
5.000	32.6	23.315	0.33	6.61	6.98		0.690	0.820		0.755
6.000	41.5	29.673	0.42	6.43	6.77		0.870	1.030		0.950
7.000	49,4	35.325	0.50	6.30	6.60	-	1.000	1.200	9.5	1.100
8.000	24.7	17.663	0.25	6.33	6.70	Die.	0.970	1.100	1900	1.035
9.000	12.4	8.831	0.12	6.40	6.80	-	0.900	1.000	900	0.950
9.000	1.0	0.707	0.01	6.48	6.90	ALC:	0.820	0.900	狸	0.86
10.000	1.0	0.707	0.01	6.48	6.90		0.820	0.900		0.86
11.000	7.9	5,652	0.08	6.45	6.87		0.850	0.930		0.89
12.000	15.8	11.304	0.16	6.43	6.83		0.870	0.970		0.920
13.000	24.7	17.663	0.25	6.39	6.76		0.910	1.040		0.97
14.000	32.6	23.315	0.33	6.35	6.70		0.950	1.100		1.02
15.000	41.5	29.673	0.42	6.30	6.63	- 1	1.000	1.170		1.08

		1	15	24
0.7 e ₁	0.35	0.81875	0.41063	0.7
9.3 e,	0.15	0.40813	4.41043	
0.701	0.35	1.03833	A (1911	0.2
0.301	0.15	0.92	0.11033	
D (mm)	300			
/ Ev,	109.59			
Ev2	380.29			
Arra (Sq.m)	9.07965			

Eviliat 3.47

LOAD AT UN LOAD RE LOAD

Lab. Specialist

Name:

Sign:

Lab. Engineer

Consultant Engineer

Name :

Contractor Consultant Contarvior

-1.50

Plate Load Test Results

527+840

Layer: Station:

Date:

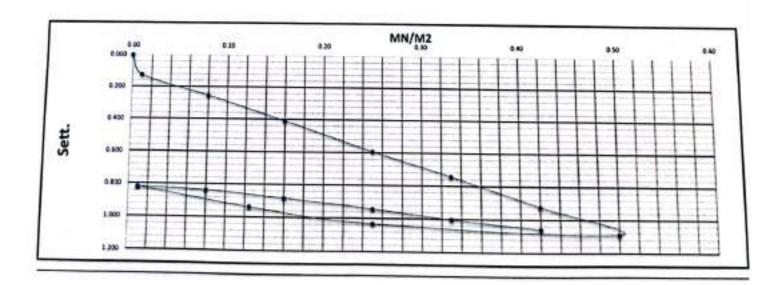
EMBANKMENT

527+700 TO COMPANY

AGR COMPANY

12-06-23

527+740 Location


Leading	Leed	Leed	Stress	Dist	Dist 2	Dist)	Sell, 1	Sett. 2	Sett. 3	Avg.
Stage No.	Bar	KN	MNMI		-	***	ren	20	me	Sett.
0.000	0.0	0.000	0.00	6.49	5.40	2777	0.000	0.000		0.000
1.000	1.0	0.707	0.01	6.38	5.26		0.110	0.140		0.125
2.000	7.9	5.652	0.08	6.28	5.10		0.210	0.300		0.255
0.080	15.8	11.304	0.16	6.17	4.90		0.320	0.500		0.410
4.000	24.7	17.663	0.25	6.05	4.65		0.440	0.750		0.595
5.000	32.6	23.315	0.33	5.93	4.47		0.560	0.930		0.745
6.000	41.5	29.673	0.42	5.79	4.25		0.700	1.150		0.925
7.000	49.4	35,325	0.50	5.66	4.05		0.830	1.350	- 3	1.090
8.000	24.7	17.663	0.25	5.71	4.11	000	0.780	1.290	200	1.035
9.000	12.4	8.831	0.12	5.79	4.22	-	0.700	1.180		0.94
9.000	1.0	0.707	0.01	5.88	437	9 - 4	0.610	1.030	G0:	0.82
10.000	1.0	0.707	0.01	5.88	4.37		0.610	1.030		0.82
11.000	7.9	5.652	0.08	5.87	434		0.620	1.060	1	0.84
12.000	15.8	11.304	0.16	5.83	4.29		0.660	1.110		0.88
13.000	24.7	17.663	0.25	5.78	4.22	- 1	0.710	1.180		0.94
4.000	32.6	23,315	0.33	5.73	4.15		0.760	1.250		1.00
5,000	41.5	29,673	0.42	5.68	4.09	-	0.810	1.310		1.06

	-		AS	Art
0.7 σ ₁	8.35	8.78063		0.2
0.3 €,	0.15	0.39063	437	0.2
0.7e1	0.35	1.01722	A 16333	
0.30,	0.15	0.86	9.15/22	***
D (mm)	300			
Evi	115.38	1		
Ev ₂	286.22		3	
Area (5q.m)	0.07965			

Ev2/Ev1	240	7
E-14/611	4,44	17 13

LOAD UN LOAD RE LOAD

Lab. Specialist

Name:

Sign:

Name:

Sign:

الممسوحة ضوئيا بـ CamScanner

Centractor Consultant

Plate Load Test Results

Layer: Station: EMBANKMENT

-1.50

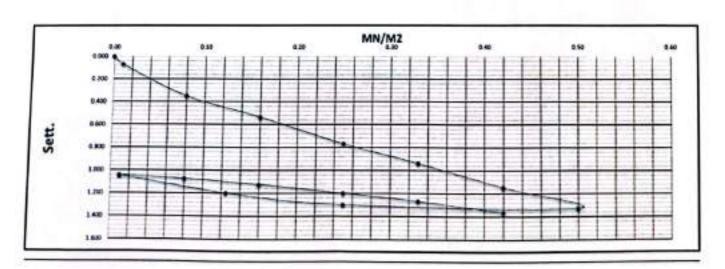
527+700 TO COMPANY

AGR COMPANY 527+780

Date:

12-06-23

	COMPANT
527+840	Location
	-


Louding	Lead	Lord	Stress	Diel 1	Dist 1	Dist.)	Sex.1	Sett. 2	Sett.3	Avg.
Stept No.	Ber	KN	MNMI		-		-	-	-	-
0.000	0.0	0.000	0.00	7.20	6.93	2.1	0.000	0.000		0.000
1.000	1.0	0.707	0.01	7.11	6.88		0.090	0.050		0.070
2.000	7.9	5.652	0.08	6.75	6.68		0.450	0.250		0.350
0.080	15.8	11.304	0.16	6.49	6.57		0.710	0.360		0.535
4.000	24.7	17.663	0.25	6.20	6.39		1.000	0.540		0.770
5.000	32.6	23.315	0.33	6.01	6.24		1.190	0.690		0.940
6.000	41.5	29.673	0.42	5.80	6.03		1.400	0.900		1.150
7.000	49.4	35.325	0.50	5.57	5.90		1.630	1.030		1.330
8.000	24.7	17.663	0.25	5.61	5.92	1000	1.590	1.010		1.300
9.000	12.4	8.831	0.12	5.72	6.01		1.480	0.920		1.200
9.000	1.0	0.707	0.01	5.89	6.15	Ties,	1.310	0.780	100	1.045
10.000	1.0	0.707	0.01	5.89	6.15		1,310	0.780		1.045
11.000	7.9	5.652	0.08	5.85	6.13		1.350	0.800		1.075
12.000	15.8	11,304	0.16	5.78	6.10		1.420	0.830		1.125
13.000	24.7	17.663	0.25	5.68	6.05		1.520	0.880		1.200
14.000	32.6	23.315	0.33	5.60	5.99		1.600	0.940		1.270
15,000	41.5	29.673	0.42	5.44	5.96		1.760	0.970		1.365

		1	45	te	
0.7 e,	0.35	0.9925		.,	
030,	0.15	9.51188	8.48963	0.2	
0.701	9.35	1.29111	A 18411	0.2	
0.3e,	0.15	1.105	9.1001.0		
D (mm)	300	5		8	
Ev,	93.63				
Ev ₁	241.79				
Ares (Sq.m)	0.07045			10	

Ev2/Ev1 1.50

LOAD UN LOAD RE LOAD

Lab. Specialist

Name:

Sign :

Name:

Contractor Consultan

529+700

Plate Load Test Results

Company Name

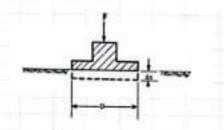
AGR Location

Taste Date

529+600

06-06-2023

Layer level


-1.5

529+650

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

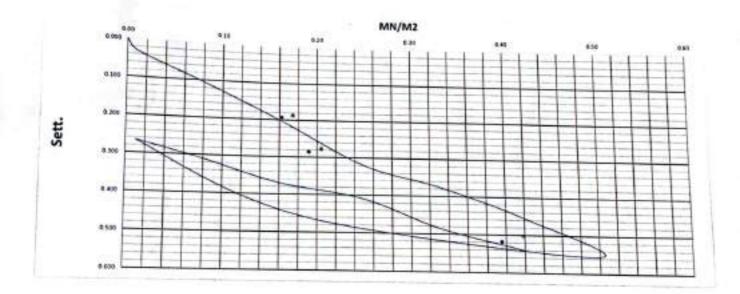
Diameter = 300mm

Lauding	Lead	Load	Street	Dieli	Dial 2	Dial 3	Sett 1	Sen. 2	Sett , 3	Ang.
Stage Na.	Ber	KN	MNMI	-	-	-		THE .		-
0.000	0.0	0.000	0.00	20.00	29.00		0,000	0.000		0.000
1.000	2.1	0.707	0.01	19.95	19.99		0.050	0.010		0.030
2.000	17.1	5.652	0.08	19.89	19.90		0.110	0.100		0.105
0.080	34.1	11,304	0.16	19.81	19.79		0.190	0.210		0.200
4.000	53.3	17.663	0.25	19.72	19.64		0.280	0.360		0.320
5.000	70.5	23.315	0.33	19.70	19.55		0,300	0,450		0.375
6.000	89.8	29.673	9.42	19.64	19.45		0.360	0,550		0.455
7.000	106.8	35,325	0.50	19,59	19.30		0.410	0.700		0.555
8.000	53.4	17.663	0.25	19.62	19,40		0.380	0,600		0.490
9.000	26.7	8.831	0.12	19.68	19.50		0.320	0.500		2,717.63
9.000	2.1	0.707	0.01	19.78	19.69		0.220	0.310		0.410
10.000	2.1	0.707	10.0	19.78	19.69		0.220	CONTRACTOR OF STREET		0.26
11.000	17.1	5.652	0.08	19.73	19.65			0.310		0.265
12.000	34.2	11.304	0.16	-	10000		0.270	0.350	-	0.310
13.000	53.3	17,663		19.70	19.56		0.300	0.440		0.37
14.000		District of the last	0.25	19.68	19.50	100	0.320	0.500		0.410
	70.5	23.315	0.33	19.62	19.41		0.380	0.590		0.485
15.000	89.8	29.673	0.42	19.59	19.33		0.410	0.670		0.54

_		-	AS	As .
0.7 a	0.35	0.3675		
0,3 0,	0.15	0.18813	0.17937	6.1
0.703	0.35	0.49722		7.
0.301	0.15	9,355	0.14222	0.2
D (mm)	300			
Evi	250.87			
Evi	316.42			
Area (Sq.m)	B.97065			

		 _
Del/Est	1.26	

E. + 8.75 . D . do / ds


deformation modulus

- load increment

settlement increment

= diameter of the plate, generally 0.30 m

are and dir are usually taken from the load sace had

Lab. Specialist

Name:

Sign:

Lab. Engineer

Name:

Sign:

Consultant Engineer

Name: MONDING

Sign:

m-elsaile

ter Consultant Con

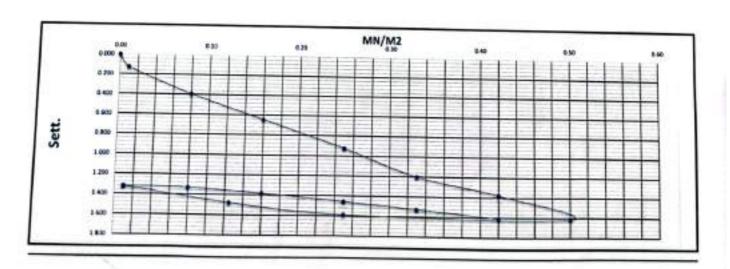
Plate Load Test Results

Layer: Station:

Date:

-1.5 529+160 TO 529+300 05-06-23

COMPANY	AGR
Location	529+180


Leading	Lond	Leed	Street	Diel I	Dist 2	Diazz	Sen. 1	Set, 2	Sett . 3	Ang
Stage No.	Bar	KN	MNMI	-				960.1		Sex.
0.000	0.0	0.000	0.00	7.24	7.66		0.000	0.000	-	- max
1.000	1.0	0.787	0.01	7.09	7.56		0.150	-		0.000
2.000	7.9	5.652	0.08	6.78	7.33		0.150	0.100		0.125
0.080	15.8	11.304	0.16	6.48	7.13		0.760	0.330		0.395
4.000	24.7	17.663	0.25	6.14	6.91		1.190	0.530		0.645
5.000	32.6	23,315	0.33	5.82	6.67	-	20000	0.750		0.925
6.000	41.5	29,673	0.42	5.63	6.51	-	1.420	0.990		1.205
7.000	49.4	35,325	0.50	5.42	6.25		1.610	1.150	-	1.380
8.000	24.7	17,663	0.25	5.46	6.26	1000	1.820	1.410		1.615
9.000	12.4	8.831	0.12	Contract of the Contract of th		10)	1.780	1.400	05	1.590
9.000	1.0	0,707	-	5.61	6.33		1.630	1.330	91	1,486
10.000	-		10.0	5.81	6.44	7.5	1.430	1.220	36	1.325
	1.0	0.707	0.01	5.81	6.44		1.430	1.220		1.325
11.000	7.9	5.652	0.08	5.80	6.43		1.440	1.230		1.335
12.000	15.8	11.304	0.16	5.73	6.40		1.510	1.260		1.385
13.000	24.7	17.663	0.25	5.63	6.35		1.610	1.310		1.460
14.000	32.6	23,315	0.33	5.54	6.30		1.700	1.360		1.530
15.000	41.5	29.673	0.42	5.44	6.24		1.800	1,420		1.610

-			45	Art .
9.7 a ₁	0.35	1.17438		100
63 01	0.15	8.61375	0.56063	0.2
0.7e ₁	0.35	1.54778	Same?	- 42
0.3a ₁	0.15	1.345	0.20276	8.2
D (mm)	300			
Ev ₁	80.27			
Ev.	221.52			
ures (Sq.m)	0.07065			

Evilian	2.76	

LOAD UN LOAD RE LOAD

Lab. Specialist

Name:

Sign:

Lah. Engineer

شركية نوك و المقطولات المعمل المسركزي مشروع القطار السريع فوكة - مطروح Consultant Engineer

Name:

LI OSSO

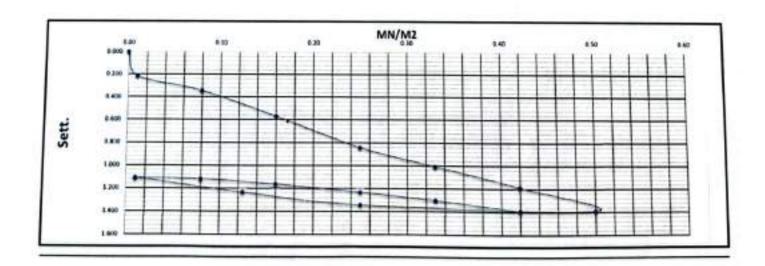
Sien :

As

Layer: Station: Date:

-1.5 529+160 TO 529+300 05-06-23

COMPANY AGR 529+260 Location


Leading	Lend	Level	Street	Diel 1	Diel 2	Dtel 3	Sett. 1	Sen. 1	Sett . 3	Ang.
Stage No.	Ber	KN	MNMI	***	-	***	-	ne	-	me
0.000	0.0	0.000	0.00	7.29	7.35		0.000	0.000		0.000
1.000	1.0	0.707	0.01	7.05	7.16		0.240	0.190		0.215
2.000	7.9	5.652	0.08	6.90	7.05		0.390	0,300		0.345
0.080	15.8	11.304	0.16	6.65	6.85		0.640	0.500		0.570
4.000	24.7	17.663	0.25	6.34	6.61		0.950	0.740		0.845
5.000	32.6	23,315	0.33	6.14	6.48		1,150	0.870		1.010
6.000	41.5	29.673	0.42	5.94	6.32		1.350	1.030	=	1.190
7.000	49.4	35.325	0.50	5.72	6.14		1.570	1.210		1.390
8.000	24.7	17.663	0.25	5.78	6.17		1.510	1,180	100	1.345
9.000	12.4	8.831	0.12	5.92	6.25		1.370	1.100	189	1.235
9.000	1.0	0.707	0.01	6.08	6.34	159	1.210	1.010	1	1.110
10.000	1.0	0.707	0.01	6.08	6.34	6.4	1.210	1.010		1.110
11.000	7.9	5.652	0.08	6.07	6.33	_	1.220	1.020		1.120
12.000	15.8	11,304	0.16	6.01	6.30	1	1.280	1.050		1.165
13.000	24.7	17.663	0.25	5.91	6.26	70.20	1.380	1.090		1.235
14.000	32.6	23.315	0.33	5.83	6.20	7	1.460	1.150		1.305
15.000	41.5	29.673	0.42	5.72	6.13		1.570	1.220	1	1.395

			45	Are
4.7 e,	0.35	1.015		
6.3 e ₁	0.15	0.54188	6,47312	0.2
0.7a ₁	0.35	1.325		
0.30;	0.15	1.13	0.195	0.2
D (mm)	300			
Evi	95.11			
Ev.	230.77			
Area (Sq.m)	8.07965			50%

Evalled 1.43

LOAD UN LOAD RE LOAD

Lab. Specialist

Name:

Sign :

Consultant Engineer

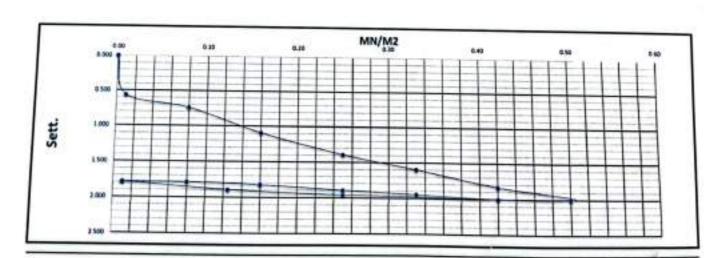
Hassan Name:

Sign :

7/2

Layer: Station: Date: 0.5 + 526+000 TO 526+100 05-06-23

COMPANY	AGR
Location	526+010


Londing	Lord	Lood	Bires	Diet	Diet 1	Dista	Set. 1	Sett. 2	Sett. X	Arg
Stage No.	Bar	KN	MNMI		-	-	-	-		Set.
0.000	0.0	0.000	0.00	6.92	7.24	-	0.000	0.000		0.000
1.000	1.0	0.707	0.01	6.35	6.68		0.570	0.560		0.565
2.000	7.9	5.652	0.08	6.18	6.49		0.740	0.756		0.745
0.080	15.8	11.304	0.16	5.84	6.13		1.080	1.110		1.095
4.000	24.7	17.663	0.25	5.55	5.82		1.370	1.420		1.095
5.000	32.6	23.315	0.33	5.31	5.65		1.610	1.590		1.600
6.000	41.5	29,673	0.42	4.97	5.51		1.950	1.730	-	1.840
7.000	49,4	35,325	0.50	4.72	5.43		2,200	1.810		2.005
8.000	24.7	17.663	0.25	4.72	5.52		2.200	1.720		-
9.000	12.4	8.831	0.12	4.74	5.62		2.180	1.620		1.960
9.000	1.0	0.707	0.01	4.82	5.76		2.100	1.480		1,900
10.000	1.0	0.707	0.01	4.82	5.76		2.100	1,480		1.790
11.000	7.9	5.652	0.08	4.81	5.76		2.110			1,790
12.000	15.8	11.304	0.16	4.78	5.72		-	1.480	-	1.795
13,000	24.7	17,663	0.25	1000			2.140	1.520		1.830
14,000	-			4.74	5.62		2.180	1.620		1.900
-	32.6	23.315	0.33	4.71	5.55		2.210	1.690	3.	1.950
15,000	41.5	29,673	0.42	4.68	5.47		2.240	1.770	-	2.00

			45	3.0	
0.7 a ₁	0.35	1.49543			
6.3 e ₁	0.15	1.05125	0.04434	***	
0.7e ₁	0.35	1.96222			
0.3e ₁	0.15	1.8	6.16111		
D (mm)	300				
Ev.	69.84				
Ev,	277.40				
Ares (Sq.m)	0.07945			72.	

_		
Ext/Ext	1.97	

LOAD UN LOAD RE LOAD

Lab. Specialist

Name:

Sign:

Name: Shehal Hamoli
Sign: 25 1 1 2023

Consultant Engineer

Name:

Contractor Consultant

Plate Load Test Results

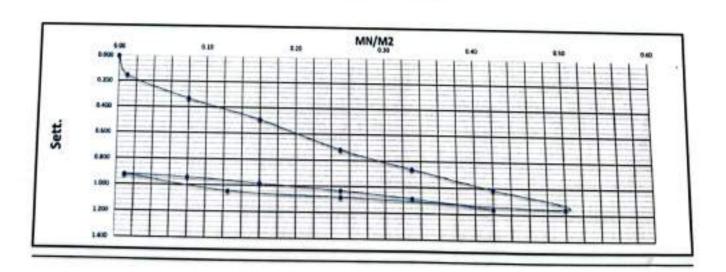
526+100

Layer: Station:

Date:

0.5 + 526+000 TO 05-06-23

COMPANY	AGI
Location	536-16


Looding	Lond	Land	Street	Dist 1	Dist2	Dieli	Sex.1	Sett. I	Sett. 3	Arg
Stage No.	Bar	. KN	MNME	-			-	-	-	Set.
0.000	0.0	0.000	0.00	7.19	7.30	755	0.000	9.000		0.000
1.000	1.0	0.707	0.01	6.98	7.20		0.210	0.100		0.155
2.060	7.9	5.652	0.08	6.78	7.04		0.410	0.160		0.335
0.080	15.8	11.364	0.16	6.65	6.85		0.540	0.450		0.495
4.000	24.7	17.663	0.25	6.49	6.56		0.700	0.740		9.720
5.000	32.6	23.315	0.33	6.38	6.38		0.810	0.920		0.865
6.000	41.5	29,673	0.42	6.26	6.20		0.930	1.190	-	1.015
7.000	49.4	35.325	0.50	6.17	6.01		1.020	1.290		1.15
8.000	24.7	17.663	0.25	6.27	6.05	160	0.920	1.250		1.08
9.000	12.4	8.831	0.12	6.33	6.07	line of	0.860	1.230		1.04
9.000	1.0	0.707	0.01	6.46	6.18	1000	0.730	1.120	100	8.92
10.000	1.0	0.707	0.01	6.46	6.18		0.730	1.120	-	0.92
11.000	7.9	5.652	0.08	6.45	6.15		0.740	1.150		0.94
12.000	15.8	11.304	0.16	6.42	6.10		0.770	1.200	-	
13.000	24.7	17.663	0.25	6.38	6.04		0.810	1.260	-	0.98
14.000	32.6	23,315	0.33	6.30	6.01					1.03
15.000	41.5	29,673	0.42		-	-	0.890	1.290	-	1.09
	75.00	47.013	0.44	6.20	5.97		0.990	1.330		1.1

		(1.1 m)	55	le.
6.7 e _i	6.35	6.8915		
0.3 o ₁	0.15	0.475	*****	
0.7e ₂	0.35	1.10556		
0.3e ₁	0.15	0.965	0.14055	***
D (mm)	300			
Ev ₁	197.78			
Ev ₁	320.16			
Area (Sq.m)	0.07045			

Ex16x1 1.57

UN LOAD RE LOAD

Lab. Specialist

Name:

Sign:

Name: Shehad Informal 1
Sign: 2013

Consultant Engineer

Name:

Hassan

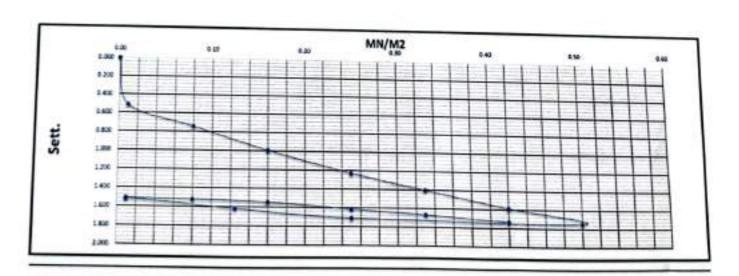
Sign:

4

Layer: Station: Date:

0.5 +526+000 05-06-23 TO 526+100

COMPANY	AGR
Location	526+069


Landing	Lend	1-4	Street	Peti	Deal	Data				
Step Na.	-	KN	MVM3	-	-		Sen. 1	Sex.1	Sett.3	Avg. Sett.
0.000	0.0	0.000	0.00	6.95	7.02	-	-		-	-
1.000	1.0	0.707	0.01	6.28			0.000	0.000		0.000
2.000	7.9	5.652	0.08	6.01	6.66		6.670	0.360		0.515
0.050	15.8	11,304	0.16	-	6.47		0.940	0.550		0.745
4.000	24.7	17.663	-	5.71	6.27		1.240	0.750		0.995
5,000	32.6		0.25	5.45	6.06		1.500	0.960		1.230
	-	23.315	0.33	5.27	5.89		1.680	1.130		1.405
6.000	41,5	29,673	0.42	5.07	5.72		1.880	1.300		1.590
7.000	49.4	35.325	0.50	4.92	5.56	4 3	2.030	1,460		1.745
E.000	24.7	17.663	0.25	4.98	5.57	100	1.976	1,450		1.710
9.000	12.4	8.831	0.12	5.12	5.61		1.830	1.410		1.62
9.000	1.0	0.707	0.01	5.25	5.69		1.700	1.330		-
10.000	1.0	0.707	0.01	5.25	5.69		1,700	1.330	1	1.51
11,000	7.9	5.652	0.08	5.24	5.68				-	1.51
12,000	15.8	11.304	0.16	1,000	1.7.14.5	_	1.710	1.340	-	1.52
13.000	24.7	-	-	5.22	5.65	_	1.730	1.370		1.55
	- P. P. P.	17.663	0.25	5.13	5.61		1.820	1.410		1.61
14.000	32.6	23,315	0.33	5.06	5.57	1	1.890	1.450		1.67
15.000	41.5	29.673	0.42	4.96	5.54		1,990	1,480		1.73

	4		15	le .
0.7 a ₁	9.35	1.45438		
0.3 +1	0.15	0.96375	0,47063	6.2
0.701	8.35	1.61444		122
0.3eg	0.15	1.535	0.14944	6.2
D (mm)	300			
Evi	91.72			
Ev ₂	391.11			
urus (Sq.m)	8.87665		À.	-

Real Bell	3.21	

LOAD UN LOAD RE LOAD

Lab. Specialist

Name:

Sign:

Name: Hasson

Sign:

الممسوحة ضوئيا بـ CamScanner

Contractor Consultant

Plate Load Test Results

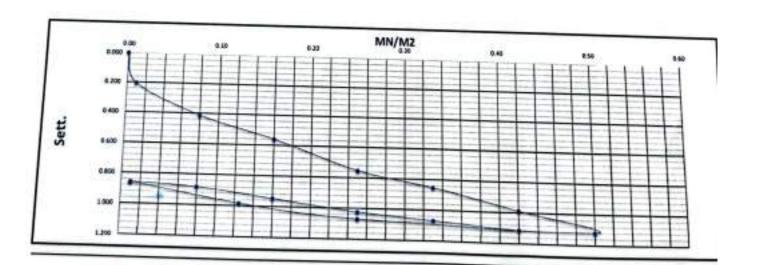
Layer: Station:

0.50+

Date:

526+000 TO 526+100 05-06-23 COMPANY Location

AGR 526+005


	Lood	Stress	Dist 1	Dist1	-			_	
Ber	KN	-	-	-	Dist	Sett. 1	Sen. 2	Sett. 3	Arg.
0.0	-	-	-	-	**	-		-	-
1.0	-	2,00	-			0.000	0.000		0.000
-	2000	010.0	-	-	1	6.210	0.200		0.205
100000	-	-	-	6.49		0.440	0.390	1	0.415
_	- Anjara	1120	5.63	6.37	1	8.610	0.510		0.560
		4140	5.41	6.20		0.830	0.680	6.3	0.755
32.6	23,315	0.33	5.30	6.11	300	0.940	0.770		0.855
41.5	29.673	0.42	5.17	5.97		1.070	-		0.990
49.4	35,325	0.50	5.06	5.82		-	-		-
24.7	17.663	0.25	5.12	5.86	Here	10000000	-	diam'r.	1.120
12.4	8.831	0.12	5.26	-	HOS.	-	-	1200	1.070
1.0	0.707	-	-	-	1000	100000	-	-	0.985
1.0	171070	-		-		-	2774.74		0.860
				-		9.780	0.940		0.860
-	7000	-	5.44	5.91		0.800	0.970		0.885
-	11.304	0.16	5.34	5.88		0.900	1,000	1	0.956
24.7	17.663	0.25	5.23	5.84		1.010	1.040		1.02
32.6	23.315	0.33	5.16	5.82	- 32	100000	-		-
41.5	29.673	0.42	5.69			-	-	-	1.070
	9.0 1.0 7.9 15.8 24.7 32.6 41.5 49.4 24.7 12.4 1.0 7.9 15.8 24.7 32.6	0.0 0.000 1.0 0.707 7.9 5.652 15.8 11.304 24.7 17.663 32.6 23.315 41.5 29.673 49.4 35.325 24.7 17.663 12.4 8.831 1.0 0.707 1.0 0.707 7.9 5.652 15.8 11.304 24.7 17.663 32.6 23.315	No. No. No.	Bar KN MCNM12 mm 0.0 0.000 0.00 6.24 1.0 0.707 0.01 6.93 7.9 5.652 0.08 5.80 15.8 11.304 0.16 5.63 24.7 17.663 0.25 5.41 32.6 23.315 0.33 5.30 41.5 29.673 0.42 5.17 49.4 35.325 0.50 5.06 24.7 17.663 0.25 5.12 12.4 8.831 0.12 5.26 1.0 0.707 0.01 5.46 1.0 0.707 0.01 5.46 7.9 5.652 0.08 5.44 15.8 11.304 0.16 5.34 24.7 17.663 0.25 5.23 32.6 23.315 0.33 5.16	Bar KN MNNH2 mm mm 0.0 0.000 0.000 6.24 6.88 1.0 0.707 0.01 6.03 6.68 7.9 5.652 0.08 5.80 6.49 15.8 11.304 0.16 5.63 6.37 24.7 17.663 0.25 5.41 6.20 32.6 23.315 0.33 5.30 6.11 41.5 29.673 0.42 5.17 5.97 49.4 35.325 0.50 5.06 5.82 24.7 17.663 0.25 5.12 5.36 12.4 8.831 0.12 5.26 5.89 1.0 0.707 0.01 5.46 5.94 1.0 0.707 0.01 5.46 5.94 7.9 5.652 0.08 5.44 5.91 15.8 11.304 0.16 5.34 5.85 24.7 17.663 0.25 5.23	No. No.	Bar KN MNNH2 mm mm mm mm 0.0 0.000 0.000 6.24 6.88 0.000 1.0 0.707 0.01 6.03 6.68 0.210 7.9 5.652 0.08 5.80 6.49 0.440 15.8 11.304 0.16 5.63 6.37 0.610 24.7 17.663 0.25 5.41 6.20 0.830 32.6 23.315 0.33 5.30 6.11 0.940 41.5 29.673 0.42 5.17 5.97 1.070 49.4 35.325 0.50 5.06 5.82 1.180 24.7 17.663 0.25 5.12 5.86 1.120 12.4 8.831 0.12 5.26 5.89 0.980 1.0 0.707 0.01 5.46 5.94 0.780 1.0 0.707 0.01 5.46 5.94 0.780 7.9 5	Bay KN MNNM2 mm mm <th< td=""><td> Bay KN MXNH3 mm mm mm mm mm mm mm </td></th<>	Bay KN MXNH3 mm mm mm mm mm mm mm

	market de		48	Art .
0.7 e,	0.35	0.87625		
9.3 0,	0.15	0.54188	0.33438	0.1
0.762	0.35	1.00		722
0.3e ₁	0.15	0.91	0.17	0.2
D (mm)	300			
Ev,	134.58			
Evy	244.71			
Arsa (Signa)	0.07065	$\overline{}$		

Ev9/Ext 1,97

LOAD UN LOAD RE LOAD

Lab. Specialist

Name:

Sign:

Name: [Lehal]

Sign:

Lehas Hamidi

Consultant Engineer

Name:

Hassan

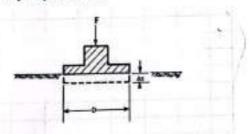
Company Name

Location

AGR 526+000

526+100 To

526+050


Taste Date Layer level

19-06-2023 p.s.g +0.5

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

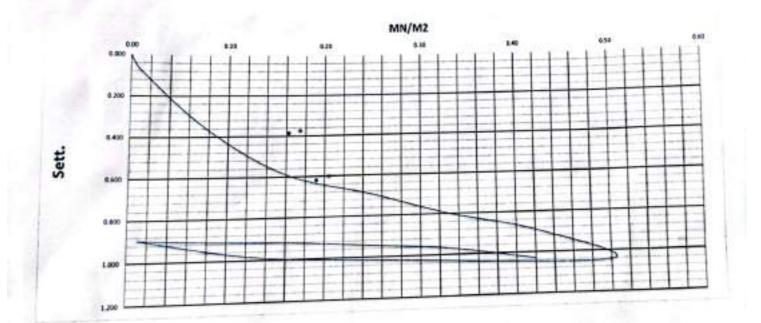
Diameter = 300mm

meter =	300m	m		_	_					AVE.
Landing	Lord	Loud	Street	Dul 1	Diel 3	Dist)	Sett, 1	Sett. 1	Sett , 3	Sett.
Stage No.	Bar	KN	MNMI			**	***			
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0,707	0.01	19.90	19.95		0.100	0.050		0.075
2.000	17.1	5,652	0.08	19.55	19.71		0.450	0.290		0.370
0.080	34.2	11,304	0.16	19.27	19.55		0.730	0.450		0.590
4,000	53.3	17.663	0.25	19.13	19.48		0.870	0.520		0.695
	-	23,315	0.33	19.00	19.40		1.000	0.600		0.800
5.000	70.5		0.42	18.90	19.32		1.100	0.680		0.890
6.000	89.8	29.673	-	F-4-11	19.20		1.290	0.800		1.045
7.000	106.8	35,325	0.50	18.71	340000		1.250	0.780		1.015
8.000	53.4	17.663	0.25	18.75	19.22		-	0.770	1	0.985
9.000	26.7	8.831	0.12	18.80	19.23		1.200	-	-	0.895
9.000	2.1	0.707	0.01	18.86	19.35		1.140	0.650		-
10,000	2.1	0.707	0.01	18.86	19.35		1.140	0.650	-	0.895
11.000	17.1	5.652	0.08	18.85	19.33		1.150	0.670		0.910
12.000	34.2	11.304	0.16	18.84	19.32		1.160	0.680		0.920
	533	17.663	0.25	18.81	19.30		1.190	0.700		0.945
13.000	3-300			18.80	19.26		1.200	9.740		0.970
14.000	70.5	23.315	0.33	100			1.260	0.800		1.030
15.000	89.8	29.673	0.42	18,74	19.20		1400			_

5 5 5		- 1	45	Le	
0.7 o ₁	0.35	0.75438		0.2	
0.3 0,	0.15	0.5625	*		
0.701	0.35	0.98333	0.05833	0.2	
0.3o ₁	0.15	0.925	*.**		
D (mm)	300				
Ev ₁	234.53				
Ev,	771.45				
Area (Sq.m)	0.07965				

Evilled	3.19	

E. - 0.75 . D . Ac / As


 deformation modulus E.

load increment

settlement increment

diameter of the plate, generally 6.30 m.

, or usis calculation .do and .ds are usually taken from the load span between 6.3 m ... and 0.7 m ...

Lab. Specialist

Name:

Sign:

Lab. Engineer

Name:

Sign:

Consultant Engineer

Name: MONAME

Sign t

m.elsuil

Layer:

-1.5

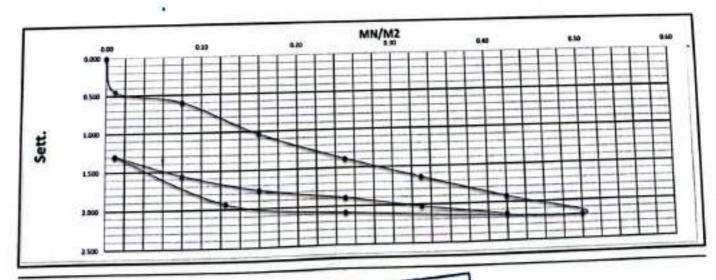
Station:

527+200 TO 527+300

Date:

3\6\2023

COMPANY	AGR	
SAMPLE LOCATION	517+260	


Londing	Load	Lord	Street	Dull	Dialit	Dtel 3	Sen. 1	Sen. 1	Sett . 3	Avg.
Stage No.	For	KN	MNMI		-	-	-	-	-	sen.
0.000	0.0	0.000	0.00	14.07	17.20	7 0	0.000	0.000	77	0.000
1.000	2.4	0.707	0.01	13.62	16.75		0.450	0.450		0.450
2.000	18.8	5,652	0.08	13.59	16.57	422	0.570	0.630		0.600
0.080	37.7	11.304	. 0.16	13.10	16.10	1111	0.970	1.100		1.035
4.000	58.9	17,663	0.25	12.79	15.71	13-1-1	1.280	1.490		1.385
5.000	77.7	23.315	0.33	12.54	15.44	Contract of	1.530	1.760		1.645
6.000	98.9	29.673	0.42	12.26	15.16		1.810	2.040		1.925
7.000	117.8	35.325	0.50	12.00	14.90		2.070	2.300		2.185
8.000	58.9	17.663	0.25	12.12	14.98	THE	1.950	2.220	5	2.085
9.000	29.4	8,831	0.12	12.27	15.13	1760	1.800	2.070		1.93
9.000	2.4	0.707	0.01	12.79	15.89	200	1.280	1.310		1.29
10.000	2.4	0.707	* 0.01	12.79	15.89		1.280	1.310	1	1.29
11.000	18.8	5.652	0.08	12.54	15.61		1.530	1.590		1.56
12.000	37.7	11.304	0.16	12.32	15.42	14.	1.750	1.780		1.76
13,000	58.9	17,663	0.25	12.18	15.30		1.890	1.900		1,89
14.000	77.7	23.315	0.33	12.04	15.18		2.030	2.020		2.02
15.000	98.9	29.673	0.42	11.90	15.06		2.170	2.140		2.1

	5		ΔS	Δø	
0.7 01	0.35	1.6975			
0.3 m	0.15	0.98062	6.71000	•4	
0.7e ₁	0.35	2.05389	0.22886	0.2	
\$3e ₁	0.15	1.82563	6.21300	. 50.0	
D (mm)	300				
Ev	62.77				
Ev ₂	196.62				
Area (Sq.m)	0.07065			15	

Dollers.	3.13	

LOAD UN LOAD RE LOAD

Lab. Specialist

Name:

Cine :

Name: Mohaned elsave

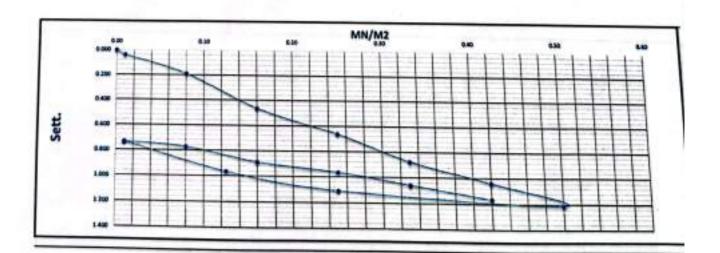
الممسوحة ضوئيا بـ CamScanner

Contents

Plate Load Test Results

Layer: Station: Date: -1.5 527+300 TO 527+500 31/05/2023

COMPANY	AGR
Location	527+350


Londing	less	Land	Street	Diet	Dett	Dieta	Bett. 5	Sec. 1	Sec. 3	Arg.
Step No.	Ber	KN	MNMI	-	-	-	-	-	-	-
0.000	0.0	0.000	0.00	7.63	7,65		0.000	0.000	65	0.000
1.000	1.0	0.707	0.01	7.60	7.60		0.836	0.050		0.040
2.000	7.9	5.652	0.08	7.43	7,47	-5	0.200	0.180		9.190
0.680	15.8	11.304	0.16	7.18	7.17		0.450	0.480		0.465
4.000	24.7	17.663	0.25	7.04	6.91		0.590	0.740		0.665
5.000	32.6	23,315	0.33	6.92	6.61		0.710	1.040		0.875
6.000	41.5	29.673	0.42	6.82	6.38		0.810	1.270		1.04
7.000	49.4	35.325	0.50	6.63	6.23		1.000	1.420		1.21
R.000	24.7	17.663	0.25	6.70	6.36	Jasel	0.930	1,290		1.11
9.000	12.4	8.831	9.12	6.82	6.53	(fact	0.810	1.120		0.96
9.000	1.0	0.707	0.01	7.03	6.78	100	0.600	0.870		0.73
10.000	1.0	0.707	0.01	7.03	6.78	100	0.600	0.870		0.73
11.000	7.9	5.652	0.08	6.99	6.74	line in	0.640	0.910		0.77
12.000	15.8	11,304	0.16	6.88	6.62		0.758	1.030		0.89
13.000	24.7	17.663	0.25	6.81	6.54		0.820	1.110		0.9
14.000	32.6	23,315	0.33	6.71	6.45		0.920	1.200		1.0
15.000	41.5	29,673	0.42	6.61	6.34	100	1.020	1.31		1.1

			AS	Ser	
6.7 es	8.35	0.89125		83	
83 0	8.15	4.43063	0.40003		
6.7e ₃	9,35	1.46333			
0.3e ₂	8.15	6.815	4.Dee03		
D (mm)	300				
Ev	97.69				
Iv.	167,79				
um (ban	0.07943				

Delites 1.75

N LOAD RELOAD

Lab. Specialist

Name:

Sign :

Lab. Engineer

Name :

شركة المعمل المسركزي المعمل المسركزي مشروع القطار السريع/فوكة - مطروح Consultant Engineer

Name: Wassaw

Sien :

40

er Consultant G

Plate Load Test Results

527+500

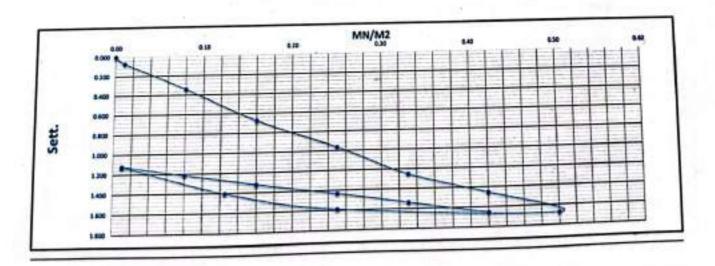
TO

Layer: Station: Date:

-1.5

527+300 31/05/2023

COMPANY	AGR
Location	527+450


Landing	Lord	Loud	Street	Dial I	Diel 1	Diel 3	Sen, 1	Set. 2	Sett. 3	Arg.
Stage No.	Bar	KN	MNMI			-		-		-
0.000	0.0	0.000	0.00	7.61	6.30		0.000	0.000	2	8.000
1.000	1.0	0.707	0.01	7.56	6.21	2	0.050	0.090	154	0.070
2.000	7.9	5.652	0.08	7.27	5.96		0.340	0.340		0.340
0.080	15.8	11.304	0.16	6.88	5.68	1	0.730	0.620		0.675
4.000	24.7	17.663	0.25	6.55	5.43	- 5	1.060	0.870		0.96
5.000	32.6	23.315	0.33	6.23	5.17		1.380	1.130		1.25
6.000	41.5	29,673	0.42	6.02	4.98		1.590	1.320		1.45
7.000	49.4	35,325	0.50	5.80	4.76	1 8	1.810	1.540	130	1.67
8.000	24.7	17.663	0.25	5.91	4.82	medifi	1.700	1.480		1.59
9.000	12.4	8.831	0.12	6.15	4.95	1015	1,460	1.350	100	1.40
9.000	1.0	0.707	0.01	6.45	5.22	GIT	1.160	1.000	1000	1.12
10.000	1.0	0.707	0.01	6.45	5.22		1.160	1.080		1.12
11,000	7.9	5.652	80.0	6.30	5.18		1.310	1.120		1.21
12.000	15.8	11.304	0.16	6.14	5.13		1.470	1.170		1.32
13.000	24.7	17.663	0.25	6.01	5.03		1.600	1.270		1.43
4,000	32.6	23,315	0.33	5.90	4.93	1	1.710	1.370		1.5
5.000	41.5	29.673	0.42	5.77	4.83		1.840	1.470		1.65

			4.5	Are	
0.T o ₁	0.35	1.2625			
83 e,	0.15	0.43313	0.42936		
0.703	9.35	1.56556			
4.3eg	0.15	1,31001	6.23333	-	
D (mm)	300				
Ev,	71.50	1	1		
Kv _x	176.00			1	
on (Sq.m)	8,87965		16		

E+5/E+1	2.66	

LOAD UN LOAD

Lab. Specialist

Name:

Sign :

Lab. Engineer

Name:

شركة فجيدة المقاؤلات المعمل المسركزي مشروع القطار السريع/فوكة - مطروح Consultant Engineer

Name: Hassan

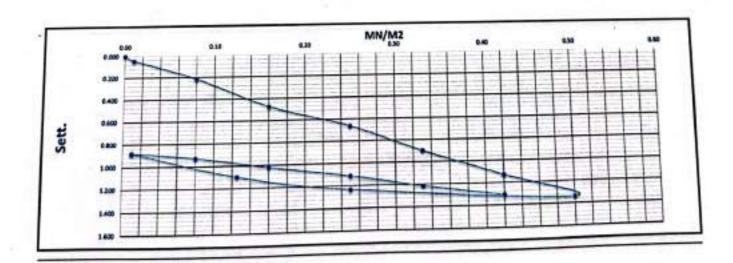
TO

Plate Load Test Results

Layer: Station: Date:

527+500 31/05/2023

527+700


COMPANY AGR 537+568 Location

Leading	Loss	Lord	Street	DWI	1941	DMS	Sex. 1	Sen. 2	Sett . 2	Arg.
Sings No.	No	KN	MNNNS	-		-	-	-	-	-
6.000	0.0	0.000	0.00	7.95	7.34	100	0.000	0.000	1	0.000
1.000	1.0	0.707	0.01	7.92	7.28	100	0.030	0.060		0.045
2.000	7.9	5.651	0.08	7.79	7.07	43	0.160	0.270		0.215
0.080	15.8	11.304	0.16	7,58	6.76	100	0.370	0.580		0.475
4.000	24.7	17.663	0.25	7.43	6.53		0.520	0.810	8	0.665
5.000	32.6	23,315	0.33	7.25	6.24	THE	0.700	1.100		0.900
6.000	41.5	29.673	0.42	7.09	5.94	17	0.860	1,400	1	1.130
7.000	49.4	35.325	0.50	6.94	5.67	400	1.010	1.670		1.340
8.000	24.7	17,663	0.25	7.02	5.80	SHA	0.930	1.540	16	1.235
9.000	12.4	8.831	0.12	7.14	5.95	5180	0.810	1.390	N EN	1.100
9.000	1.0	0.707	0.01	7.35	6.18	7103	0.600	1.160	160	0.880
10.000	1.0	0.707	0.01	7.35	6.18		0.600	1.160	8	0.880
11.000	7.9	5.652	0.08	7.31	6.12		0.640	1,220		0.934
12.000	15.8	11.304	0.16	7.23	6.02	-	0.720	1.320		1.020
13,000	24.7	17.663	0.25	7.15	5.91	100	0.800	1.430		1.115
14.000	32.6	23.315	0.33	7.05	5.81		0.900	1.530	9	1,215
15.000	41.5	29.673	8.42	6.96	5.71		0.990	1.630	N E	1.31

			M.	te .
0.7 e,	0.35	9.94635		
0.3 e ₁	0.15	0.4425	COUR	~
8.7e ₁	0.35	1.23411	0,25611	
4.34,	4.15	6.59001		-
D (mm)	300	7		
Ev,	89.33			
Ev	175.71			
Area (Sq.m)	0.07945			

E49841 1.97

Lab. Specialist

Name:

Sign:

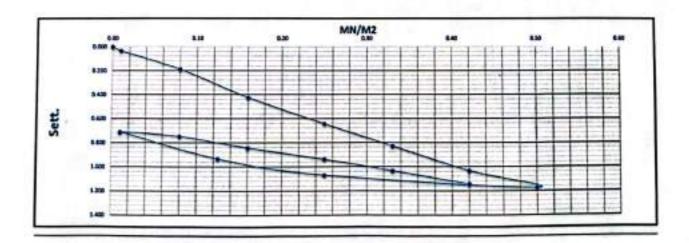
Lab. Engineer

Name: Hassan

Layer: Station:

Date:

-1.5 527+500 TO 527+700 31/05/2023


COMPANY Location 527+640

Londing	Lond	Land	Street	Ded 1	1964.3	Dies	-	Set. 1	Set . 3	Arte
Stage Nu.	Ber	KM	жи	1	-	-	-	-	-	-
0.000	0.0	0.000	0.00	7.09	7.19		0.000	0.000		0.000
1.000	1.0	0.707	0.01	7.04	7.17		0.050	0.020		0.035
2.000	7.9	5.652	0.08	6.82	7.08		0.270	6.110		0.190
0.080	15.8	11.304	0.16	6.53	6.90		0.568	0.290		0.425
4.000	24.7	17.663	0.25	6.27	6.72	1-2	0.820	0.470		0.645
5.000	32,6	23.315	6.33	6.06	6.56	1100	1.030	0.630		0.830
6.000	41.5	29.673	0.42	5.84	6.37	100	1.250	0.820		1.035
7.000	49,4	35.325	0.50	5.69	6.24	1 9	1.400	0.950		1.175
8.000	24.7	17.663	0.25	5.83	631	1666	1.260	0.880	550	1.07
9.000	12.4	8.831	0.12	5.97	6.44	100	1.120	0.750		0.93
9.000	1.0	0.707	0.01	6.18	6.68	300	0.910	0.510	13	0.71
10.000	1.0	0.707	0.01	6.18	6.68		0.910	0.510		0.71
11.000	7.9	5.652	0.08	6.13	6.65	15	0.960	0.540		0.75
12.000	15.8	11.304	0.16	6.03	6.56	-	1.060	0.630		0.84
13.000	24.7	17.663	0.25	5.93	6.47		1.160	0.720		0.94
14.000	32.6	23,315	0.33	5.83	6.38	100	1.260	0.810		1.03
15.000	41.5	29,673	0.42	5.71	6.28		1.380	0,910		1.14

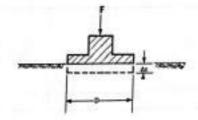
7 7			48	54	
0.7 e ₁	0.35	0.9125			
63 e ₁	0.15	0.39563	9,31666	***	
0.703	0.35	1.05944	0.26944		
0.30,	0.15	0.77	0.24544	•	
D (mm)	300				
Ev	87.84	0			
En	167.01				
tres (Sq.m)	8.07945				

_		_	
Extra	1.82	y	

Lab. Specialist

Company Name Location A.G.R 528+820 To 528+860 28-5-2023

Station 528+849


Taste Date Layer level

-5.5

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

Fried

As a sufficient

D - diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

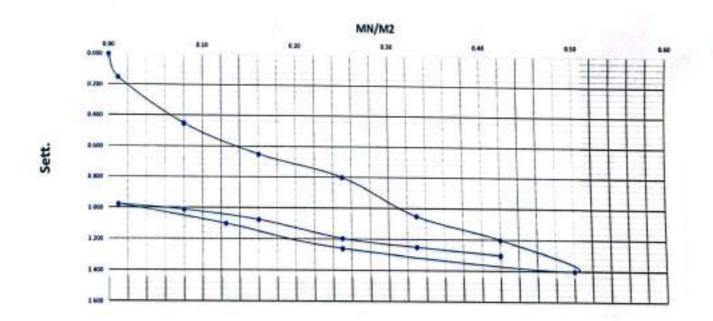
Diameter = 300mm

Loude	Los	Land	Stress	Dial 1	Dist 1	Dial 3	Sett.1	Sen. 2	Sett . 3	Avg.
Stage N	a Bar	KN	MNM2	-		-	ne	***		***
0.000		0,000	0.00	13.30	13,10		0.000	0.000		0.000
1.000	2.4	0.707	0.01	13.20	12.90		0.100	0.200		0.150
2.000	18.8	5.652	0.08	12.95	12.55		0.350	0.550		0.450
0.080	37.7	11.304	0.16	12.80	12.30	1	0.500	0.800		0.650
4,000	58.9	17.663	0.25	12.70	12.10		0.600	1.000		0.800
5,000	77.7	23,315	0.33	12.60	11.70	3	0.700	1.400		1.050
6.000	98.9	29.673	0.42	12.50	11.50		0.800	1,600		1.200
7,000	117.8	35,325	0.50	12.30	11.30		1.000	1.800		1.400
8,000	58.9	17.663	0.25	12.50	11.38		0.800	1.720		1.260
9,000	29.4	8.831	0.12	12,65	11.55		0.650	1.550		1.100
9,000	2.4	0.707	0.01	12.80	11.65		0.500	1.450		0.975
10,000	2.4	0,707	0.01	12.80	11.65		0.500	1,450		0.975
11,000	18.8	5.652	0.08	12.75	11.63		0.550	1.470		1.010
12.000	37.7	11,304	0.16	12.70	11.55		0.600	1.550		1.075
13.000	58.9	17.663	0.25	12.56	11.45		0.740	1.650		1.195
7777				12.50	11.40		0.800	1.700		1.250
15.000	98.9	23.315	0.33	12.45	11.35		0.850	1.750	16	1.300

			AS	Ast .
0.7 o ₁	0.35	1.025	0.4	0.2
0.3 e ₁	0.15	0.625	10.4	***
0.702	0.35	1.26111	0.31611	0.2
0.303	0.15	1.045	0.21011	
D (mm)	300			
Evi	112.50			
Evi	208.23			
Area (Sq.m)	0,07065			

Ev2/Ev1	1.85		
---------	------	--	--

E. = 0.71 - D - Ad / As


. = deformation modulus

de = load increment

As a settlement increment

D = diameter of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and $\Delta\tau$ are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist

Name:

Sign:

المدن والمركزي المركزي المركزي المركزي المركزي المركزي المركزي المركزي المركزي مطرود مطرود المركزي مطرود مطرود المركزي مطرود المركزي موركاء مطرود المركزي مركزياء مطرود المركزي المركزياء مطرود المركزياء المركزي

Consultant Engineer

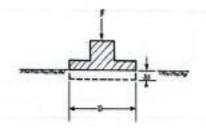
Nume: Wassan

Company Name

Location Taste Date

A.G.R 528+420 528+480 To 28-5-2023

528+460


Layer level

-5.5

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of clasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

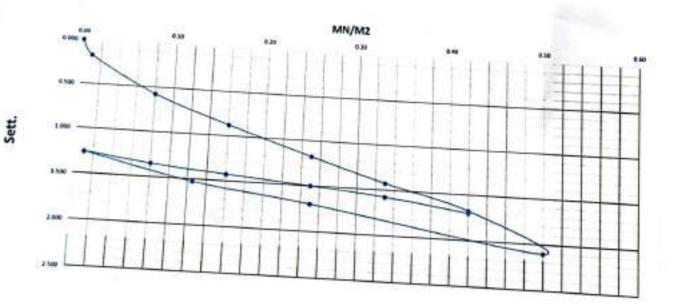
Diameter = 300mm

Lasting	Load	Load	Stress	Datt	Diel 2	Dial 3	Sett, 1	Sen. 1	Sett. 3	Avg.
Stage No.	Bar	KN	MN/MZ	-	**	**	***	ne.	-	
0.000	0.0	0.000	0.00	17.90	17.30		0.000	0,000		0.000
1.000	2.4	0.707	0.01	17.75	17.10		0.150	0.200		0.175
2.000	18.8	5.652	0.08	17.30	16.75		0.600	0.550		0.575
0.080	37.7	11.304	0.16	16.95	16.50		0.950	0.800		0.875
4.000	58.9	17,663	0.25	16.60	16.25		1.300	1.050		1.175
5.000	77.7	23.315	0.33	16.35	16.00		1.550	1.300		1.425
6.000	98.9	29.673	0.42	16.05	15.80		1.850	1.500		1.675
7.000	117.8	35.325	0.50	15.60	15.40		2.300	1,900		2.100
8.000	58.9	17.663	0.25	16.00	15.80		1.900	1,500		1.700
9.000	29.4	8.831	0.12	16.15	16.00		1.750	1.300		1.525
9.000	2.4	0.707	0.01	16.39	16.30		1.510	1.000		1.255
10.000	2.4	0.707	0.01	16.39	16.30		1.510	1.000		1.255
11.000	18.8	5.652	0.08	16.30	16.20		1.600	1.100		1.350
12.000	37.7	11.304	0.16	16.25	16.10	444	1.650	1.200		1.425
13.000	58.9	17,663	0.25	16.20	16.00		1.700	1.300		1.500
14.000	77.7	23.315	0.33	16.10	15.95		1.800	1.350		1.575
15.000	98.9	29.673	0.42	15.97	15.83		1.930	1.470		1.70

	J		45	Art .	
0.7 σ,	0.35	1.30313			
0.3 e ₁	0.15	0.8375	0,46562	0.2	
0,702	0.35	1,60278	0.15777	0.2	
0.342	0.15	1.44501	u.15///		
D (mm)	300				
Evi	96.64				
Ev ₁	285,23				
Area (Sq.m)	0.07065				

Ev2/Ev1	195		
---------	-----	--	--

E. - 0.73 - D - Ao / As


deformation modulus

. load increment

= settlement increment

= diameter of the plate, generally 0.30 m

T ci For this calculation d σ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$ re

Lab. Specialist

Name:

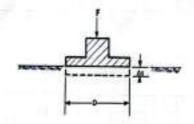
Sign:

Name: G. P. J. A. J. Sign: Sign: Sign: Joen Charles Con Control of Control of

Consultant Engineer

Company Name Location Taste Date A.G.R 529+020 To 529+160 28-5-2023

Studies 519+068


Layer level

-1.5

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F+ load

to manthement

D = diameter of the plat

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

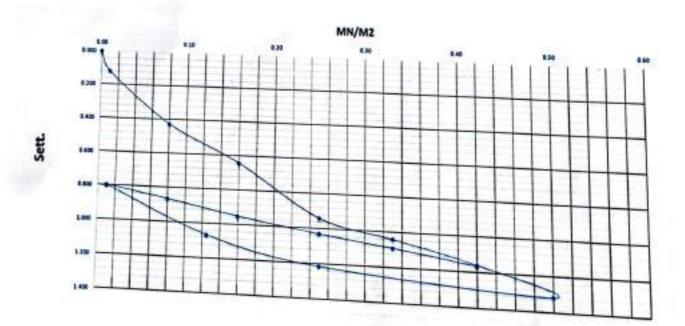
Diameter = 300mm

Loading	Land	Lord	Street	Dial I	Dial 2	2643	Sen. 1	Sett. 2	5ex . 3	Avg.
Stage No.	Bar	KN	MN/N3	-	mm	-	-	-	ma	-
0.000	0.0	0.000	0.00	15.85	13.68		0.000	0.000		0.000
1.000	2.4	0.707	0.01	15.75	13.54		0.100	0.140		0.120
2.000	18.8	5.652	0.08	15.58	13,10		0.270	0.580		0.425
0.080	37,7	11.304	0.16	15.45	12.80		0.400	0.880		0.640
4,000	58.9	17.663	0.25	15.05	12.60		0.800	1.080		0.940
5.000	77,7	23.315	0.33	15.00	12.45	6	0.850	1.230		1.040
6.000	98.9	29,673	0.42	14.88	12.33	1	0.970	1.350		1.160
7.000	117.8	35.325	0.50	14.70	12.20		1.150	1.480	-	1.315
8.000	58.9	17.663	0.25	14.80	12.30		1.050	1.380		1.215
9.000	29.4	8.831	0.12	14.95	12.45		0.900	1.230		1.065
9.000	2.4	0.707	0.01	15.30	12.64		0.550	1.040	-	0.795
10.000	2.4	0.707	0.01	15.30	12.64		0.550	1.040	-	0.795
11.000	18.8	5.652	0.08	15.20	12.60		0.650	1.080	-	0.865
12.000	37.7	11.304	0.16	15.10	12.53	100	0.750	1.150	-	2000
13.000	58.9	17.663	0.25	15.00	12.47	-	3.000	-	-	0.950
14.000	77.7	23.315	0.33				0.850	1.210	+	1.030
15.000		-		14.95	12.40		0.900	1.280	-	1.090
12,040	98.9	29.673	0.42	14.90	12.30	1	0.950	1.380		1.165

		. 1	AS	Ar.	
0.7 σ,	0.35	1.02438			
0.3 e ₁	0.15	15 0.61313 0.411		15 0.2	
0,701	0.35	1,10667		0.1	
0.3e ₁	0.15	0.93501	0.17166		
D (mm)	300				
Ev,	109.42				
Ev ₁	262.15	V			
Area (Sq.m)	8.07945			_	

	_	_	
Ev1/Ev1	2.46		

E. = 475 . D . da / ds


. = deformation modulus

Δσ = load increment

As * settlement increment

B = diameter of the plate, generally 0.30 m

For this calculation $A\sigma$ and As are usually taken from the load span between 0.3 σ_{--} and 0.7 σ_{--}

Lab. Specialist

Name:

Sign :

Name of the State of the State

Consultant Engineer

Name: Hassau

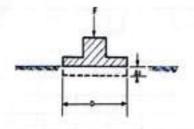
Plate Load Test Results

Company Name

Location

A.G.R 529+020 To 529+160 28-5-2023

Station 529+140


Taste Date Layer level

-1.5

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

f = ined .u = settlement

2 - diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

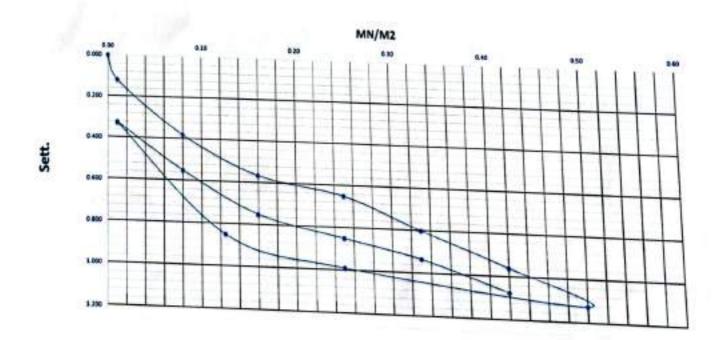
Diameter = 300mm

Landing	Load	Lord	Sireu	Diel t	Diel 3	Dist 3	Sen. 1	Sen. 2	Sest . 3	See.
Stage No.	Bur	KN	MNNI	-	-	-		-	-	-
0.000	0.0	0.000	0.00	12.10	11.10		0.000	000.0		0.000
1.000	2.4	0.707	0.01	11.98	10.98	3 3	0.120	0.120		0.120
2.000	18.8	5,652	0.08	11.70	10.74		0.400	0.360		0.380
0.080	37,7	11.304	0.16	11.50	10.57		0.600	0.530		0.565
4.000	58.9	17.663	0.25	11.40	10.50	8	0.700	0.600		0.650
5.000	77.7	23.315	0.33	11.25	10.35		0.850	0.750		0.800
6.000	98.9	29.673	0.42	11.08	10.20		1.020	0.900		0.960
7.000	117.8	35.325	0.50	10.90	10.05		1.200	1.050		1.125
8.000	58.9	17.663	0.25	11.02	10.20		1.080	0.900		0.990
9.000	29.4	8.831	0.12	11.20	10.30		0.900	0.800		0.850
9,000	2,4	0.707	0.01	11.80	10.75		0.300	0.350		0.325
10.000	2.4	0.707	0.01	11.80	10.75		0.300	0.350		0.325
11.000	18.8	5.652	0.08	11.60	10.50		0.500	0.600		0.550
12.000	37.7	11.304	0.16	11.35	10.35	1	0.750	0.750		0.750
13.000	58.9	17.663	0.25	11.20	10.30	9 9	0.900	0.800		0.850
14.000	77.7	23.315	0.33	11.15	10.18		0.950	0.920		0.935
15.000	98.9	29,673	0.42	11.00	10.05		1.100	1.050		1.075

			15	he.
0.7 e ₁	0.35	0.81563		
0.3 0,	0.15	0.54188	0.27375	0.1
0.7e1	0.35	0.96611		
0.3e ₁	0.15	0.77502	0.19109	0.1
D (mm)	300	· ·		
Ev,	164.38			
Ev,	235.49			
Arm (Sq.m)	4.87965			

E+2/E+1 1.43		
--------------	--	--

E. - 475 - D - do / As


E. - deformation modulus

Δσ = load increment

As * settlement increment

D = diameter of the plate, generally 0.30 m

For this calculation As and As are usually taken from the load span between 0.3 g.,... and 0.7 g.

Lab. Specialist

Name:

Sign:

Consultant Engineer

Name: Hassan

Sign :

Contractor Consultant Contractor

Plate Load Test Results

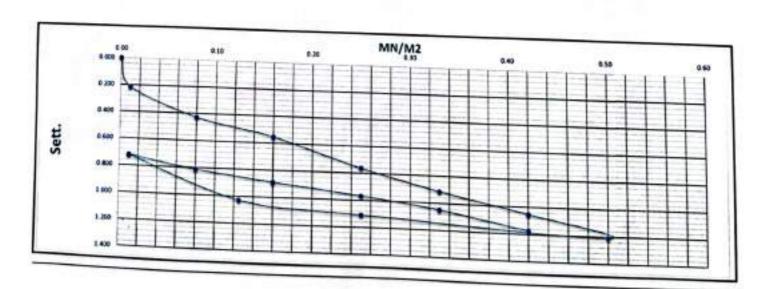
Layer: Station:

Date:

EMBANKMENT -

529+700 TO 529+800

25-05-23


COMPANY	AGR COMPANY
Location	529+740

Loading	Load	Load	Stress	Dief t	Dist2	Dial 3	Sett. 1	Sex.1	Sett . 3	Avg.
Stage No.	Bar	KN	MNMI		na	**				Sett.
0.000	0.0	9.000	0.00	6.39	7.39	- 30	0.000	0.000		0.000
1.000	1.0	0.707	0.01	6.25	7.10		0.140	0.290		0.21
2.000	7.9	5.652	0.08	6.11	6.81		0.280	0.580		-
0.080	15.8	11.304	0.16	5.97	6.70		0.420	0.580		0.43
4.000	24.7	17.663	0.25	5.81	6.44		0.580	0.690		0.55
5.000	32.6	23,315	0.33	5.69	6.26	-	0.700			0.76
6.000	41.5	29.673	0.42	5.61	6.06			1.130		0.91
7.000	49.4	35,325	0.50	5.53	5.83		0.780	1.330	-	1.05
8.000	24.7	17.663	0.25	5.62	5.94		0.860	1.560		1.21
9.000	12.4	8.831	0.12	5.67			0.770	1.450	1.65	1.11
9.000	1.0	0.707	0.01	Park In	6.05		0.720	1.340	-	1.03
10,000	1.0	0.707	100	5.83	6.51	- 1	0.560	0.880		0.72
11.000		-	0.01	5.83	6.51	5 - 1	0.560	0.880		0.72
The same of the sa	7.9	5.652	0.08	5.78	6.37		0.610	1.020		0.81
12.000	15.8	11.304	0.16	5.70	6.30		0.690	1.090		0.89
13.000	24.7	17.663	0.25	5.65	6.19		0.740	1.200	-	0.97
14.000	32.6	23.315	0.33	5.59	6.09		0.800	1.300	36	1.05
5.000	41.5	29,673	0.42	5.43	6.00		0.960	1.390		1.17

	-		AS	Le	
0.7 a ₁	0.35	0.91938		0.2	
0.3 a ₁	0.15	0.53938	0.38		
0.761	0.35	1.07778		0.2	
0.301	0.15	0.91001	0.16777		
D (mm)	300				
Evi	118.42				
Ev,	268.23				
Area (Sq.m)	0.07065	-	7		

Ev2/Ev1 2.27

Lab. Specialist

Name:

Sign:

Name: Stelas Harris

مرا المراح المركزي المركزي مصروع القطار السريع الموكة - مطرو

Consultant Engineer

Name: Hassan

Sign :

40

Was Was

Contractor Convellant

Plate Load Test Results

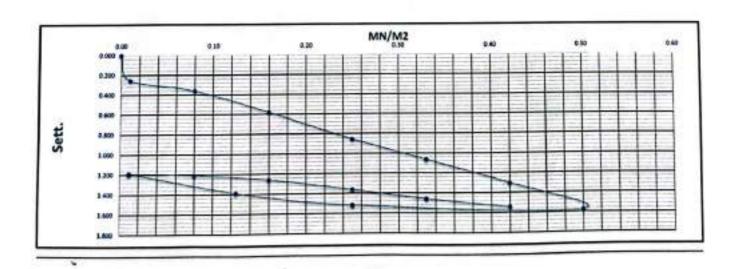
Layer: Station: EMBANKMENT -1.5 528+389

TO 528+389 COMPANY Location

AGR COMPANY 528+389

Date:

25-05-23


Leeding	Lord	Lord	Street	Dial 1	Diel 2	Diet 3	Sett. 1	Sex. 2	Sex.3	Avg.
Stage No.	Bar	KN	MNNI	ren .		-	-	***	-	-
0.000	0.0	0.000	0.00	6.22	6.32		8.000	0.000		0.000
1.000	1.0	0.707	0.01	6.02	6.01		0.200	0.310		0.255
2.000	7.9	5.652	0.08	5.93	5.89		0.290	0.430		0.360
0.080	15.8	11.304	0.16	5.75	5.63		0.470	0.690		0.580
4.000	24.7	17.663	0.25	5.49	5.34		0.730	0.980		0.855
5.000	32.6	23.315	0.33	5.31	5.10		0.910	1.220		1.065
6.000	41.5	29.673	0.42	5.12	4.81		1.100	1.510		1.305
7.000	49.4	35.325	0.50	4.93	4.46	No.	1.290	1.860		1.575
8.000	24.7	17.663	0.25	4.97	4.53	1000	1.250	1.790	31	1.520
9.000	12.4	8.831	0.12	5.13	4.63	100	1.090	1.690	100	1.390
9.000	1.0	0.707	0.01	5.33	4.83	350	0.890	1.490	-	1.190
10.000	1.0	0.707	0.01	5.33	4.83		0.890	1.490	100	1.190
11,000	7.9	5.652	0.08	5.32	4.80		0.900	1.520	4	1.210
12.000	15.8	11.304	0.16	5,27	4.75	1-3	0.950	1.570		1.260
+2.000	24.2	12.663	0.26		466	200	1.020	1 660		1 165

		1	Δ5	he	
0.7 a ₁	0.35	1.06875	0.51625	0.2	
0.3 e _j	0.15	0.5525	W.33444		
0.7e,	0.35	1.47889	0.24889	0.2	
0,3e ₁	0.15	1.23	0.24687		
D (mm)	360				
Evi	87.17				
Ev ₁	180.81				
Area (Sq. m)	8.07065		7.	1	

Ev2/Es1 2.07

LOAD UN LOAD RE LOAD

1.180

1.270

1.740

1.820

1.460

1.545

Lab. Specialist

23.315

29,673

32.6

41.5

0.33

0.42

5.04

4.95

4.58

4.50

Name:

14.000

15.000

Sign:

Lab. Engineer

Name: Hassan

Sign:

Plate Load Test Results

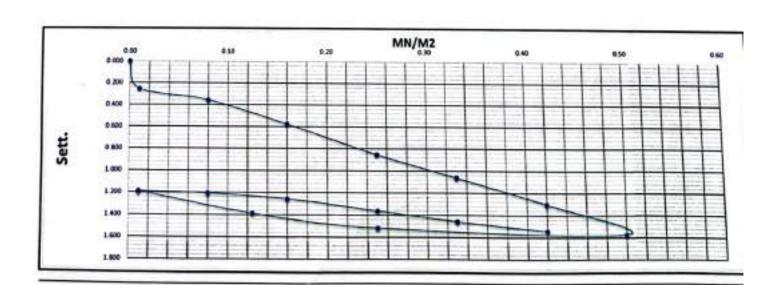
Layer: Station: Date: EMBANKMENT 528+389

25-05-23

0.00 TO

\$38+389

COMPANY AGR COMPANY Location 528+389


Leading	Land	Lord	Stress	Dial 1	Dal 2	Dist 3	Sett. 1	Sex. 1	Sex . 3	Avg.
Stage No.	Ber	KN	MNNE		-	**	***			mm.
0.000	0.0	0.000	0.00	6.22	6.32		0.000	0.000		0.000
1.000	1.0	0.707	0.01	6.02	6.01		0.200	0.310		0.255
2.000	7.9	5.652	80.0	5.93	5.89		0.290	0.430		0.360
0.080	15.8	11.304	0.16	5.75	5.63		0.470	0.690		0.580
4.000	24.7	17.663	0.25	5.49	5.34		0.730	0.980		0.855
5.000	32.6	23.315	0.33	5.31	5.10	1.5	0.910	1.220	- 3	1.065
6.000	41.5	29.673	0.42	5.12	4.81		1.100	1.510		1.305
7.000	49.4	35.325	0.50	4.93	4.46	100	1.290	1.860		1.575
8.000	24.7	17.663	0.25	4.97	4.53	020	1.250	1.790	100	1.520
9.000	12.4	8.831	0.12	5.13	4.63	100	1.090	1.690	1	1.39
9.000	1.0	0.707	0.01	5.33	4.83	199	0.890	1.490	200	1.19
10.000	1.0	0.707	0.01	5.33	4.83	-801	0.890	1.490		1.19
11.000	7.9	5.652	0.08	5.32	4.80		0.900	1.520		1.21
12.000	15.8	11.304	0.16	5.27	4.75		0.950	1.570		1.26
13.000	24.7	17.663	0.25	5.15	4.66		1.670	1.660		1.36
14,000	32.6	23.315	0.33	5.04	4.58		1.180	1.740		1.46
5.000	41.5	29,673	0.42	4.95	4.50	100	1.270	1.820	-	1.54

			48	Ae .	
0.7 e ₁	0.35	1.06875	0.51625	0.2	
0.3 e ₁	0.15	0.5525	0.31943	0.0	
0.701	0.35	1.47889		0.2	
0.30,	0.15	1.23	0.24889		
D (mm)	300				
Ev ₁	87.17				
Kv ₁	180.81	-			
Area (Sq.m)	0.07065				

E+2/E+1 1,07

LOAD UN LOAD RE LOAD

Lab, Specialist

Name:

Sign:

المعمل المسركزي مطروع القطار السريع / هوكة - مطروع

Consultant Engineer

Name: Hassan

Sign:

4/0

Plate Load Test Results

Layer: Station:

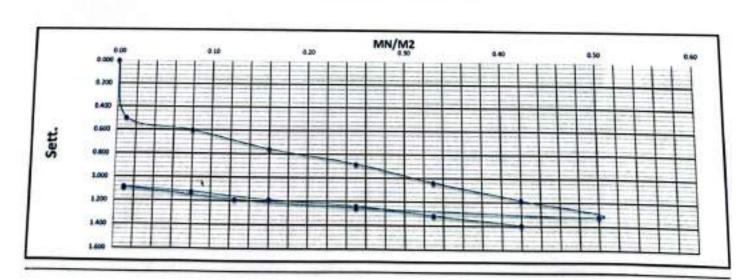
Date:

EMBANKMENT -1.5 529+800 TO 529+900

23-05-23

COMPANY	AGR COMPANY
Location	529+830

Looding	Lond	Loos	Stress	Dist 1	Diel 2	Diei)	Sett, 1	Sett. I	Sett. 3	Avg.
Stage No.	Bar	KN	MNMI	exe	***	ten	Park	-		900.
0.000	0.0	0.000	0.00	6.86	8.03	8 3	0.000	0.000		0.000
1.000	1.0	0.707	0.01	6.03	7.87		0.830	0.160		0.495
2.000	7.9	5.652	0.08	5.85	7.84	1	1.010	0.190		0.600
0.080	15.8	11.304	0.16	5.59	7.78		1.270	0.250		0.760
4.000	24.7	17.663	0.25	5.39	7.73		1.470	0.300		0.885
5.000	32.6	23.315	0.33	5.15	7.66		1.710	0,370		1.040
6.000	41.5	29.673	0.42	4.90	7.62	No.	1.960	0.410		1.185
7.000	49.4	35,325	0.50	4.73	7.52		2.130	0.510		1.320
8.000	24.7	17.663	0.25	4.77	7.61	9	2.090	0.420	1	1.255
9.000	12.4	8.831	0.12	4.87	7.64	te	1.990	0.390	100	1.190
9.000	1.0	0.707	0.01	5.03	7.69	27	1.830	0.340		1.085
10.000	1.0	0.707	0.01	5.03	7.69	100	1.830	0.340	-	1.085
11.000	7.9	5.652	0.08	4.99	7.65		1.870	0.380	11/2	1.125
12.000	15.8	11.304	0.16	4.93	7.58		1.930	0.450		1.190
13.000	24.7	17.663	0.25	4.86	7.55		2.000	0.480		1.240
14.000	32.6	23.315	0.33	4.76	7.49	4	2.100	0.540		1.320
15.000	41.5	29.673	0.42	4.68	7.42		2.180	0.610		1.39


			ΔS	Art .
9.7 4	0.35	1,06488	A 17499	0.2
0.3 e,	0.15	0.74	4.32444	
0.70,	0.35	1.33667	0.17166	0.7
0.3e ₁	0.15	1.165	0.17100	
D (mm)	300			
Evi	137.67			
Ey ₂	262.14;			
Ares (Sq.m)	9.07965			

E+2/E+1 1.50

LOAD

RE LOAD

Lab. Specialist

Name:

Sign:

Lab. Engineer

Name:

Name:

Sign:

519+880

Plate Load Test Results

Layer. Station: Date:

EMBANKMENT -1.5 529+800 TO 529+900

AGR COMPANY COMPANY Location

Lording	Lond	Load	Street	Dist	the 3	Diel 3	Sett. 1	Sett. 1	Sett. 3	Arg.
Step No.	Bur	KN	MNMI	non.	Man.	-	-	-	-	-
0.000	0.0	0.000	0.00	5.95	6.58		0.000	0.000		0.000
1.000	1.0	0.707	0.01	5.64	6.39		0.310	0.190		0.250
2.000	7.9	5.652	0.08	5.17	6.16		0.780	0.420	1 5	0.600
0.080	15.8	11.304	0.16	4.86	6.04		1.090	0.540	+:	0.815
4.000	24.7	17.663	0.25	4.61	5.93		1.340	0.650		0.995
5.000	32.6	23.315	0.33	4.42	5.83		1.530	0.750		1.140
6.000	41.5	29.673	0.42	4.27	5.72		1.680	0.860		1.270
7.000	49.4	35,325	0.50	4.18	5.58		1.770	1.000		1.385
8.000	24.7	17.663	0.25	4.24	5.61	MIL	1.710	0.970		1.340
9.000	12.4	8.831	0.12	4.32	5.65		1.630	0.930	1 3	1.280
9.000	1.0	0.707	0.01	4.52	5.78	100	1.430	0.800		1.115
19,900	1.0	0.707	0.01	4.52	5.78		1.430	0.800		1.115
11.000	7.9	5.652	0.08	4.46	5.74		1.490	0.840		1.165
12.000	15.8	11.304	0.16	4.40	5.70		1.550	0.880		1.215
3.000	24.7	17.663	0.25	4.32	5.66		1.630	0.920		1.275

4.26

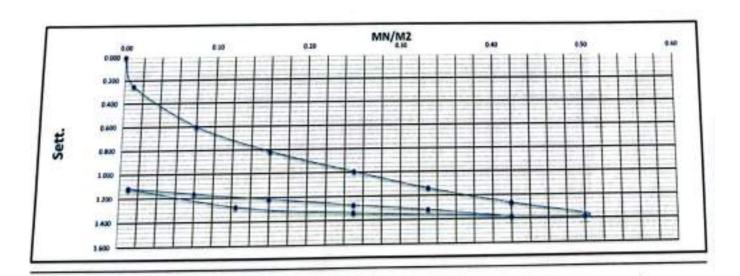
4,18

5.63

5.58

0.33

0.42


23-05-23

		1	15	14
0.7 e ₁	0.35	1.16938	A 18125	8.2
0.3 e ₁	0.15	6.78813	634123	
0.7e ₃	0.35	1.33444		.,
6.3e,	0.15	1.21501	-	-
D (mm)	300			
Ev,	118.83	-		
Ev,	376.76			
Arra (Sq mi	8.87965			-1.15

EvilEst	3.19		
---------	------	--	--

LOAD UN LOAD HE LOAD

L690

1.770

0.950

1.000

1.320

1.385

Lab. Specialist

Name:

14.000

32.6

41.5

23,315

29.673

Sign:

Lab. Engineer

Name :

وع القطار السريع/فوكة - م

Consultant Engineer

Name: Hassan

Contractor Coroulto	
1	11

l		
	Ceelecte	
	,1	1

ı	
	STATE OF THE PARTY

-
75
-1.5

COMPANY Location

AGR COMPANY 528+940

1.320	1.290	1.290	1.465	1.570	1.625	1355	1.000	0.695	0.415	0.225	0.115	0.000	3	Sett
1000				E-SEvi	100	Arms (Sq.m)	Ev.	Ev,	D (mm)	0.36,	0.70,	0.3 4,	8.7 4	
2	5			3.70		5961819	221.12	61.86	360	\$11.8	81.0	0.15	835	
ENCOVE	LOAD						1			135	1.54667	0.39125	1.11175	-
										0,17000		4.74.79		SV
				_							:		:	As

Extra		
3.76		
	E-DE-I AND	E-575-1 3.79

24.7

17.663 35.325

13 69 4.62

123

5.18 5,48 5.89

1,550 1310

8.831

0.12 0.25 32.6

17.663 11.304

0.25 0.16 0.08

5.42 5.71 5.93

624

0.750

0.640

6.51 6.67

23.315

242 9.50

4.86

15.8 14.7

7.9

5.652

6.88

0.100

0.130

0.210

0.370

Die

Extra	
179	

5	ı
¥	ı
	1
3	ı
	ı
Ш	ı
10	
И	ı

Every	
3.79	

	ı
H	Ī
	ŀ
ű	l
	r

1.550 1.660 1.700

	l	
300		
0.00		
10.00		
MN/M2		

32.6

24.7

17.663

1.520 1.590

1.450

RELOAD

5.652 0.707

4.92

5.49

10.0

4.97

5.50 5.50 533

633 MM/M2	Sin MANAZ
MN/M2	MN/M2
	:
:	
	#

Sett.

Sign :

Plate Load Test Results

Layer: Station:

Date:

EMBANKMENT

-15

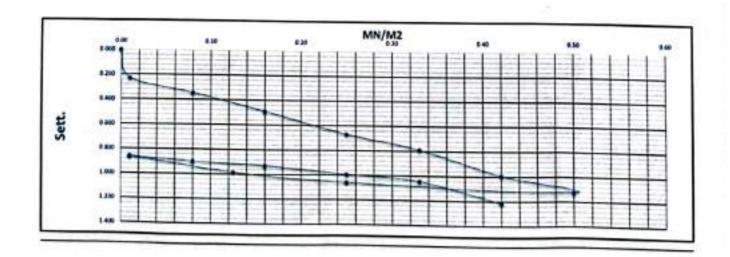
TO

528+920

529+020

23-05-23

COMPANY	AGR COMPANY
Location	529+010


Londing	Lood	Land	Stress	Dieli	Dist 2	Diel 3	Set. 1	Sett. 2	Sett , 3	Ang.
Stage No.	Ber	ICN	MNMI	1949	***		-		-	min
0.000	0.0	0.000	0.00	6.18	7.40	1	0.000	0.000		0.000
1.000	1.0	0.707	0.01	5.95	7.17		0.230	0.230		0.230
2.000	7.9	5.652	0.08	5.83	7.06		0.350	0.340		0.345
0.080	15.8	11,304	0.16	5.67	6.93		0.510	0.470		0.490
4.000	24.7	17.663	0.25	5.46	6.78		0.720	0.620		0.670
5.000	32.6	23.315	0.33	5.33	6.67		0.850	0.730	-3	0.790
6.000	41.5	29.673	0.42	5.09	6.50		1.090	0.900		0.99
7.000	49.4	35.325	0.50	4.93	6.40	1.9	1.250	1.000		1.12
8.000	24.7	17.663	0.25	4.98	6.48		1.200	0.920	6	1.06
9.000	12.4	8.831	0.12	5.05	6.56	0.000	1.130	0.840		0.98
9.000	1.0	0.707	0.01	5.16	6.70	100	1.020	0.700	189	0.86
10.000	1.0	0.707	0.01	5.16	6.70	ģ.,	1.020	0.700	=	0.86
11.000	7.9	5.652	80.0	5.14	6.64		1.040	0.760		0.90
12.000	15.8	11.304	0.16	5.12	6.60	1	1.060	0.800		0.93
13.000	24.7	17.663	0.25	5.07	6.52		1.110	0.880	36	0.99
14.000	32.6	23.315	0.33	5.02	6.47		1.160	0.930		1.04
15.000	41.5	29.673	0.42	4.82	6.33		1.360	1.070		1.21

		1.0	45	he .
0.7 a ₁	0.35	0.88125		
0.3 0,	0.15	0.47188	0.40938	0.2
0.70	0.35	1.08278		
0.30,	0.15	0.94	0.14277	0.2
D (mm)	300			
Ev _a	109.92			
Ev ₂	315.18			
Area (5q.m)	6.07065	100		

EVDEN	2.87	

LOAD UN LOAD RE LOAD

Lab. Specialist

Name:

Sign :

Lab. Engineer

Name :

شركة للمقاولات المعمل المسركزي مشروع القطار السريع/فوكة - مطروح Consultant Engineer

Name:

Sign :

Plate Load Test Results

Layer. Station: Date:

	525+500	
-1.5	10	
EMBANKMENT	525+360	21-05-21

1.	6
4	-
	Contactor

1	8
4	1

AGR COMPANY	525+460
COMPANY	Location

								91
	1			965'0	0.74056	0.22	0.57938	-
8,67048	309.17	125.22	300	9.15	135	6.15	635	
Less (Sq. mg	Test	Ev	D (mm)	8.3e,	4.70,	63.6,	0.7 0,	

0.000 0.015 0.080 0.240 0.540

2

0.35938

Sm.1

2

0.680 0.525 0.525

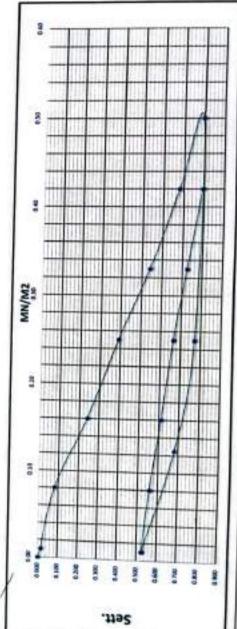
0.780

Better 2.47

0.680 0.795 0.770

0.770 0.910 LOAD UN LOAD RE LOAD

0.560


0.520

6.11

11.304

15.8

364	1		
9	1		ı
			ı
0,910			l
0.680			l
			l
5.90			
4.28			
0.42			
29.673			
41.5			
15.000		1	/
-76			

1950

土の子には別い「一人は人をひる

Sen. 1 0.020 0.230 0.350 0.590 0.580 0.080 08970 0.480 0.450 CPMG 6.81 5.90 5.93 6.03 6.21 6.11 1.96 4 5 4.61 4.28 430 451 0.00 0.08 0.33 0.50 0.25 0,12 100 0.01 KN 0.000 0.000 5.652 11.304 17.663 23.315 29.673 17.663 0.707 8.831 0.707 5.652 2 15.8 32.6 13 41.5 14.7 12.4 2 1.000 0.980 4.000 5.000 7.800 9.000 11,000 12,000 13,000

Lab. Engineer

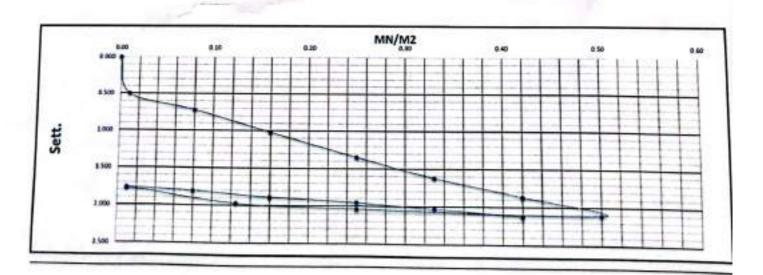
Name: Sign :

Plate Load Test Results

Layer: Station: EMBANKMENT -1.5 525+360 TO 525+500

Date: 23-05-23

COMPANY	AGR COMPANY
Location	525+400


Lauding	Lond	Leed	Stress	Diel 1	Dist 3	Stat 3	Sett. I	Sett. 2	Sett. 3	Avg.
Stage No.	Bar	KN	HNH	-	-	-	(Mark)	man	***	mm
0.000	0.0	0.000	0.00	8.24	7.36		0.000	0.000		0.000
1.000	1.0	0.707	0.01	7.71	6.89		0.530	0.470		0.500
2.000	7.9	5.652	0.08	7.48	6.68		0.760	0.680		0.72
0.080	15.8	11.304	0.16	7.17	6.39		1.070	0.970		1.026
4.000	24.7	17.663	0.25	6.84	6.06		1.400	1.300		1.35
5.000	32.6	23.315	0.33	6.55	5.80	2	1.690	1.560		1,625
6.000	41.5	29.673	0.42	6.29	5.57		1.950	1.790		1.87
7.000	49.4	35.325	0.50	6.05	5.33		2.190	2.030		2.11
8.000	24.7	17.663	0.25	6.09	5.43		2.150	1.930	100	2.04
9.000	12.4	8.831	0.12	6.14	5.51		2.100	1.850		1.97
9.000	1.0	0.707	0.01	6.33	5.74		1.910	1.620	100	1.76
10.000	1.0	0.707	0.01	6.33	5.74		1.910	1.620	150	1.76
11.000	7.9	5.652	0.08	6.29	5.69		1.950	1.670		1.81
12.000	15.8	11.304	0.16	6,22	5.60		2.020	1.760		1.89
13.000	24.7	17.663	0.25	6.16	5.53		2.080	1.830		1.95
14.000	32.6	23.315	0.33	6.08	5.45	4	2.160	1.910		2.03
15.000	41.5	29,673	0.42	6.00	5.35		2.240	2.010		2.12

	war to to	1	35	Ar	
0.7 e ₁	0.35	1.66	0.6775	0.2"	
0.3 0,	0.15	0.9825	6,6713	4.4	
0.701	0.35	2.055	0.2	0.2	
0.30,	0.15	1.855	9.2		
D (mm)	300				
Evi	66.42				
Ev.	225.01		8		
Area (Sq.m)	9.07965				

THE OWNER WHEN PERSON NAMED IN		
Ev2/Es1	3.39	

LOAD UN LOAD RE LOAD

Lab. Specialist

Name:

Sign:

Lab. Engineer

Name:

Consultant Engineer

Name:

Hassan

Sign :

4/5

Contactor

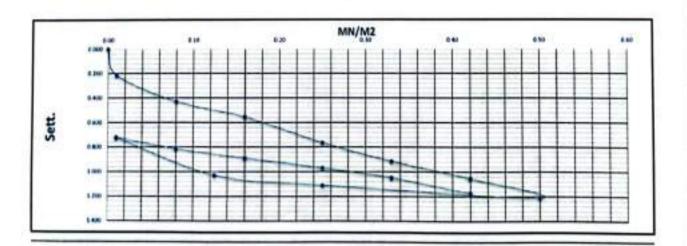
Plate Load Test Results

Layer: Station: EMBANKMENT 529+700

529+800 TO

Date: 25-05-23

COMPANY	AGR COMPAN
Location	529+740


Louding	Leed	Lord	Biren	1141	1961	1643	546.1	3et.1	501.3	Avg.
Steps No.	Ber	KN	MNNS	***	***	ne.	***	-	ma	***
0.000	0.0	0.000	0.00	6.39	7.39		0.000	0.000		0.000
1.000	1.0	0.707	0.01	6.25	7.10		0.140	0.290	45	0.215
2.000	7.9	5.652	0.08	6.11	6.81		0.280	0.580		0.430
0.080	15.8	11.304	0.16	5.97	6.70		0.420	0.690		0.555
4.000	24.7	17.663	0.25	5.81	6.44	12.19	0.580	0.950		0.765
5.000	32.6	23.315	0.33	5.69	6.26		0.700	1.130		0.915
6.000	41.5	29.673	0.42	5.61	6.06		0.780	1.330		1.055
7.000	49,4	35,325	0.50	5.53	5.83	133	0.860	1.560	1	1.210
8.000	24.7	17.663	0.25	5.62	5,94	Jing)	0.770	1.450		1.110
9.000	12.4	8.831	0.12	5.67	6.05		0.720	1.340	-32.	1.030
9.000	1.0	0.707	0.01	5.83	6.51		0.560	0.880	35.	0.720
10.000	1.0	0.707	0.01	5.83	6.51		0.560	0.880		0.720
11.000	7.9	5.652	9.05	5.78	6.37	436	0.610	1.020	-	0.815
12.000	15.8	11.304	0.16	5.70	6.30	7.0	0,690	1.090		0.890
13.000	24.7	17.663	0.25	5.65	6.19		0.740	1.200		0.970
14.000	32.6	23.315	0.33	5.59	6.09	400	0.800	1.380	22	1.054
15.000	41.5	29.673	0.42	5.43	6.00		0.960	1.390		1.175

			15	M	
0.7 e ₁	0.35	0.91938	0.38		
0.3 e ₁	0.15	0.53938	0.00	***	
0.7n ₁	9.35	1.07778	9.16777	0.2	
0.301	0.15	0.91001	0.10777	***	
D (mm)	300				
Ev _i	118,42	-			
Eva	268.23	/			
Area (Sq.m)	9.07965				

Ev2/Ex1 3.27

UN LOAD RE LOAD

Lab. Specialist

Sign:

Lab. Engineer

Contractor Consultant Contamor

Plate Load Test Results

Layer: Station:

Date:

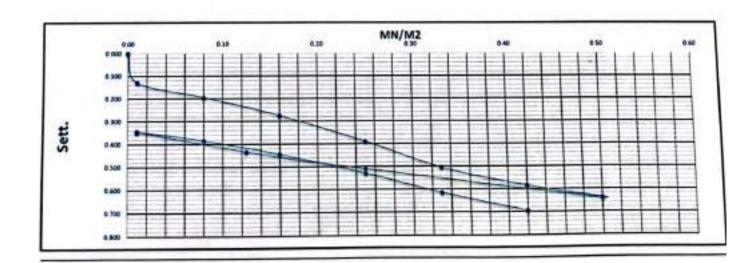
EMBANKMENT -1.5 529+700

25-05-23

TO

529+800

AGR COMPANY COMPANY 519+780 Location


Leading	Lord	Lood	Stores	Dist	Dial 2	Diela	Set. 1	Sett. 2	Sett . 3	Avg.
Stage No.	Bar	KN	MINIME	ren.	-	***	1986	nes	200	ma.
0.000	0.0	0.000	0.00	6.17	6.67		0.000	0.000		9.000
1.000	1.0	0.707	0.01	6.07	6.51		0.100	0.160		0.130
2.000	7.9	5.652	0.08	6.04	6.41		0.130	0.260		0.195
0.080	15.8	11.304	0.16	5.99	6.30		0.180	0.370		0.275
4.000	24.7	17.663	0.25	5.88	6.18		0.290	0.490		0.390
5.000	32.6	23,315	0.33	5.73	6.10		0.440	0.570		0.505
6.000	41.5	29,673	0.42	5.66	6.01		0.510	0.660		0.585
7.000	49,4	35.325	0.50	5.63	5.93		0.540	9.740		0.640
8.000	24.7	17.663	0.25	5.83	5.99		0.340	0.680		0.510
9.000	12.4	8.831	0.12	5.89	6.08		0.280	0.590		0.435
9.000	1.0	0.707	0.01	5.98	6.17		0.190	0.500		0.345
10.000	1.0	0.707	0.01	5.98	6.17		0.190	0.500		0.345
11.000	7.9	5.652	0.08	5.92	6.15	1	0.250	0.520		0.385
12.000	15.8	11.304	0.16	5.85	6.10		0.320	0.570		0.445
13.000	24.7	17.663	0.25	5.75	6.03		0.420	0.640	1	0.53
14.000	32.6	23.315	0.33	5.66	5.95		0.510	0.720		0.61
15.000	41.5	29,673	0.42	5.57	5.88		0.600	0.790).	0.69

			48	A.e	
0.7 4	0.35	0.53688	0.27188		
0.3 0,	0.15	0.265	0.21100	0.2	
0.74	0.35	0.63278	0.20777		
0.301	0.15	0.425	0.20777	0.2	
D (mm)	300				
Ev,	165.52				
Ev.	216.58				
Arm (Sq.m)	0.07065			W	

Eva/Evt 1.31

LOAD UN LOAD RE LOAD

Lab. Specialist

Name:

Sign:

Lab. Engineer

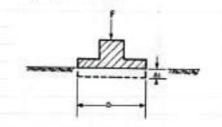
Name:

Name :

Sign :

Plate Load Test Results

Company Name Location Taste Date


A.G.R Culvert 13 (528+875) 10-5-2023

Station 528+875

EQUIPMENT AND TEST PROCEDURE:

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a zircular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F + land

P . Garneter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 nm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded ruck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

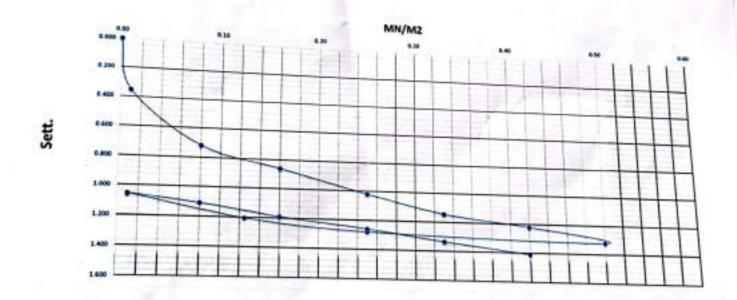
Loading	Land	Load	Stress	Dial1	Diel 3	Dial 3	Sett. 1	Sett. 2	Sett . 5	Avg. Sett.
Stage No.	Bar	KN	MN/M2					me	***	
0.000	0.0	0.000	0.00	13.43	11.89		0.000	0.000		0.000
1.000	2.4	0.707	0.01	13.15	11.46		0.280	0.430		0.355
2.000	18.8	5.652	0.08	12.85	11.03		0.580	0.860		0.720
0.080	37.7	11,304	0.16	12.70	10.90		0.730	0.990		0.860
4.000	58.9	17.663	0.25	12.49	10.79	V	0.940	1.100		1.020
5.000	77.7	23.315	0.33	12.35	10.68		1.080	1.210		1.145
6.000	98.9	29.673	0.42	12.29	10.59		1.140	1.300		1.220
7.000	117.8	35.325	0.50	12.20	10.48		1.230	1.410		1.320
8.000	58.9	17.663	0.25	12.24	10.52		1.190	1.370		1.280
9.000	29.4	8.831	0.12	12.32	10.59		1.110	1.300		1.205
9.000	2.4	0.707	0.01	12.51	10.70		0.920	1.190		1.055
10.000	2.4	0.707	0.01	12.51	10.70		0.920	1.190		1.055
11.000	18.8	5.652	0.08	12.45	10.65	- 8	0.980	1.240		1.110
12.000	37.7	11.304	0.16	12.34	10.60		1.090	1.290		1.190
13.000	58.9	17.663	0.25	12.30	10.50	- 0	1.130	1.390		1.26
14.000	77.7	23.315	0.33	12.25	10.40		1.180	1.490		1.33
15.000	98.9	29.673	0.42	12.15	10.35		1.280	1.540		1.41

		- 10	AS	Se.	
0.7 o ₁	0.35	1.1325	0.29		
0.3 σ1	0.15	0,8425	0.29	0.2	
0.701	0.35	1.35167	0.18666		
0.3e ₁	0.15	1.16501	0.18666	0.2	
D (mm)	300				
Ev ₁	155.17				
Ev ₁	241.08				
Area (Sq.m)	9,07065				

		 _
Ev2/Ev1	1.55	

E. = 0.75 . D . Ac / As

E, = deformation modulus


Δσ = load increment

As = settlement increment

p = diameter of the plate, generally 0.30 m

and its are usually taken from the load span between a c

Lab. Specialist

Name:

Sign:

Lab. Engineer

Name :

Sign :

Consultant Ferinees

Name: Youssef R-906

Sign:

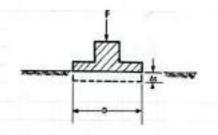
1.7300

Plate Load Test Results

Company Name Location Taste Date

A.G.R

Culvert 13 (528+875)


10-5-2023

Station 528+875

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

Falmed

As * settlement

D - diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

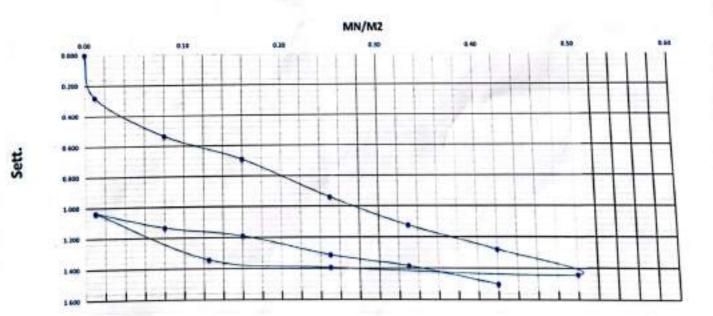
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 nm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded ruck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

Loading	Load	Lord	Stress	Dial 1	Dial 2	Dist 3	Sett, I	Seit. 2	Sett . 3	Avg. Sett.
Stage No.	Bar	KN	MN/M2				***	nn	-	***
0.000	0,0	0.000	0.00	15.60	17.30		0.000	0.000		0.000
1.000	2.4	0.707	0.01	15.50	16.84	200	0.100	0.460		0.280
2.000	18.8	5.652	0.08	15.30	16.53		0.300	0.770		0.535
0.080	37.7	11.304	0.16	15.20	16.32	R	0.400	0.980		0.690
4.000	58.9	17.663	0.25	15.02	16.00		0.580	1.300		0.94
5.000	77.7	23.315	0.33	14.90	15.75		0.700	1.550		1.12
6.000	98.9	29.673	0.42	14.75	15.59		0.850	1,710		1.28
7.000	117.8	35.325	0.50	14.67	15.35		0.930	1.950		1.44
8.000	58.9	17.663	0.25	14.72	15.39		0.880	1.910		1.39
9.000	29.4	8.831	0.12	14.80	15,41		0.800	1.890		1.34
9.000	2.4	0.707	0.01	15.08	15,75		0.520	1.550		1.03
10.000	2.4	0.707	0.01	15.08	15.75		0.520	1.550		1.03
11.000	18.8	5.652	0.08	14.94	15.69		0.660	1.610		1.13
12.000	37.7	11.304	0.16	14.89	15.63		0.710	1.670		1.19
13.000	58.9	17.663	0.25	14.77	15.50		0.830	1.800		1.31
14.000	77.7	23.315	0.33	14.70	15.43		0.900	1.870		1.38
15.000	98.9	29.673	0.42	14.60	15.30		1.000	2.000		1.50

	-,	1	48	ia:
0.70	0.35	1,14		
0.3 o ₁	0.15	0.67063	0.40938	0.2
0.701	0.35	1.41056	0.17555	
0.Je ₁	0,15	1.23501	0.17555	0.2
D (mm)	300		4	
Ev,	95.87			
Ev ₃	256.34			
Area (Sq.m)	6,07965			

E+2/E+1 2.67	
--------------	--


E, = 0.75 · D · Aa / As

c. = deformation modulus

4- w load increment

4. = settlement increment

p = diameter of the plate, generally 0.30 m

Lab. Specialist

Name:

Sign:

Name:

Sign :

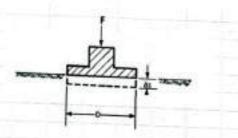
Plate Load Test Results

Company Name

A.G.R Location

Taste Date

Layer level


528+875 To 528+875 7/5/2023

528+875

Excavation of bed EQUIPMENT AND TEST PROCEDURE:

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 nm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded ruck, an excavator or a roller usually serve as counterweight for the hydraulic jack

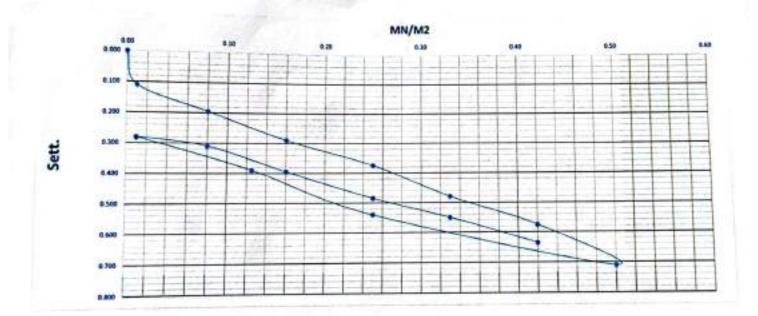
)iameter = 300mm

Loading	Load	Load	Stress	Dial I	Dial 2	Dial 3	Sett. 1	Sett, 2	Sett. 3	Avg
Stage No.	Bar	KN	MN/M2	-		-				Sett
0.000	0.0	0.000	0.00	7.63	5.61		0.000		-	-
1.000	2.1	0.707	0.01	7.48	5.54		0.150	0.000		0.000
2.000	17.1	5.652	0.08	7.39	5.46		111000	0.070		0.110
0.080	34.2	11.304	0.16	7.26	5.40		0.240	0.150		0.195
4.000	53.4	17.663	0.25		-	_	0.370	0.210		0.290
5.000	70.5	23,315		7.14	5.35		0.490	0.260		0.375
6.000	89.7	29.673	0.33	6.98	5.30		0.650	0.310		0.486
7.000	106.8	-	0.42	6.84	5.25		0.790	0.360		0.57
8.000		35.325	0.50	6.62	5.20		1.010	0.410		0.710
The second second	53.4	17.663	0.25	6.88	5.28	lane.	0.750	0.330		
9.000	26.7	8.831	0.12	7.08	5.38	1	0.550			0.54
9.000	2.1	0.707	0.01	7.20	5.48		The second	0.230		0.394
10.000	2,1	0.707	0.01	7.20	5.48		0.430	0.130		0.28
11.000	17.1	5.652	0.08		200000		0.430	0.130		0.28
12.000	34.2	11.304		7.17	5.45		0.460	0.160		0.310
13.000	53.4		0.16	7.10	5.35		0.530	0.260		0.39
4.000	-	17.663	0.25	7.02	5.25	1	0.610	0.360		0.48
	70.5	23.315	0.33	6.98	5.16		0.650	0.450		To record
5.000	89.7	29.673	0.42	6.92	5.05		0.710	0.560		0.550

-			AS	Ae .
0.7 e ₁	0.35	0.45688	Same?	100
0.3 o ₁	0.15	0.27813	0.17875	0.2
0.702	0.35	0.56889		
0.343	0.15	0.34	0.22889	0.2
D (mm)	300			
Ev ₁	251.75			
Ev ₁	196.60			
Area (Sq.m)	0.07065	1		

101000000		-
Ev2/Ev1	6.78	

E, = 0.75 - D - 40 / 4x


deformation modulus

= load increment

- settlement increment

= diameter of the plate, generally 0.30 m

to this Calculation Air and As are usually taken from the load span between 0.3 and 0.7 and 0.

Lab. Specialist

Name:

Sign:

Name : Sign ?

Consultant Foundacer

Same :

Youssef

y Raga

Sign :

11211

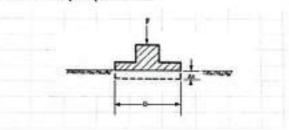
- MANAGEMENT CONTRACTOR

Plate Load Test Results

Company Name Location

AGR culvert 528

Taste Date Layer level 03-05-2023


قاع حار

528+033 Station

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

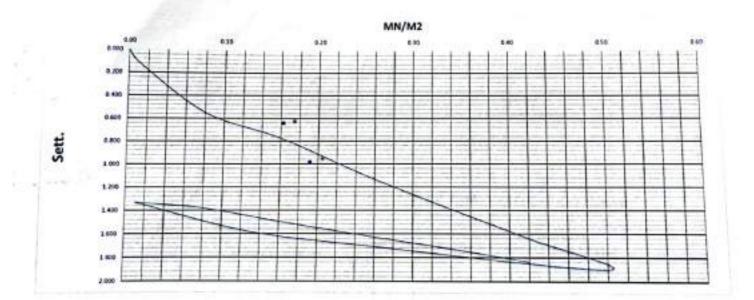
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

Londing	Lead	Lord	Street	Dial 1	Dial 2	0613	Sett. 1	5en. 1	Sett. 3	Avg.
Stage No.	Bar	KN	MNMZ		-	***		-	-	-
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.98	19,80		0.020	0.200		0.110
2.000	17.1	5.652	0.08	19.75	19.15		0.250	0.850		0.550
0.089	34.2	11.304	0.16	19.60	18.85		0.400	1.150		0.775
4.000	53.3	17.663	0.25	19.40	18.40		0.600	1.600		1.100
5.000	70.5	23,315	0.33	19.20	18.08		0.800	1.920	10	1.360
6.000	89.8	29.673	0.42	18.92	17.80		1.080	2.200	1	1.640
7.000	106.8	35.325	0.50	18.70	17.50		1.300	2.500		1.900
8.000	53.4	17.663	0.25	18.80	17.80	0	1.200	2.280	1776	1.700
9.000	26.7	8.831	0.12	18.90	17.95		1.100	2.050		1.575
9.000	2.1	0.707	0.01	19.08	18.26		0.920	1.740	100	1.330
10.000	2.1	0.707	0.01	19.08	18.26		0.920	1.740		1.330
11.000	17.1	5.652	0.08	19.04	18.20		0.960	1.800		1.380
12.000	34.2	11.304	0.16	18.95	18.06		1.050	1.940		1.495
13.000	53.3	17.663	0.25	18.87	17.90	105	1.130	2.100		1.615
14.000	70.5	23,315	0.33	18.80	17.77		1.200	2.230		1.715
15.000	89.8	29.673	0.42	18.71	17.62		1.290	2.380		1.835

		1	45	Le .	
0.7 a ₁	0.35	1.4125			
0.3 e,	0.15	0.74687	0.66562	6.2	
0.7a ₃	0,35	1.74167		0.2	
0.3e ₁	0.15	1.43001	031100		
D (mm)	300				
Ev ₁	67.61				
Ev	144.39				
Area (Sq.m)	8.97645				

ENDEM	2.14	


E. = 0.75 . D . do / As

 deformation modulus E, - load increment

· settlement increment D:

- diameter of the plate, generally 0.30 m.

For this calculation der and dis are usually taken from the load span between 0.3 down and 0.7 down

Lab. Specialist

Name:

Sign:

Lab. Engineer
Name :

Consultant Engineer

Name: Youssef Rage

Sign:

1 2:23

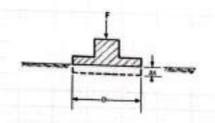
Plate Load Test Results

Company Name Location

AGR culvert 528 03-05-2023

Stylus

528+389


Taste Date Layer level

فاع حفر فاع حفر

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

Felesi

Ar a mediument

D = Sumaiar of the state

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

Landing	Lond	Leed	Stress	Did I	Dul 2	Dial 3	Sex. 1	Sen. 1	Sett . 3	Avg
Stage Na.	Bar	KN	MNMI		-	***	-			Sett.
0.000	0.0	0.000	0.00	20.00	20.00	1-0	0.000	0.000	-	0.000
1.000	2.1	0.707	0.01	19.92	19.96		0.080	0.040		0.060
2.000	17.1	5.652	0.08	19.63	19.70		0.370	0.300		
0.080	34.2	11.304	0.16	19.33	19.42		0.670	0.580	-	0.335
4.000	53.3	17.663	0.25	19.00	19.12		1.000			0.625
5.000	70.5	23.315	0.33	18.74	18.85			0.880		0.940
6.000	89.8	29,673	0.42	18.48	18.58	-	1.260	1.150		1.205
7.000	106.8	35,325	0.50	18.28			1.520	1.420		1.470
8,000	53.4	17.663		-	18.35		1.720	1.650		1.685
9.000	26.7		0.25	18.42	18.47	_	1.580	1.530	10	1.55
9.000		8.831	0.12	18.58	18.62		1.428	1.380		1.400
	2.1	0.707	0.01	18.82	18.84		1.180	1.160		1.17
10.600	2.1	0.707	0.01	18.82	18.84		1.180	1.160		1.17
11.000	17.1	5.652	0.08	18.75	18.77		1.250	1.230		1.24
12.000	34.2	11.304	0.16	18.66	18.70	-	1,340	1.300		1.32
13.000	53.3	17.663	0.25	18.52	18.58		1,480	1.420	-	
14.000	70.5	23.315	0.33	18.40	18.48		1,600	10000	-	1.45
15.000	89.8	29,673	0.42	18.31	18.37		-	1.520	-	1.56
			-	10,01	10:31		1.690	1.630	1	1.66

	_		AS	30	
0.7 d ₁	9.35	1.28188		100	
0.3 σ,	0.15	0.58875	0.64313	0.1	
0.761	0.35	1.58222			
0.3o,	0.15	1,31091	0.27222	9.2	
D (mm)	300				
Evi	64.92				
Ev ₁	16531				
Area (Sq.m)	9.07965				

		_	
E+2/E+1	1.55	5 T	

E. - 4.75 - D - A0 / A1

E. • deformation modulus

D. - load Increment

Ds - settlement increment

D = diameter of the plate, generally 0.30 r

For this calculation do and do are usually taken from the load some between 6.3 and 1.5 and 1.

Lab. Specialist
Name:

Sign:

Consultant Engineer

Name: Young of Rafo

Sign:

Station

Plate Load Test Results

Company Name

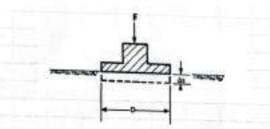
A.G.R

Location

526+380

Taste Date Layer level

13/4/2023 -1.5 526+460


4.4

526+419

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

Falend

As it authorized

D = diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

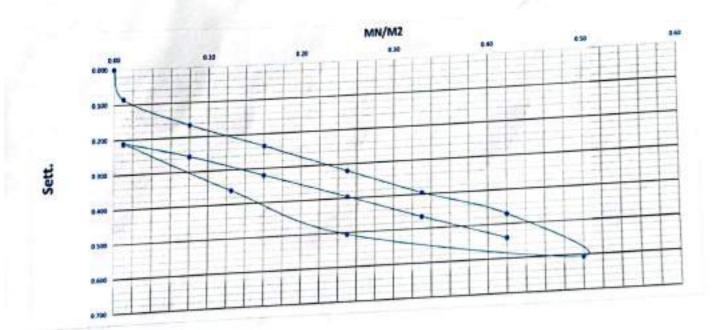
Loading	Lead	Lead	Stress	Dial 1	Dist 2	Dial 3	Sett. 1	Sett. 1	Sett . 3	Avg.
Stage Na.	Ber	KN	MNMI					-		Sett.
0.000	0.0	0.000	0.00	6.68	5.61		0.000	0.000		0,000
1.000	2.1	0.707	0.01	6.58	5.54		0.100	0.070		0.085
2.000	17.1	5.652	0.08	6.50	5.46		0.180	0.150		0.165
0.080	34.2	11.304	0.16	6,42	5.40		0.260	0.210		0.235
4.000	53.4	17.663	0.25	6.30	5.35		0.380	0.260		0.320
5.000	70.5	23.315	0.33	6.20	5.30		0.480	0.310		0.395
6.000	89.7	29.673	0.42	6.10	5.25		0.580	0.360		0.470
7.000	106.8	35.325	0.50	5.88	5.20		0.800	0.410	-	0.60
8.000	53,4	17.663	0.25	6.00	5.28		0.680	0.330		0.50
9.000	26,7	8.831	0.12	6.19	5.38		0.490	0.230		0.36
9.000	2.1	0.707	10.0	6.39	5.48		0.290	0.130		0.21
10.000	2.1	0.707	0.01	6.39	5.48		0.290	0.130		
11.000	17.1	5.652	0.08	6.33	5.45		0.350	0.160	-	0.21
12.000	34.2	11.304	0.16	6.30	5.35		0.380	-	-	0.25
13.000	53.4	17.663	0.25	6.25	5.25			0.260	-	0.32
14.000	70.5	23.315	0.33	6.20			0.430	0.360	-	0.39
15.000	89.7	29.673	0.42	6.16	5.16		0.480	0.450	-	0.46

-		•	AS	Art.	
0.7 σ ₁	0.35	0.35188			
0,3 e ₁	0.15	0.22625	0.12563	0.2	
0.703	9.35	0.48167		100	
0.301	0.15	0.3	0.18166	0.3	
D(mm)	300				
Ev ₁	358,21				
Ev ₁	247,71				
Area (Sq.m)	6.07965		-		

_		
Ev2/Ev1	9.49	

E. - 0.73 . D . Ac / As

E. = deformation modulus


δσ = load increment

4 settlement increment

D - diameter of the plats, generally 0.30 m

-mmmm

End this calculation $A\sigma$ and As are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}

ab. Specialist

Name :

Sign :

Sign :

Sign :

A an an an in

Sign :

A an in in

Sign :

A an in

Sign :

Sign :

A an in

Sign :

Sign :

A an in

Sign :

Sig

Consultant Engineer

Name: Youssef Ragel

Sign :

y. Kel

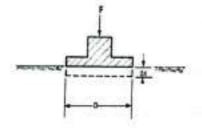
Plate Load Test Results

To

Company Name Location A.G.R 527+000 29-3-2023

527+060

Station 517+040


Taste Date Layer level

-1.5

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = load

A = settlement

A = decrease of the pions

The diameter D of the plate is generally 0.38 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin, After that, the plate is reloaded in 5 steps. A loaded truck, an excervator or a roller usually serve as counterweight for the hydraulic jack

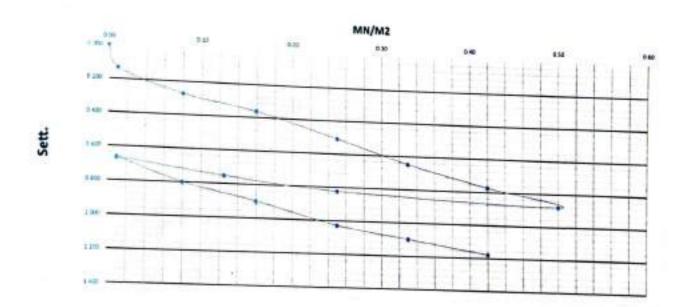
Diame	AAR III	300	mm
Dune		200	

Louding	Lan	Lond	Stress	Did1	Dial 2	Dial 3	Sett. 1	Sett. 2	Sett . 3	Arg. Sett.
Stage No	Bar	KN	MN/M2	-	-	-	865	nn.	-	-
0.000	0.0	0.000	0.00	11.70	9.80		0.000	0.000		0.000
1.000	2.4	0.707	0.01	11.50	9.73		0.200	0.070		0.135
2.000	18.8	5.652	0.08	11.35	9.60		0.350	0.200		0.275
0.080	37.7	11.304	0.16	11.25	9.52		0.450	0.280		0.365
4.000	58.9	17.663	0.25	11.10	9.38		0.600	0.420		0.510
5.000	77.7	23.315	0.33	10.95	9.25		0.750	0.550		0.650
6.000	98.9	29.673	0.42	10.80	9.15		0.900	0.650		0.775
7.000	117.8	35,325	0.50	10.69	9.05		1.010	0.750		0.880
8.000	58.9	17.663	0.25	10.75	9.10		0.950	0.700		0.825
9.000	29.4	8.831	0.12	10.84	9.15		0.860	0.650		0.755
9.000	2.4	0.707	0.01	10.97	9.20		0.730	0.600		0.665
10.000	2.4	0.707	0.01	10.97	9.20		0.730	0.600		0.665
11.000	18.8	5.652	0.08	10.85	9.05		0.850	0.750		0.800
12.000	37.7	11.304	0.16	10.75	8.95		0.950	0.850		0.900
13.000	58.9	17.663	0.25	10.64	8.80		1.060	1.000		1.030
14.000	77.7	23.315		10.55	8.75		1.150	1.050		1.100
15.000	-	29.673	_	10.44	8.70		1.260	1.100		1.180

			AS	Ast .	
0.7 e ₁	0.35	0.68312	0.31937	0.2	
93 e _j	0.15	0.35375	0.32537	0.2	
0.70	0.35	5 1.11778		0.2	
0.301	0.15	0.93501	0.18270	- 54	
D (mm)	300	- 7			
Ev ₁	136.62				
Ev ₁	146.22				
Ares (Sq.m)	6.07065			9	

Evi/Evi	1.00	

E, = 8.75 - B - As / As


E, = deformation modulus

Δσ = load increment

As = settlement increment

diameter of the plats, generally 0.30 m.

and do and do are usually taken from the load span between 0.3 consecution

Lab Specialist

Name:

Sign :

الشعار السديع الشعار السديع النوبي المركزي يمام النوبي المركزي

Consultant Engineer

Name: Yoursef Ragab

Sign :

12 130 f

528+220

Plate Load Test Results

To

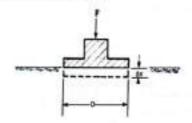
Company Name

Location

A.G.R

528+140 21/3/2023

Taste Date 21


Layer level -5.5

Station 528+150

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F=load

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 6 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

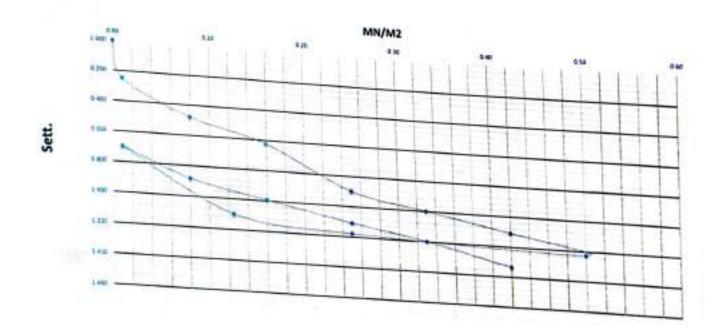
Diameter = 300mm

Leading	Land	Load	Stress	Dial I	Diali	Dialit	Sett. 1	Set. 2	Sett . 3	Avg.
Stage No.	Bar	EN	MNM2	-	-	-	-	-	-	***
0.000	0.0	0.000	0.00	16.60	17.80		0.000	0.000		0.000
1.000	2.4	0.707	0.01	16.40	17,50	dig.	0.200	0.300		0.25
2.000	18.8	5.652	0.08	16.30	17.14		0.300	0.660		0.48
0.089	37.7	11.304	0.16	16.15	17.00		0.450	0.800		0.62
4.000	58.9	17.663	0.25	15.95	16.65		0.650	1.150		0.90
5.000	77.7	23.315	0.33	15.85	16.55		0.750	1.250		1.00
6.000	98.9	29.673	0.42	15.78	16.40		0.820	1.400		1.11
7.000	117.8	35.325	0.50	15.70	16.25		0.900	1.550		1.22
8.000	58.9	17.663	0.25	15.74	1630		0.860	1.500		1.18
9.000	29.4	8.831	0.12	15.80	16.40		0.800	1.400		1.10
9.000	2.4	0.707	0.01	16.15	16.85		0.450	0.950		0.70
10.000	2.4	0.707	0.01	16.15	16.85	4.3	0.450	0.950		0.70
11.000	18.8	5.652	0.08	15.98	16.65		0.620	1.150		0.88
12.000	37.7	11.304	0.16	15.86	16.55		0.740	1.250	H	0.995
13.000	58.9	17.663	0.25	15.78	16.40		0.820	1.400		1.110
14.000	77.7	23.315	0.33	15.70	16.30		0.900	1.500		1.200
15.000	98.9	29.673	0.42	15.58	16.15		1.020	1.650		1.335

			43	A.e
0.7 o ₁	0.35	1.00938		11.20
0.3 e ₁	0.15	0.60688	0.4025	0.2
0.701	0.35	1.23		10
0.301	0.15	1.07002	0.15998	0.2
D (mm)	300			
Ev ₁	111.80			
Ev ₁	281.28	g		
Ares (Sq.m)	0.07965			_

Ev1/Ev1	2.52	

E, -8.75 + D - Ag / As


E, edeformation modulus

Ar = load increment

As * settlement increment

p = diameter of the plate, generally 0.30 m

and dir are usually taken from the load span between 0.2

Lab. Specialist

Name:

Sign :

Consultant Engineer

Name: Yoursef Rato

Sign :

1211

528+668

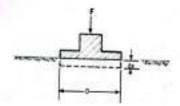
Plate Load Test Results

Company Name

A.G.R

Location Taste Date 528+620 To 528+700 12-3-2023

Station


Layer level

-5.5

EQUIPMENT AND TEST PROCEDURE:

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of clasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

A reflected

The diameter D of the plate is generally 0.30 m. For very coerse grained material also plates with diameter D = 0.60 m and D = 0.762 m are

The load is applied in 6 load increments of equal size, Under each load step the settlement must come to a noticeable end (< 0.02 moviminute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excevator or a roller usually serve as counterweight for the hydraulic jack

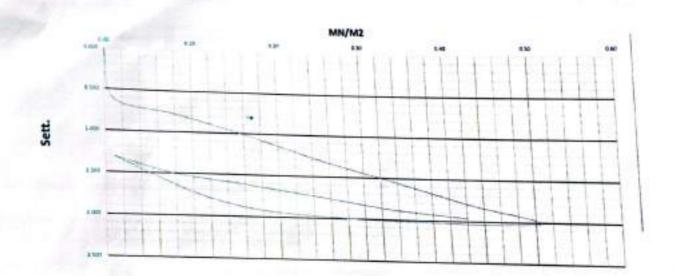
Diameter - 300mm

Landing	Loui	-	Street	Diali	Die2 2	Diel3	Sett. 1	Sex. 2	Sen.)	Arg. Sett.
Stage Na.	Sur	KN	MNMI		-					
0.000	6.0	0.000	0.00	10.16	18.71		0.000	0.000		0.000
1.000	2.4	0.707	0.01	9.71	17.93		0.450	0.780	18	0.615
2.600	18.8	5.652	0.08	9.62	17.68		0.540	1.030		0.785
0.080	37.7	11.304	0.16	9.46	17.38	5.53	0.700	1.330		1.015
4.000	58.9	17.663	0.25	9.21	17.04		0.950	1.670		1.310
5.000	77.7	23.315	0.33	9.02	16.79		1.140	1.920		1.530
6.000	98.9	29.673	0.42	8.75	16.53		1.410	2.180		1.795
7.000	117.8	35,325	0.50	8.46	16.36		1.700	2.350		2.025
E.000	58.9	17.663	0.25	8.52	16.38		1.640	2.330		1.985
9.000	29.4	8.831	0.12	8.68	16.57	1	1.480	2.140		1.810
9.000	2.4	0.707	0.01	9.13	17.11		1.030	1.600		1.315
10.000	2.4	0.707	0.01	9.13	17.11	1	1.030	1.600		1.315
11.000	18.8	5.652	0.08	9.00	16.85		1.160	1.860		1.510
12.600	37.7	11304	0.16	8.91	16.72		1.250	1.990		1.620
13.000	58.9	17.663	0.25	8.82	16.54		1.340	2.170		1.755
14.000	77,7	23.315	0.33	8.71	16.40		1.450	2.310		1.880
15.000	98.9	29.673	0.42	8.58	1636		1.580	2,350	1	1.965

	-	. 1	48	34	
6.7 a ₁	0.35	1.59375		1	
6.3 e ₁	0.15	0.98625	0.6075	-	
0.74	6.35	1.89689		0.2	
0.3eg	0.15	1.70502	0.19387		
D (mm)	300				
Ev ₁	74.07				
Ev ₁	132.11				
Area (Sq.m)	8,87945				

	_	_	_
Br2/Br1	3.13		

E-875-B-40/4


E. - deformation modulus

da . loed increment

4 * settlement increment

p = diameter of the plate, generally 0.30 m

year crass calculation Award As are usually taken from the lead span between \$.3 a. . and \$.7 a. .

Lah. Specialist

Name:

Sign :

Name:
Sign

Consultant Engineer

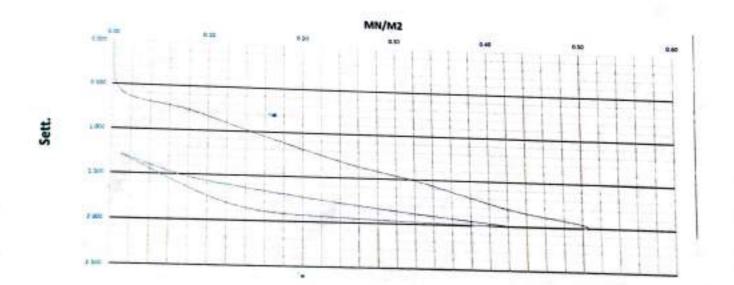
Sign :

m-elsaled

Plate Load Test Results 528+620

To

EQUIPMENT AND TEST PROCEDURE: Company Name Location Taste Date Layer level


Set. 1 Set. J Avg.	-	0000	009'0	0.770 0.770	1.020 1.055	1.290 1.345	1.440 1.540	1.650 1.810	1.790 2.005	1.750 1.955	1.610	1,100	1.100	1320 1.530	1.450	1.580	1,690	
Sett. 1	1	0000	0.560	0.770	1.090	1.400	1.640	1.970	2220	3,160	2.040	1.480	1.480	1.740	1.890	2.020	2.110	İ
Dad	ı							100										İ
Best	1	1621	19'51	15.44	15.19	14.92	14.77	14.56	14.62	14.46	14.60	15.11	15.11	14.19	14.76	14.63	14.52	
Died	1	13.85	13.29	13.68	12.76	12.45	12.21	11.88	11.63	11.69	11.81	11.37	12.37	17.11	11.96	11.83	11.74	
Ī	343942	00'0	10.0	80'0	91.0	0.15	0.33	0.42	050	0.25	117	10'0	10.0	0.08	9170	0.25	1 10	
3	101	0.00	0.707	\$.652	11.304	17.663	13315	29.673	35.325	17,663	1077	0.707	0.707	2593	11304	17.663	3315	
3	2	0.0	77	18.8	37.7	58.9	77.7	98.9	117.8	583	19.4	7	7.4	7	37.7	58.9	1.77	
1	Stage Na.	0000	1,000	2.000	0.080	4.000	5.000	900'9	7.000	8.000	9.000	9.000	10.000	11.900	12.600	13.000	4.000	48 444

			A.S	2
0.7 0,	135	1,63938		:
1969	6.15	1,01933	4	2
8.70,	52	1,92222		:
630,	6.15	1,77862		2
(mm)	300			
Er,	77.50			L
Re,	295.67			
(Sq.m)				

8	-	
		ı
	447	
	den.	

and a second control of the second se

Lab. Specialist

Name :

Sign:

Name:
Sign:

Consultant Engineer

Name: Makame

Sign:

m.elsail

Plate Load Test Results

Company Name

Location

A.G.R 526+700

0 To 526+840

Station 526+740

Taste Date

8-3-2023

Layer level

0

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of clasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F= load Ar settlement

- density of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excevator or a roller usually serve as counterweight for the hydraulic jack

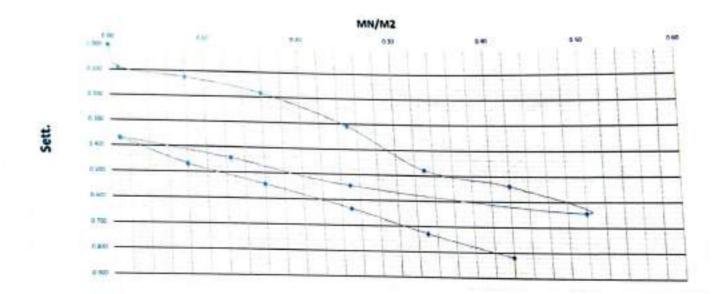
Diameter = 300mm

Leads	g Lo	ed Load	Stress	Dial 1	Dist 2	Dial 3	Sett. 1	Sett 1	Sett . 3	Arg. Sett.
Stage N	. B.	, KN	MNM	-	en.	m	ma	-	-	nn
0.000	0.0	0.000	0.00	13.90	14.74	\$ 1	0.000	0.000		0.000
1.000	2.4	0.707	0.01	13.82	14.64		0.080	0.100		0.090
2.000	18.1	5.652	0.08	13.79	14.60		0.110	0.140		0.125
0.080	37.7	11.304	0.16	13.72	14.55		0.180	0.190		0.185
4.000	58.9	17.663	0.25	13.67	14.35		0.230	0.390		0.310
5.000	77.7	23.315	0.33	13.58	14.10		0.320	0.640		0.480
6.000	98.9	29.673	0.42	13.54	14.02		0.360	0.720		0.540
7.000	117.8	35.325	0.50	13.50	13.85		0.400	0.890		0.645
8,000	58.9	17.663	0.25	13.55	14.00		0.350	0.740		0.545
9.000	29.4	8.831	0.12	13.65	14.10		0.250	0.640		0.445
9.000	2.4	0.707	0.01	13.70	14.20		0.200	0.540		0.370
10.000	2.4	0.707	0.01	13.70	14.20		0.200	0.540		0.370
11.000	18.8	5.652	0.08	13.60	14.10		0.300	0.640		0.470
12.000	37.7	11.304	0.16	13.50	14.05		0,400	0.690		0.545
13.000	58.9	17.663	0.25	13.42	13.95		0.480	0.790		
14.000	77.7	23.315	0.33	13.33	13.85		20.77			0.635
15.000	98.9	29.673					0.570	0.890		0.730
	76.7	47.013	0.42	13.25	13.75		0.650	0.990		0.820

			AS	Ae.	
0.7 σ ₃	0.35	0.44813			
0.3 0,	0.15	0.1775	0.27063	0.2	
0.702	0.35	0.75			
0.302	0.15	0.57001	0.17999	-	
D (mm)	300				
Ev ₁	166.28				
Ev ₂	250.01				
Area (Sq.m)	0.07065				

Ev2/Ev1	1.50	

E, = 4.75 . D . Aa / As


E, = deformation modulus

dσ = load increment

4: * settlement increment

D = diameter of the piate, generally 0.30 r

For this calculation $A\sigma$ and $A\pi$ are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}

Lab. Specialist

Name:

Sign:

Name : Sign :

> خيام النوبي المركزي خيام وي مطوع

Name: WONDING DISTUR

m.elsaid

526+840

Plate Load Test Results

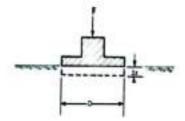
To

Company Name

A.G.R

Location Taste Date 526+700

8-3-2023


526+780

Layer level

EQUIPMENT AND TEST PROCEDURE:-

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of clasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

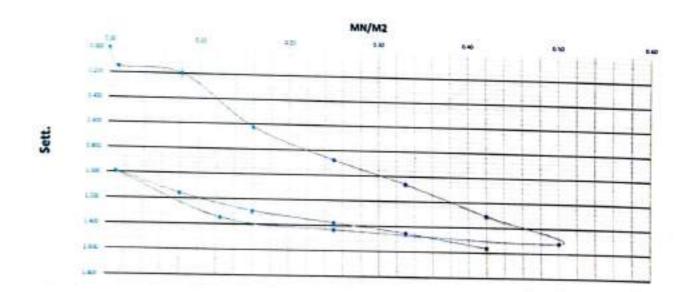
The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 6 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter - 300mm

Landing	Less	Less	Street	Diei 1	Diel	Dial 3	Sett, 1	Sett. 2	See . 3	Avg.
Stage No.	Bur	KN	MNMG	-	-	-	-	-	-	-
0.000	0.0	0.000	0.00	13.83	14.54		0.000	0.000		0.000
1.000	2.4	0.707	0.01	13,72	14.35		0.110	0.198		0.150
2.000	18.8	5.652	80.0	13.80	14.17		0.030	0.370		0.200
0.080	37.7	11.304	0.16	13.30	13.82		0.530	0.720		0.625
4.000	58.9	17.663	0.25	13.08	13.53		0.750	1.010		0.880
5.000	77.7	23,315	0.33	12.90	13.34		0.930	1.200		1.065
6.000	98.9	29.673	0.42	12.70	13.05		1.130	1.490		1310
7.000	117.8	35,325	0.50	12.58	12.75		1.250	1.790		1.520
8,000	58.9	17.663	0.25	12.60	12.90	1	1.230	1.640		1.435
9.000	29.4	8.831	0.12	12.64	13.03		1.190	1.510		1350
9.000	2.4	0.707	0.01	12.85	13.54		0.980	1.000		0.990
10.000	2,4	0.707	0.01	12.85	13.54		0.980	1.000		0.590
11.000	18.8	5.652	0.08	12.75	13.30		1.080	1.240		1.160
12.000	37.7	11.304	0.16	12.65	13.13		1,180	1.410		1.295
13.000	58.9	17.663	0.25	12.58	13.03	7	1.250	1.510		1.380
14.000	77.7	23,315	0.33	12.51	12.95		1.320	1.590		1.455
15.000	98.9	29.673	0.42	12.44	12.80		1.390	1.740		1.565

			65	Art .
0.7 o ₁	0.25	1.12625		
No.	0.15	0.57187	0.55438	6.2
0.7e ₃	0.35	1.47944	0.14943	
836	0.15	1.33002	F1440	6.3
D (mm)	300	1		
Evi	81.17			
Ev	301.15			
Ares (Sq.m)	4.67965			


Ert.Ert	3.71	
101F6/6/	1,000	

E. - 475 . D . de / ds

eter of the plate, generally 0.30 m

For this calculation or and die are usually taken from the load span between 0.3 m. ... and 0.7 m.

Lab. Specialist

Name:

Sign:

Name:
Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sig

me: mohamed elsaid

Sign 1

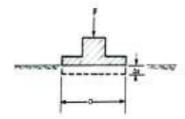
m-essuel

Company Name

A.G.R

Location

526+700 To 526+840


Station 526+820

Taste Date Layer level 8-3-2023

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

/- bed

-

the department of the state

The diameter D of the plate is generally 0.30 m. For very coarse grained material siso plates with diameter D = 0.60 m and D = 0.762 m are

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

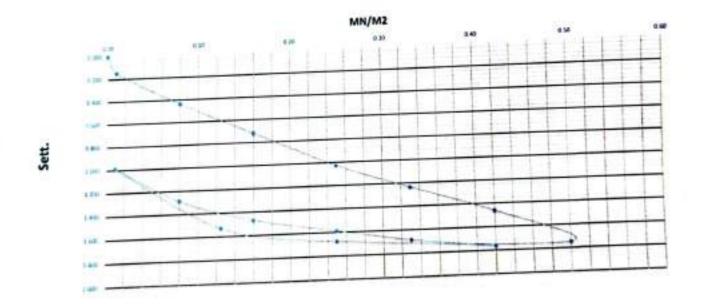
Diameter = 300mm

Leeding	Lood	1	Street	Dial 1	Diel 2	Dial3	Sett, I	Sent. 2	Sett. 3	Ang. Set.
Stage No.	34	EN	MNMG	-	-	-	-	-	-	-
0.000	0.0	0.000	0.00	10.68	15.80		0.000	0.000	1	0.000
1,000	2.4	0.707	0.01	10.50	15.68		0,180	0.120		0.150
2.000	18.8	5.652	80.0	10.25	15.35		0.430	0.450		0.440
0.080	37.7	11.304	0.16	10.00	15.04		0.680	0.760		0.720
4.000	58.9	17.663	0.25	9.75	14.67		0.930	1.130		1.030
5.000	77.7	23,315	0.33	9.60	14.40		1.080	1.400		1.240
6.000	98.9	29.673	0.42	9.40	14.15		1.280	1.650		1,465
7,000	117.8	35,325	0.50	9.15	13.83	1	1.530	1.970		1.750
8.000	58.9	17.663	0.25	9.17	13.95		1.510	1.850		1.680
9.000	29.4	8.831	0.12	9.26	14.15		1.420	1.650		1.535
9,000	2.4	0.707	0.01	9.90	14.60		0.780	1.200		0.990
10.000	2.4	0.707	0.01	9.90	14.60		0.780	1.200		0.990
11.000	18.8	5.652	0.08	9.60	1430	= 7	1.080	1.500		1.290
12.000	37.7	11.304	0.16	9.43	14.10		1.250	1.700		1.475
13,000	58.9	17,663	0.25	9.30	14.00		1.380	1.800		1.590
	77.7	23.315	0.33	9.25	13.85		1.430	1.950	16.	1.690
14.000	98.9		0.42	9.20	13.75		1,480	2.050		1.765
15.000	30.9	29.673	0.74	3-20	1000				_	

			AS	Le	
0.7 e ₁	0.35	1.21563		0.2	
83 e ₁	0.15	0.685	0.5,0042		
0.702	0.35	1.70667	0.11664	6.2	
0.303	0.15	1.59003	4.11604	_	
D (mm)	300				
Ev ₁	\$4.81				
Ev ₂	385.81				
Arms (Sq.m)	0.07045				

$\overline{}$		
ExERvi	4.55	

E. - 471 . D . 60 / 61


. e deformation modulus

As w load increment

de = settlement increment

p - diameter of the plate, generally 0.30 m

For this calculation $A\sigma$ and As are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}

Lab. Specialist

Name:

Sign :

الشحار السركة Sign: الشجار السركة معمل النوبر، المركزي Name: mohame esaid

Sign:

m-elsais

Company Name

A.G.R.

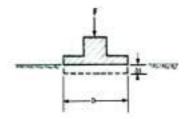
Location

526+840 To 527+000

Station 526+845

Taste Date

8-3-2023


Layer level

0

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F - tool

D + discreter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 6 steps. A loaded truck, an excevator or a roller usually serve as counterweight for the hydraulic jack.

Diameter = 300mm

Lesting	Lend	Loui	Stress	Dial 1	Dietz	Dial	Set. 1	Sett. 2	Sett . 3	Avg. Sett.
Stage No.	Ber	KN.	муми	-	-	-	-	-		-
0.000	0.0	0.000	0.00	15.11	14.35		0.000	0.000		0.000
1,000	2.4	0.707	0.01	15.00	14.22		0.110	0.130		0.120
2,000	18.8	5.652	80.0	14.90	14.08		0.210	0.270		0.240
0.080	37.7	11,304	0.16	14.75	13.90		0.360	0.450		0.405
4,000	58.9	17,663	0.25	14.60	13.70		0.510	0.650		0.580
5,000	77.7	23.315	0.33	14.48	13.58		0.630	0.770		0.700
6,000	98.9	29.673	0.42	14.35	13.45		0.760	0.900		0.830
7,000	117.8	35,325	0.50	14.25	13.33		0.860	1.020		0.940
8.000	58.9	17.663	0.25	14.30	13.40		0.810	0.950	TO	0,880
9,000	29.4	8.831	0.12	14,38	13.53		0.730	0.820		0.775
9,000	2.4	8,707	0.01	14.68	13.88		0.430	0.470		0.450
10,000	2.4	0.707	0.01	14.68	13.88		0.430	0.479		0.450
11,000	18.8	5.652	0.05	14.55	13.75		0.560	0.600		0.580
-	-	11.304	0.16	14.45	13.60		0.660	0.750	-	0,705
12.000	37.7		0.16	14.35	13.50		0.760	0.850		0.805
13.000	58.9	17.663		-	13.40		0.910	0.950		0.930
14.000	77.7	23,315	0.33	14.20	-		1.010	1.030		1.020
15.000	98.9	29.673	0.42	14.10	13.32				_	

			A5	Art .	
0.7 e ₁	0.35	0.73375		0.1	
83 e,	8.15	0.38437	*3****	77	
0.74	0.35	0.95		.,	
830,	0.15	0.71001	423555	-	
D (mm)	300	-			
Ev.	128.80				
Evg	187.51				
Arts (Sq.m)	8,87945	-			

		_	
Eraffet.	1.44		

E. - 675 . D . da / 41


F. = deformation modulus

44 - load increment

As - settlement increment

- diameter of the plate, generally 0.30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}

Lab. Specialist

Name:

Sign :

Consultant Engineer

Name: molamed elsa

Sign :

m.etsare

Company Name

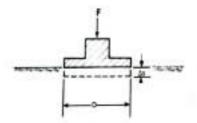
A.G.R.

Location

526+840 To 527+000

Station 526+988

Taste Date


8-3-2023

Layer level

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

/ - bed .u = setSement

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excevator or a roller usually serve as counterweight for the hydraulic jack

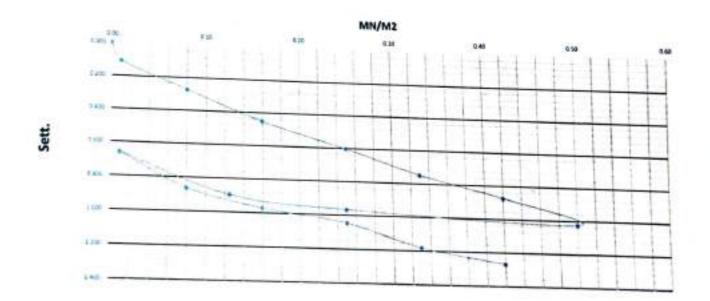
Diameter = 300mm

Leading	Land	Lood	Street	Diel I	Diali	Diel 3	Sett. 1	Sett, 1	Sett . 3	Avg.
Stage No.	Bur	KN	MNAMI	-	-	-	-		-	-
0.000	0.0	0.000	0.00	15.00	15.35		0.000	0.000		0.000
1.000	2.4	0.707	0.01	14.93	15.20	§	0.070	0.150		0.110
2.000	18.8	5.652	0.08	14.80	15.00		0.200	0.350		0.275
0.080	37.7	11.304	0.16	14.70	14.74		0.300	0.610		0.455
4.000	58.9	17.663	0.25	14.64	14.50		0.360	0.850		0.605
5.000	77.7	23,315	0.33	14.55	14.30		0.450	1.050		0.750
6.000	98.9	29.673	0.42	14.50	14.10		0.500	1.250		0.875
7.000	117.8	35,325	0.50	14.40	13.90		0.600	1.450		1.025
8.000	58.9	17.663	0.25	14.43	13.98	THE CO	0.570	1.370		0.970
9,000	29.4	8.831	0.12	14.45	14.10		0.550	1.250		0.900
	2.4	0.707	0.01	14.65	14.38		0.350	0.970		0.660
9.000	-	0.707	0.01	14.65	14.38		0.350	0.970	8	0.660
10.000	2.4	_	0.08	14.52	14.10	1200	0.480	1.250		0.865
11.000	18.8	5.652			14.00		0.600	1.350		0.975
12.000	37.7	11.304	0.16	14.40	_		0.700	1.400		1.050
13.000	58.9	17.663	0.25	14.30	13.95					
14.000	77.7	23.315	0.33	14.18	13.80		0.820	1.550		1.185
15.000	98.9	29.673	0.42	14.11	13.70		0.890	1.650		1.270

			45	Ser.
0.7 e ₁	0.35	0.74375	0.31125	0.2
0.3 01	0.15	0.4325	451125	- 4.4
0.703	0.35	1,20389	0.13387	.,
0.3e ₁	0.15	1.07002	0.13381	
D (mm)	300			
Evi	144.58			
Evy	336.15			
Arre (Sq.m)	8.07065			

E+2/E+1 2.55	
--------------	--

E, - 6.75 . D . AT / As


E. - deformation modulus

Δσ ■ load Increment

4. = settlement increment

p = diameter of the plate, generally 0.30 m

the calculation Air and As are usually taken from the load span between 0.3 c. and 0.7 -

Lab. Specialist

Name:

Sign :

Name:
Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sign:

Sig

Consultant Englager

Name: MONTHE

monamed essai

Sign :

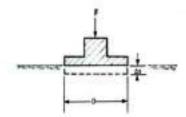
m. etail

Company Name

A.G.R

Location

526+840 To 527+000


Station 536+920

Taste Date Layer level 8-3-2023

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F- 1445

Ar is publishment

o e diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excevator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

meter =	300m	m			-	-				ATL
Leading	Land	Lord	Street	Deat	Dial 2	Did3	Sett. 1	Sett. 2	Sex.3	Sett.
Stage No.	Bar	KN	MNMI	===	-	-	-	-	-	-
0.000	0.0	0.000	0.00	12.42	15.49		0.000	0.000		0.000
1.000	2.4	0.707	0.01	12.39	15.45		0.030	0.040		0.035
2.000	18.8	5.652	0.08	12.20	15.25	2	0.220	0.240		0.230
0.080	37.7	11.304	0.16	12.08	15.08		0.340	0.410		0.375
4,000	58.9	17,663	0.25	11.98	14.95		0.440	0.540		0.490
5.000	77.7	23,315	0.33	11.85	14.78	1	0.570	0.710		0.640
6,000	98.9	29.673	0.42	11.72	14.62		0.700	0.870		0.785
7,000	117.8	35.325	0.50	11.61	14.50	THE S	0.810	0.990		0.900
	58.9	17.663	0.25	11.65	14.60	TG.	0.770	0.890		0.830
8.000		8.831	0.12	11.70	14.72		0.720	0.770		0.745
9.000	29.4	-	-	11.90	15.02		0.520	0.470		0.495
9.000	2.4	0.707	0.01	-	-		0.520	0.470	-	0.495
10.000	2.4	0.707	0.01	11.90	15.02			0.570	_	0.595
11.000	18.8	5.652	80.0	11.80	14.92		0.620	-	-	-
12.000	37.7	11.304	0.16	11.75	14.82		0.670	0.670		0.670
13.000	58.9	17.663	0.25	11.70	14.70		0.720	0.790		0.755
14.000	77.7	23.315	0.33	11.60	14.62		0.820	0.870		0.845
15.000	98.9	29.673	0.42	11.52	14.55		0.900	0.940		0.920

		. 1	48	he .
0.7 e ₁	0.35	0.68438		
0.3 e,	0.15	0.35688	6.3213	***
0.703	0.35	0.86167	0.16666	
0.50;	0.15	0.69501	6.1	
D (mm)	300			
Ev _i	137.48	9		
Ev ₂	270.02	U		
Area (Sq.m)	8,87045			

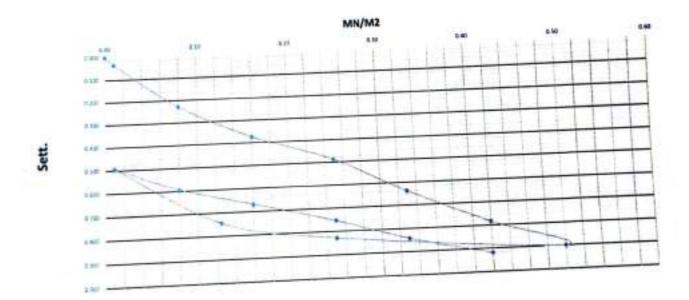
		_	_
Ev2@vl	1.97	3	- 7

E. - 4.75 - D - 40 / 41

deformation modulus

Ar = load increment

4. * settlement increment


p - diameter of the plate, generally 0.30 m

The this calculation do and do are usually taken from the load span between 0.3 or and 0.7 or new

Lab. Specialist

Name :

Sign:

Name:

المعطار السرية

Consultant Engineer

Name: mohamed

Sign 1

m. etsaile

Company Name

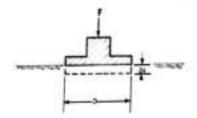
Location Taste Date

Layer level

A.G.R 526+840

8-3-2023

0


527+000 To

526+870

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

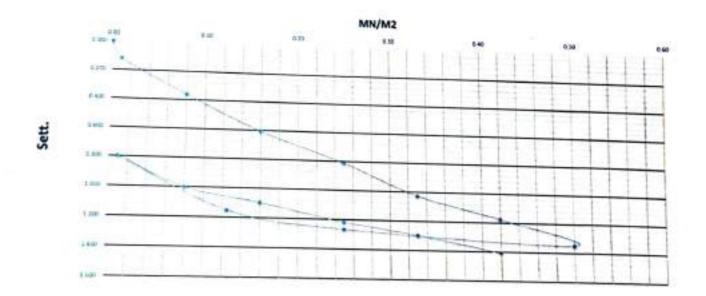
300mm Diameter =

Leeds		nd Las	d Street	Dist	Dell	DMID	Sen. 1	Sett. 2	Sett.3	Avg. Sett.
Stage N		ar KN	MNM		-	-	-	-		**
0.000	0	0.00	0.00	15.64	15.00		0.000	0.000		0.000
1.000	1 2	4 0.70	7 0.01	15.55	14.85		0.090	0.150		0.120
2.000	18	8 5.65	2 0.08	15.41	14.50	J	0.230	0.500		0.365
0.080	37.	7 1130	4 0.16	15.31	14.11		0.330	0.890		0.610
4.000	58.	9 17.66	3 0.25	15.18	13.83		0.460	1.170		0.815
5.000	77.	23.31	0.33	15.08	13.50		0.560	1.500		1.030
6,000	98.5	29.672	0.42	15.00	13.28		0.640	1.720		1.180
7.000	117.	8 35,325	0.50	14.92	13.02	- 1	0.720	1.980		1,350
8.000	58.5	17.663	0.25	14.95	13.15		0.690	1.850		1.270
9.000	29.4	8.831	0.12	15.04	13.29		0.600	1.710		1.155
9.000	2.4	0.707	0.01	15.36	13.68		0.280	1.320		0.800
10.000	2.4	0.707	0.01	15.36	13.68		0.280	1.320		0.800
11.000	18.8	5.652	0.08	15.18	13.45		0.460	1.550		1.005
12.000	37.7	11.304	0.16	15.10	13.34		0.540	1.660		1.100
13.000	58.9	17.663	0.25	15.00	13.20		0.640	1.800		1.220
14.000	77.7	23.315	0.33	14.90	13.14		0.740	1.860		1.300
15.000	98.9	29.673	0.42	14.82	13.00		0.820	2.000		1.410

		-	A5	he	
0.7 e ₁	0.35	1.03125		0.2	
6.3 e ₁	0.15	0.57938	9,45188	-	
0.7e ₂	0.35	1.32444		9.2	
0.301	0.15	1.21002	0.11442	***	
D (mm)	300				
Ev ₁	99,59				
Ev,	393.28				
Arra (Sq.m)	8.07065				

		_	_
Evil/Evil	3.95		

E. - 6.75 . D . Aa / As


deformation modulus

- load increment

= settlement increment

- diameter of the plate, generally 0.30 m.

For this calculation Air and As are usually taken from the load span between 0.3 a good 0.3

Lab. Specialist

Name:

Sign:

Name :

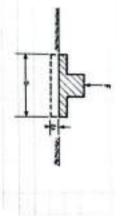
Sign :

Consultant Engineer

Name: WONDMG

Sign t

m-elsaired

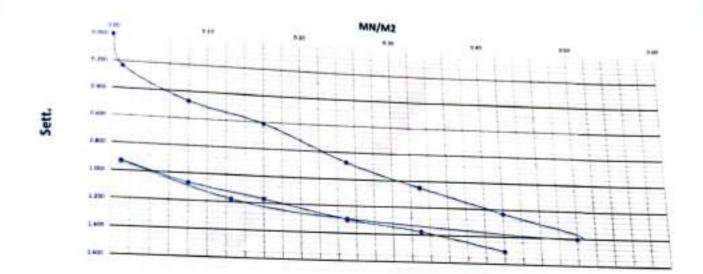

Company Name Taste Date Layer level Location

> 525+920 25/1/2023 To 526+040

EQUIPMENT AND TEST PROCEDURE:

The basis of the given equation is Boussinessy's theory of the relationship between the mi circular rigid plate with the diameter D.

The foad is applied to a circular rigid steet bearing plate by a hydraulic jack in several ste recorded. The following sketch shows the principle of the test. ettlement under each load step is


is generally 0.30 m. For very coarse grained material also ter D = 0.60 m and D = 0.762 m are

Tourist T	1	E	in the	Ē	Dialo	Dail	100	Ē
Stage St.		5	INNE	:	:	1	:	2
0.000	0.0	0.000	0.00	14.91	16.11		0.000	0.000
1,000	r	0.707	0.01	14.71	15.85		0.200	0.260
1,000	18.8	5.652	0.08	14.53	15.55		0.380	0.560
0.080	37.7	11,304	0.16	14.48	15.32		0.430	0,790
4.000	58.9	17,663	0.25	14.23	15.04		0.680	1.070
5.000	77.7	23.315	£	Ä	14.81		0.800	1,300
6.000	98.9	29,673	0.42	14.01	14.55		0.900	1.560
7,000	117.8	35.325	0.50	13.92	14.29		0.990	1.820
8.000	58.9	17.663	0.25	14.00	14.43	THE REAL PROPERTY.	0.910	1,680
9,000	29.4	8.831	0.12	14.15	14.51	150	0.760	1,600
9,000	2	0.707	10.0	1431	14.85		0.600	1.260
10,000	Ľ	0.707	10.0	Ē	14.85		0.600	1.260
11,000	8.8	5.652	80.0	14.15	14.73		0.760	1.380
12.000	37.7	11.304	0.16	14,03	14.65		0.880	1,460
13.000	58.9	17.663	0.25	13.90	14.52		1,010	1.590
14,000	77.7	23.315	CJ.	13.81	14.45		1,100	1.660
16 000	98.9	29.673	0.42	13.69	1431		1.220	1.800

	r	T			2	-		
	Г			-	0.19887	1	THE STREET	15
				1.21/001	1,40839	ST66*0	1.07688	-
0.07045	326.27	92,90	300	0.15	835	0.15	81.0	
(Sq.m)	Re ₂	BN	D (mm)	0.34,	8.701	0.3 0,	0.7 e,	

43,043	
144	

- ment locrement
- diameter of the plate, generally 0.30 m

Lab. Specialist

Sign :

معمل النواير، المركزي فطاع موكا - مطروع

Name 1

1-1055a

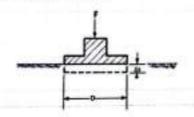
Sign:

0

Plate Load Test Results

Company Name Location Taste Date

A.G.R 525+920 To 526+040 25/1/2023


Sub-160

Layer level

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = lead to = suctionwell F = diameter of the glad

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

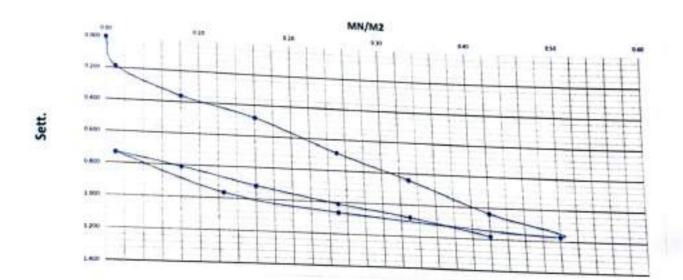
Diameter = 300mm

Lording	Land	Land	Street	Dial	Diet	Dial 3	Sett. 1	Sett. 2	Sett , 3	Sett.
Stage No.	Au	KN	MNMI			***	200		***	2012
0.000	0.0	0.000	0.00	15.01	18.35		0.000	0.000		0.000
1.000	2.4	0.707	0.01	14.83	18.16		0.180	0.190		0.185
2.000	18.8	5.652	0.08	14.68	17.96		0.330	0,390		0.360
0.080	37.7	11.304	0.16	14.59	17.81		8.420	0.540		0.480
4.000	58.9	17.663	0.25	14.41	17.58		0.600	0.770		0.685
5,000	77.7	23,315	0.33	14.30	17.38		0.710	0.970		0.840
6,000	98.9	29,673	0.42	14.18	17.11		0.830	1.240		1.035
7,000	117.8	35,325	0.50	14.11	16.91		0.900	1,440		1.170
8.000	58.9	17.663	0.25	14.18	17.05	000	0.830	1,300		1.065
9.000	29,4	8.831	0.12	14.25	17.18	STATE OF THE PARTY	0.760	1.170	30	0.965
9,000	2.4	0.707	0.01	14.45	17.45		0.560	0.900		0.730
10,000	2.4	0.707	0.01	14.45	17.45		0.560	0.900		0,730
11,000	18.8	5.652	0.08	14.39	17.35	-	0.620	1.000		0.810
12.000	37.7	11.304	0.16	14.28	17,25	770	0.730	1.100		0.915
13.000	58.9	17,663	0.25	14.19	17,15		0.820	1,200		1.010
14,000	77.7	23,315	0.33	14.14	17.06		0.870	1.290		1.080
15.000	98.9	29,673	0.42	14.08	16.92		0.930	1,430		1.180

			48	3.0	
0.7 d ₁	0.35	0.91688			
0.3 0,	0.15	0.465	0.43100	**	
0.742	0.35	1.10222		0.2	
0.3e ₁	0.15	0.89001	0.21.221		
D (mm)	300				
Ev	99.59				
Ev.	212.05				
Arte (Sq.m)	0.07045		-	7.7	

Erb/Ert	1.13	

E = 0.75 - 10 - A0/ Ai


E, e deformation modulus

Ag . load increment

4s - settlement increment

p - diameter of the plate, generally 0.30 m

de and de are usually taken from the load span between 8.5 and 4.5

Lab. Specialist

Name:

Sign:

الشجهار السرب المراب ا

Consultant Engineer

Name 1

Massa

Sign:

الممسوحة ضوئيا بـ CamScanner