

قائمة كميات بالمستخلص جارى (٢)

مشروع : القطار الكهربائي السريع (العين السخنة -العاصمة الادارية -العلمين -مطروح) قطاع فوكة - مطروح في المسافة من الكم ٥٢٢+٠٠٠ الى الكم ٥٣٠+٠٠٠ بطول ٨,٠ كيلو متر اتجاه العالمين

رقم البند و بيانه : (٣-١) علاوة مسافة النقل ٣٠٨ كم

علاوة مسافة الثقل

تستفيلاً : شركة ايه جي از انترتاشيونال

Te

مقدار العمل السابق :

الكمية		يبان بالكميات
	7844.00	لكنية طبقا لقوائم الكبيات
7844.00	اجمائي الكميات خلال فترة المستختص الحائية. (م٢)	
61254.97	الإجمالسي الكلي (م)	

مهندس الهينة العامة للطرق والهيري م / بر اهني الختاوي. مهتدس الإستشاري مكتب د/خالد النديل C.SIVA

م / خلك فوزي

مهندس الإستشاري (xyz) م / مصد خليل Wart

53410.97

مهندس الشركة م/ سمين عبد العزيز

قائمة كميات بالمستخلص جارى (٢)

مشروع : القطار الكهريائي السريع (العين السخنة -العاصمة الادارية -العلمين -مطروح) قطاع فوكة - مطروح في المسافة من الكم ٢٠٠٠ ٥٢٢ الى الكم ٥٣٠٠ ٩٠٠٠ بطول ٨,٠ كيلو متر اتجاه العالمين

رقم البند و بيانه : (٢-١) رسوم الكارنة والموازين طبقاً للمادة (٣٦) من الشروط العامة والمواصفات طبقاً لما جاء بالقائمة الموحدة لاسعار الطرق لاعمال طبقة الأترية

الكارتات والموازين

تستفيد : شركة ايه جي ار انترتاشيونال

Tp

53410.97

مقدار العمل السابق:

قينطيا		بيان بالكميات
	7844.00	لكمية طبقا لقوائم الكميات
7844.00	اجمالي الكميات خلال فترة المستخلص الحالية. (م٢)	
61254.97	الإجمالسي الكلي [م]]	

مهندس الهينة العامة مهتدس الإستشاري للطرق والججاي at In the flates

مكتب د/خالد قديل م / خالد فرزي 132.5

مهندس الأستشاري (xyz) م / محمد خليل lint

قَائمة الكميات الواردة بالمستخلص جاري (٣)

مشروع : القطار الكهربائي السريع (العين السخنة -العاصمة الادارية -العلمين -مطروح) قطاع فوكة - مطروح في المسافة من الكم ٥٢٠٠+٥٢٥ الى الكم ٥٣٠+٥٣٠ بطول ٥,٠ كيلو متر أتجاه العالمين

رقم البند و بيانه : (١٠٣) أعمال توريد و تشغيل اتربة صالحة للردم مطايقة للمواصفات

تستفيد : شركة ايه جي ار انترناشيونال

Te. 53410.97 مقدار العمل السابق :

11

102	(Links (nit.)	Illyaic (air.)		الموقع ال	3
الكنية	مساحة المقطع	طول	J	Ŭ*	ييان الاعمال بالمقايسة
3028.00	50.467	60	525+280	525+220	القطاع الأول
1390.00	17.375	80	525+360	525+280	القطاع الثاني
1470.00	18.375	80	527+920	527+840	القطاع الثالث
1956.08	19.561	100	528+020	527+920	القطاع الرابع
7844.0	8	اجمالي الكميات عللان فترة المستخلص الحالية. (م")		uși	
61255.05		لکلی (م")	الاجماليي ا		

مهندس الإستشاري مهتدس الشركة مهندس الإستشاري (xyz) مكتب د/خالد قتديل م / محمد خليل م / خالد فوزى Wi.F . The

مهندس الهينة العامة للطرق والهجاري

قَائمة الكميات الواردة بالمستخلص جاري (٣)

مشروع : القطار الكهربائي السريع (العين السخنة -العاصمة الإدارية -العلمين -مطروح) قطاع فوكة - مطروح في المسافة من الكم ٥٢٢+٥٢٠ الى الكم ٥٢٠+٥٣٠ بطول ٨,٠ كيلو متر اتجاه العلمين

رقم البند و بيانه : (١-٤) أعمال توريد وتشغيل طبقة تأسيس (prepared subgrade) مطابقة للمواصفات

تستفيل : شركة ايه جي از الترناشيونال

Te 25012.00

مقتار العمل السابق :

	الابماد (مثر)		فيلومتري	الموقع ال	
الكمية	مساحة المقطح	طول	J	ەن	بيان الاعمال بالمقايسة
2310.40	9.62667	240	528+060	527+820	القطاع الأول
1425.80	2.97042	480	528+800	528+320	القطاع الثاني
1096.60	1.95821	560	529+960	529+400	اللطاع الثالث
4832.8	0	جمالي الكديات خلال فترة المستخلص الحالية. (م])		ب م	
29844.8	4.80		لکلی (م)	الاجماليي ا	

مهندس الإستشاري

مكتب د/خالد قنديل

م [خاك قوزي

CRIVA

مهندس الهينة العامة للطرق والمحدوي م / الد العم الحداوي

مهندس الإستشاري (xyz) م/محد خليل Judy

مهتدس الشركة م / سمير عبد العزيز inter-

قائمة كميات بالمستخلص جارى (٣)

مشروع : القطار الكهربائي السريع (العين السخنة العاصمة الادارية العلمين امطروح) قطاع قوكة - مطروح في المسافة من الكم ٥٢٢+٠٠٠ الى الكم ٥٣٠+٠٠٠ بطول ٨,٠ كيلو متر اتجاه العلمين

رقم البند و بيانه : (١-٤) علاوة مسافة النقل ١١٠ كم

علاوة مسافة النقل

تسنفيلاً : شركة ايه جي از انترتاشيوتال

Te

ž.o

25012.40

1.5	السابق	العمل	قدار
-----	--------	-------	------

T

3. فلم

الكمية		ييان بالكميات
25012.40		الكمية طبقا لقوائم الكميات
4832.80	اجمالي الكُميات خلال فترة المستخلص الحالية. (م٢)	
29845.20	الاجمالسي الكلي (م ⁷)	

مهلدس الإستثماري (xyz) م / محمد خليل

مهندس الإستشاري مكتب دابشاند قنديل ع / خالد فوزي C.SELVA

مهندس الهيئة العامة للطرق والتياري مراجع العناري

مهندس الشركة </ سير عبد العزيز 400 AL in

قائمة كميات بالمستخلص جارى (٣)

مشروع : القطار الكهربائي السريع (العين السخنة -العاصمة الادارية -العلمين -مطروح) قطاع فوكة - مطروح في المسافة من الكم ٥٠٠٠+٥٢٢ الى الكم ٥٠٠٠+٥٣٠ بطول ٨,٠ كيلو متر اتجاه العلمين

رقم البند و بيانه : (٤-١) رسوم الكارنة والموازين طبقاً للمادة(٣٦) من الشروط العامة والمواصفات طبقاً لما جاء بالقائمة الموحدة لاسعار الطرق لاعمال طبقة تأسيس

الكارتات والموازين

ئستفيلاً ؛ شركة ايه جي از الترثاشيوتال

Tp

25012.40

مقدار العمل السابق :

الكمية		بيان بالكسيات
	25012.40	لكمية طيفآ لفوائم الكميات
4832.80	اجمالي الكميات غلال قارة المستخلص الحالية. (م٢)	
29845.20	الإجمالسي الكلي (م")	

مهندس الهينة العامة للطرق واالكباري

مهتدس الإستثناري مكتب د/خالد فتديل م ا خالد اوزي Shart

CRUVA

مهلدس الإستشاري (xyz) م / محمد خليل 3,6

مهتدس الشركة م/ معير مد العزيز 2/1

قائمة الكميات الواردة بالمستخلص جاري (٢)

مشروع : القطار الكهربائي السريع (العين السخنة -العاصمة الادارية -العلمين -مطروح) قطاع فوكة - مطروح في المسافة من الكم ٨٠٠ ٢٢٢ الى الكم ٥٣٠ ٢٠٠ بطول ٨,٠ كيلو متر اتجاه العلمين

رقم البند و بيانه : (٢-٤) أعمال توريد وتشغيل طبقة الأساس المتدرجة (SUBBALLAST) ومطابقة للمواصفات

تستفيسد : شركة ايه جي ار انترناشيونال

مقدار العمل السابز

Te	4135.28	:

	فيلومتري	الموقع الأ	
طول	J	40	إعمال بالمقايسة
1330	626,200	696,380	1.53 ellas

مهتدس الإستشاري (xyz)

م/محمد خليل

Wis ?

الابعاد (متر)		فيلومتري	الموقع ال	THE OWNER AND AN ADDRESS OF
مساحة المقطع	طول	J	-0	بيان الاعمال بالمقايسة
2.0439	1320	526+700	525+380	القطاع الأول
2.2907	1440	528+240	526+800	القطاع الثاني
4.6576	900	529+160	528+260	القطاع الثالث
6.1423	260	529+500	529+240	القطاع الرابع
7.1011	380	529+900	529+520	القطاع الخامس
3	("e	المستخلص الحالية (مالي الكميات خلال فترة	اچ
		لكلي (م])	الاجمالــي ا	
	مساحة المقطع 2.0439 2.2907 4.6576 6.1423	طول مساحة المقطع 2.0439 1320 2.2907 1440 4.6576 900 6.1423 260 7.1011 380 3 (7)	ال طول مساحة المقطع 2,0439 1320 526+700 2,2907 1440 528+240 4,6576 900 529+160 6,1423 260 529+500 7,1011 380 529+900 8 المستخلص الحالية (م)	من الى طول مساحة المقطع 2.0439 1320 526+700 525+380 2.2907 1440 528+240 526+800 4.6576 900 529+160 528+260 6.1423 260 529+500 529+240 7.1011 380 529+900 529+520 3 لكيات خلال فترة المستخلص الحالية (م ⁷)

مهتدس الإستشاري مكتب د/خالد أتديل م اخلافوزي كريسيا

110

EUV

مهندس الهيلة العامة للطرق والحديري مراجع العراب الحدوي

مهندس الشركة م / سمير عبد العزيز 1

قائمة كميات بالمستخلص جارى (٣)

مشروع : القطار الكهربائي السريع (العين السخنة العاصمة الادارية العلمين امطروح) قطاع فوكة - مطروح في المسافة من الكم ٥٢٢+٠٠٠ الى الكم ٥٣٠+٠٠٠ بطول ٨,٠ كيلو متر اتجاه العلمين

رقم البند و بيانه : (٢-٤) علاوة مسافة النقل ٢٣٤ كم

علاوة مسافة النقل

تستفيد : شركة ايه جي ار الترتاشيوتال

Te

4135.28

مقدار العمل السابق :

2	الكميلا	ييان بالكسيات
	14483.00	تكمية طبقا لقوائم الكميات
14483.00	اجمائي الكميات خاذل فترة المستخلص الحالية. (م٢)	
18618.28	الاجمالــي الكلي (م ⁷)	

مهتدس الهينة العامة للطرق والكياري م / اير اهيم المحاوي

مهندس الإستشاري مكتب دابغاند قنديل م / خلا فوزي Well's VIIIS

مهندس الإستشاري (xyz) م / محمد خليل

thing.

مهندس الشرکة م / سمير عبد العزيز

Sint.

قائمة كميات بالمستخلص جارى (٣)

مشروع : القطار الكهربائي السريع (العين السخنة -العاصمة الادارية -العلمين -مطروح) قطاع فوكة - مطروح في المسافة من الكم ٥٢٢+٠٠٠ الى الكم ٥٣٠+٠٠٠ بطول ٨,٠ كيلو متر اتجاه العلمين

رقم البند و بيانه : (٢-٤)رسوم الكارنة والموازين طيقاً للمادة (٣٦) من الشروط العامة والمواصفات طبقاً لما جاء بالقائمة الموحدة لأسعار الطرق لاعمال طبقة الاساس

الكارتات والموازين

٣٩

مقدار العمل السابق :

4135.28

	الكمية	بيان بالكميات
	14483.00	لكمية طبقا لقوائم الكميات
14483.00	ستخلص الحالية (م٢)	اجمالي الكميات خلال فترة الم
18618.28	لى (م) ا	الإجمالــي الك

مهتدس الإستشاري

مكتب د/خالد أتديل

م إ خالد قرزي

jel 3

CRAV

مهتدس الهيلة العامة للطرق والعباري م/ اير المد التناوي

مهندس الإستشاري (xyz) م / محمد خليل High

مهتدس الشركة م/سبير عبد العزيز تعشيرهني

للطـرق والخبـاري

قائمة الكميات الواردة بالمستخلص جاري (٣)

مشروع : القطار الكهربائي السريع (العين السخنة -العاصمة الإدارية -العلمين -مطروح) قطاع فوكة - مطروح في المسافة من الكم ٠٠٠+٥٢٢ الى الكم ٥٣٠+٥٣٠ بطول ٨,٠ كيلو متر باتجاه العلمين

رقم البند و بيانه : (٥-١) أعمال توريد وصب خرسانة عادية سمك ١٥ سم لحماية الأكتاف والميول الجانبية

تــنفيــدْ : شركة ايه جي ار انترناشيونال

مقدار العمل السابق :

-	اد (متر)	الابع	كيلومتري	الموقع ال				
الكمية	الارتفاع	طول	الى	من	بيان الاعمال بالمقايسة القطاع الأول القطاع الثالث القطاع الثالث			
805.96	7.9016	102	526+122	526+020	القطاع الأول			
364.17	3.6785	99	527+598	527+499	القطاع الثائى			
1829.60	9.60 8.4704		527+835	527+619	القطاع الثالث			
2999.73		اجمالي الكميات خلال فترة المستخلص الحالية. (م])						
2999.73			الأجمالي الكلي (م [×])					

مهتدس الشركة م / سمير عبدالعزيز

مهندس الإستشاري (xyz) م / محمد خليل With

٢٩

مهندس الإستشارى مكتب د/خالد قنديل م / خالد فوزي alles C.5811/1

مهندس الهيئة العامة للطرق والكباري a Hidra lleiles

قائمة الكميات الواردة بالمستخلص جاري (٣)

مشروع : القطار الكهربائي السريع (العين السخنة -العاصمة الادارية -العلمين -مطروح) قطاع فوكة - مطروح في المسافة من الكم ٥٢٢+٥٢٠ الى الكم ٥٣٠+٥٣٠ بطول ٨,٠ كيلو متر باتجاه العلمين

رقم البند و بيانه : (٢-٥) أعمال توريد وصب خرسانة عادية لقدمات الحمايات والميول الجانبية

تـــنفيــذ : شركة ايه جي ار انترناشيونال

٣٩

مقدار العمل السابق :

	هاد (متر)	الاز	كيلومتري	الموقع الأ	بيان الاعمال بالمقايسة		
الكمية	مساحة القطاع	طول	الى	من			
15.30	0.15	102	526+122	526+020	القطاع الأول		
14.85	0.15 99 527+59	527+598	527+499	القطاع الثاني			
32.00	0.15	216	527+835	527+619	القطاع الثالث		
62.15	اجمالي الكميات خلال فترة المستخلص الحالية (م)				اجم		
62.15	0		الاجمالي الكلي (م)				

مهندس الإستشاري (xyz) م / محمد خلال High

مهندس الشركة م / سمير عبدالعزيز

in the

مكتب د/خالد أتديل م / خالد فوزي 1016 5511

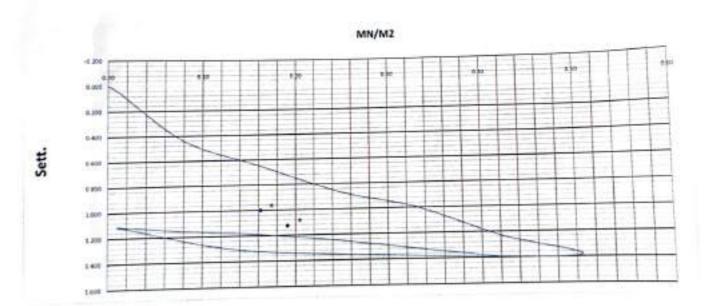
مهندس الإستشارى

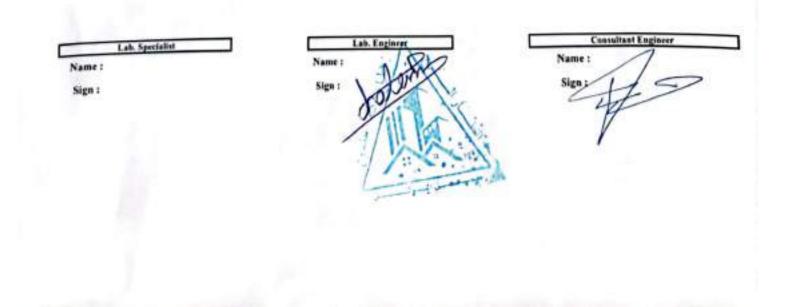
مهندس الهينة العامة للطرق إوالكباري م/ إبر المن الحذاوي

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

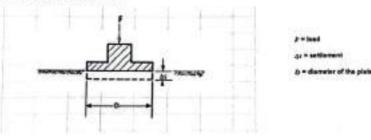
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack


Leading	Lost	Last	Seron	Dial1	Dial 2	Dial 3	Set. 1	Sen. 2	Sett , J	Avg. Sett.
Stage No.	Ber	R.N	MNM2	-		-	-	-	-	-
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.96	19.96		0.040	0.040		0.040
2.000	17.1	5.652	0.08	19.44	19.68		0.560	0.320		0.440
0.080	34.2	11.304	0.16	19.20	19.51		0.860	0.490		0.645
4.000	53.3	17.663	0.25	18.96	19.30		1.040	0.700		0.870
5.000	70.5	23.315	0.33	18.77	19.24		1.230	0.760		0.995
6.000	89.8	29.673	0.42	18.50	19.04		1.500	0.960		1.230
7.000	106.8	35.325	0.50	18.28	18.93		1.720	1.070		1.395
8.000	53.4	17.663	0.25	18.33	18.96	_	1.670	1.040		1.355
9.009	26.7	8.831	0.12	18.41	19.00	-	1.590	1.000	-	1.295
9.000	2.1	0.707	0.01	18.63	19.15		1.370	0.850	-	1.110
10.000	2.1	0.707	0.01	18.63	19.15		1.370	0.850		1.110
11.000	17.1	5.652	0.08	18.58	19.11	-	1.420	0.890	-	1.155
12.009	34.2	11.304	0.16	18.54	19.08	-	1.460	0.920	-	1.190
13.000	53.3	17.663	0.25	18.47	19.03	-	1.530	0.970	-	1.250
14.000	70.5	23.315	0.33	18.38	18.98		1.620	1.020	-	-
15.000	89.8	29.673	0.42	18.29	18.92		1.710	1.020	-	1.320

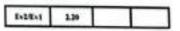

			45	3.0	
0.7 e	0.35	1.08563	0.46625		
8.3 01	0.15	0.61938	9.400.55	0.1	
0.7e;	0.35	1.33667			
0.3+	0.15	1.2	0.13666	0.2	
D (mm)	300				
Ex	96.51			1	
Eve	329.24	-			
Area (Sq.mit	8.07065				

Evaluation	3.41		
	20123	_	

	E. = 175 - D - do / ds
E,	= deformation modulus
0.	- load increment
Ds	· settlement increment
D	- diameter of the plate, generally 0.30 m

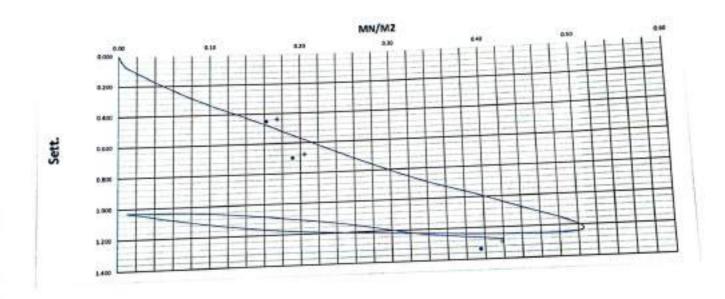

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

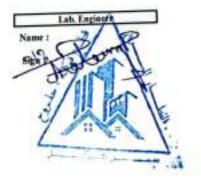


The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

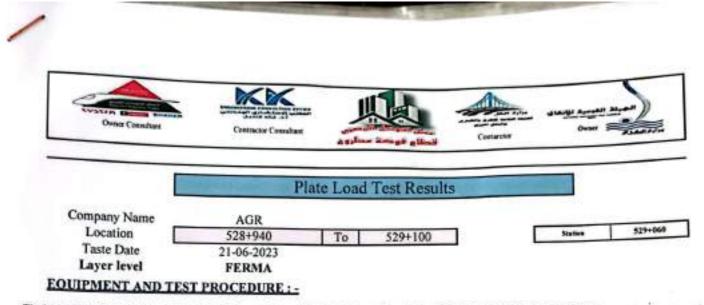
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excevator or a roller usually serve as counterweight for the hydraulic jack

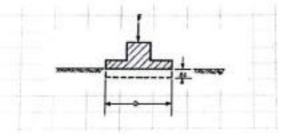

Loading	Last	Load	Stem	Diali	Dial 2	Dial 3	Set. 1	Sett. 2	Set . 3	Asg. Sett.
Stage No.	Bar	KN	MNM2	-	-	101				-
0.000	0,0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.91	19,93		0,090	0.070		0.080
2,660	17.1	5.652	0.08	19.65	19.78		0.350	0.220		0.285
0.080	34.2	11.304	0.16	19.38	19.68		0.620	0.320		0.470
4.000	53.3	17.663	0.25	19.07	19.55		0.930	0.450		0.690
5.000	70.5	23.315	0.33	18.80	19.46		1.200	0.540		0.870
6.000	89.8	29.673	0.42	18.55	19.38		1.450	0.620		1.035
7.009	106.8	35.325	0.50	18.27	19.25		1.730	0,750		1.240
8.000	53.4	17.663	0.25	18.31	19.29		1.690	0.710		1.200
9.000	26.7	8.831	0.12	18.39	19.33		1.610	0.670	-	1.140
9.000	2.1	0.707	0.01	18.55	19.39		1.450	0.610		1.030
10.000	2.1	0.707	0.01	18.55	19.39	-	1.450	0.610	-	1.030
11.000	17.1	5.652	0.08	18.54	19.38		1.460	0.620		1.040
12.000	34.2	11.304	0.16	18.48	19.36		1.520	0.640	-	1.080
13.000	53.3	17.663	0.25	18.41	19.30		1.590	0,700	-	1.14
14.000	70.5	23.315	0.33	18.30	19.25		1.700	0.750		
15.000	89.8	29.673	0.42	18.25	19.20		1.750	0.500	-	1.22

	_		45	44	
0.7 01	0.35	0.85563			
0.3 0,	9.15	0.44688	0.40875	0.2	
0.701	0.35	1.23611		0.2	
0.302	0.15	1.05	0.13611		
D(mm)	300				
Ev ₁	110.09				
Ex,	241.79				
Ares (Sq.m)	0.01065			12	



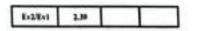
	E. = 0.75 + D + Ao / As
E.	= deformation modulus
da.	= load increment
4.	= settlement increment
D	= diameter of the plate, generally 0.30 m


For this calculation dor and ds are usually taken from the load span between 0.3 orms and 0.7 orms


	ab. Specialist	_
Name :		
Sign:		

Consultant Engineer = HOSSO-= 23-16/2023 Name 1 Sign :

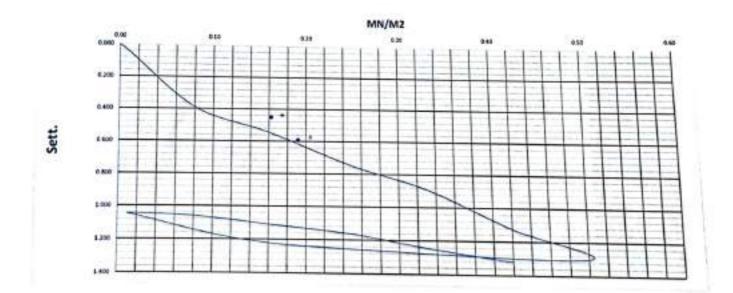
The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

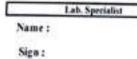

F = ized 4: = settlement 0 = diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

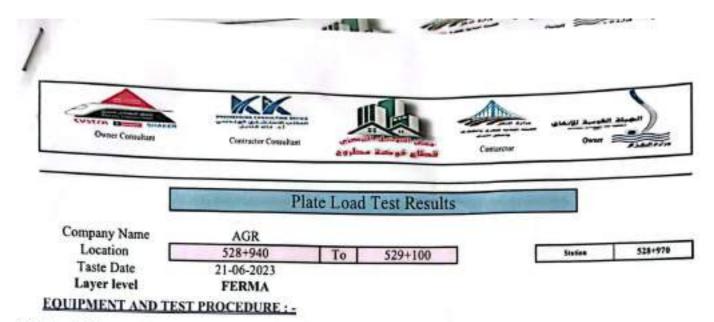
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

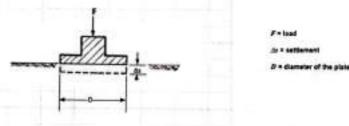
Lording	e Load	Load	Stress	Datt	Dial 1	Dul 3	Sect. 1	Sett. 1	Ser.3	Arg. Sett.
Stage No	n Bar	KN	MN.912	-	-	-			-	-
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.96	19.95		0.040	0.050		0.045
2.000	17.1	5.652	0.08	19.54	19.68		0.460	0.320		0.390
0.080	34.2	11.304	0.16	19.37	19.54		0.630	0.460		0.545
4.000	53.3	17.663	0.25	19.12	19.38		0.880	0.620		0.750
5.000	70.5	23.315	0.33	18.95	19.27		1.050	0.730		0.890
6.000	89.8	29.673	0.42	18.65	19.10	-	1.350	0.900		1.125
7.000	106.8	35.325	0.50	18.45	18.95		1.550	1.050		1.300
8.000	53.4	17.663	0.25	18.50	18.99	1	1.500	1.010	1	1.255
9.000	26.7	8.831	0.12	18.57	19.04		1.430	0.960		1.195
9.000	2.1	0.707	0.01	18.75	19.16		1.250	0.840	-	1.045
10.000	2.1	0.707	0.01	18.75	19.16		1.250	0.840	-	1.045
11.000	17.1	5.652	0.08	18.74	19.14		1.260	0.860	-	1.060
12.000	34.2	11.304	0.16	18.66	19.12	-	1.340	0.880	-	1.110
13.000	53.3	17.663	0.25	18.61	19.06		1.390	0,940	-	1.165
14.000	70.5	23.315	0.33	18.50	19.01		1.500	0.990	-	1.245
15.000	89.8	29.673	0.42	18.46	18.90	-	1.540	1.100	-	1.320


			AS	Au .
0.7 01	0.35	0.97187	0.44615	0.2
0.3 01	0,15	0,52563	0.44012	
0.7ø1	0.35	1.26167		
0.30,	0.15	1.075	E.13667	0.2
D (mm)	300			
Evi	100.84			
Evi	241.07			
Aris (Sq.m)	0.07965		1.	



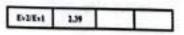
Γ		E. = 0.75 . D . Ar / As
	E.	= deformation modulus
	40	= load increment
	41	= settlement increment
	D	= diameter of the plate, generally 0.30 m


For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

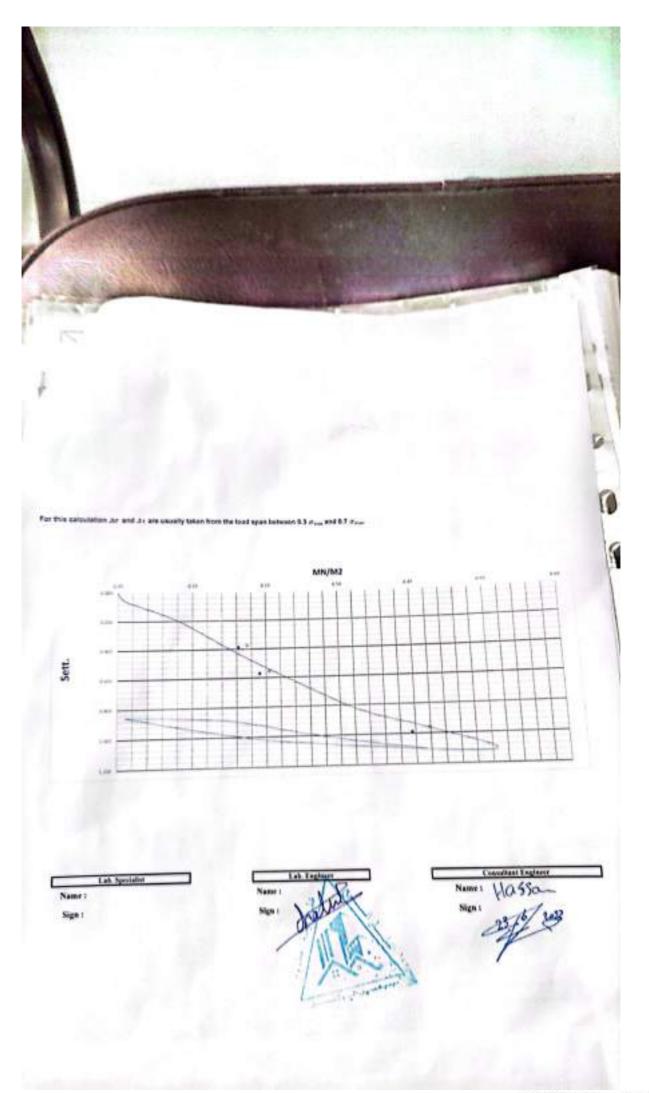


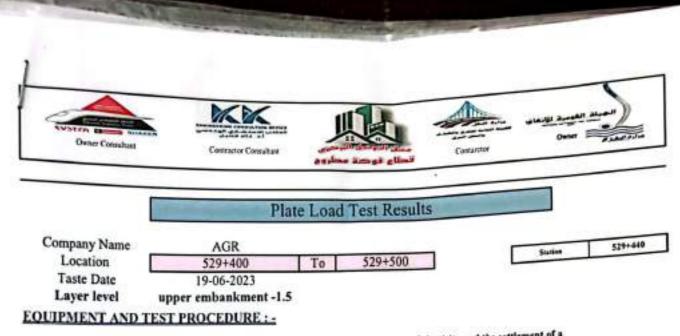
Consultant Engineer Name : Hassan Sign :

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

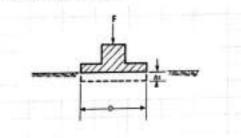


The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used


The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

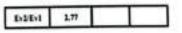

Londing	Load	Land	Streat	Dial 3	Dial 2	Dui)	Sett. 1	Set. 1	Sett.3	Aug.
Stage No.	Bur	KN	MN/M2	-	-	-	-	-	-	-
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.90	19.98	1	0.100	0.020		0.06
2.000	17.1	5.652	0.08	19.69	19.92		0.310	0.080		0.195
0.089	34.2	11.304	0.16	19.41	19.74	5	0.590	0.260		0.425
4.000	53.3	17.663	0.25	19.10	19.59		0.900	0.410		0.65
5.000	70.5	23.315	0.33	18.88	19.44		1.120	0.560		0.840
6.009	89.8	29.673	0.42	18.70	19.37	1	1.300	0.630		0.96
7.000	106.8	35.325	0.50	18.53	19.24		1,470	0.760		1.11
8.000	53.4	17.663	0.25	18.63	19.28		1.370	0.720		1.04
9.000	26.7	8.831	0.12	18.74	19.33	-	1.260	0.670		0.96
9.000	2.1	0.707	0.01	18.88	19.41	-	1.120	0.590	2	
10.000	2.1	0.707	0.01	18.88	19.41	-	1.120		-	0.85
11.000	17.1	5.652	0.08	18.87	19.40	-		0.590	2	0.85
12.000	34.2	11.304	0.16	18.83	19.38	-	1.130	0.600	-	0.865
13.000	53.3	17.663	0.25			-	1.170	0.620	-	0.895
14.000	70.5	23.315	0.33	18.71	19.33	-	1.290	0.670		0.980
15.000	89.8	29.673		18.63	19.28		1.370	0.720		1.04
	110	29.073	0.42	18.54	19.25		1.460	0.750		1.105

			· · · · · · · ·	
	Long Labo	1	15	1.0
0.7 o1	0.35	0.83375		
6.3 0,	0.15	0.39625	0,4375	0.2
6.7ez	0.35	1.05833		
0.301	0.15	0.875	0.18033	0.2
D (mm)	300			
Evi	102.86			
Eva	245,46			
Ares (Sq.m.)	0.07065	4	-	



The s	E. = 8.73 - D - 40 / 61
E,	- deformation modulus
0.	- load increment
0.	= settlement increment
D	= diameter of the plate, generally 0.30 m

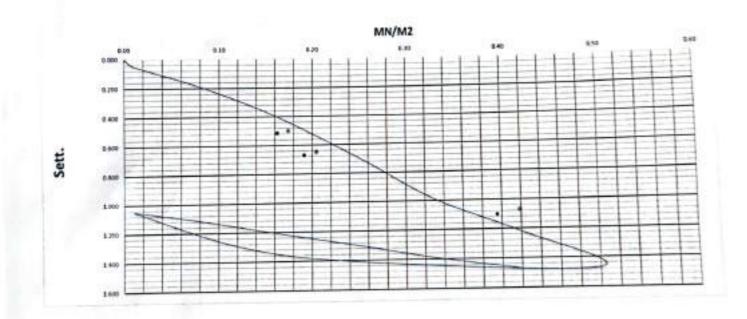
The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

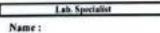

F = land As = sufferment D = duration of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used.

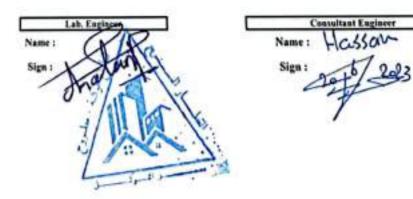
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

iameter =	300m				-	-		_		Ave.
Landing	Losi	Load	Stress	Dull	Diel 3	Dial 3	Sett. 1	Set. 2	Sett, J	Sett.
Stage No.	Bar	KN	MNMI	-		-	- 10	-		-
0.000	0.0	0.000	0.00	28.00	20.00	1	0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.95	19.95	1 1	0.050	0.050		0.050
2.000	17.1	5.652	0.08	19.82	19.80		0.180	0.200		0.190
0.080	34.2	11.304	0.16	19.66	19.55		0.340	0.450		0.395
4.000	53.3	17.663	0.25	19.29	19.32		0.710	0.680		0.695
5.000	70.5	23.315	0.33	19.00	19.02		1.000	0.980		0.990
6.000	89.8	29,673	0.42	18.76	18.89		1.240	1.200	23	1.220
7.000	106.8	35.325	0.50	18.55	18.51		1.450	1.490		1.470
8.000	53.4	17.663	0.25	18.60	18.58	1	1.400	1.420		1.410
9.000	26.7	8.831	0.12	18.70	18.70	1	1.300	1.300	-	1.300
9.000	2.1	0.707	0.01	18.94	18.96		1.060	1.040		1.050
10.000	2.1	0.707	0.01	18.94	18.96		1.060	1.040		1.050
11.000	17.1	5.652	0.08	18.87	18.90		1.130	1.100		1.115
12.000	34.2	11.304	0.16	18.79	18.80		1.210	1.200		1.205
13.000	53.3	17.663	0.25	18,70	18.70		1.300	1.300		1.300
14.000	70.5	23.315	0.33	18.62	18.60		1.380	1.400		1.390
15.000	89.8	29.673	0.42	18.55	18.51	-	1.450	1.490		1.470

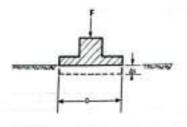

		1	15	A#
0.7 e1	0.35	1.00125		0.3
63 e,	0.15	0.36938	4.63147	***
0.7e1	0.35	1.40778		
0.301	0.15	1.18001	0.44777	
D (mm)	380			
Ev.	71.22		1 - 1	
En	197.57			
Ares (Sq.m)	8.07065			



	E. = 0.75 - D - Aa / As
Ε,	= deformation modulus
₽.	= load increment
D,	= settlement increment
D	= diameter of the plate, generally 0.30



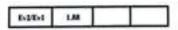
For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}



Sign :

AVITUR DESIGNATION	KK				
Owner Consultant	Contractor Consultan			Contactor	(1400 - 140)
	P	late Load	Test Resu	lts	
Commence	AGR				525+650
Company Name	AUK				515180
Location	525+000	To	525+080		Station SUSTREE
Location Taste Date		To	525+080		Surlive Subvect

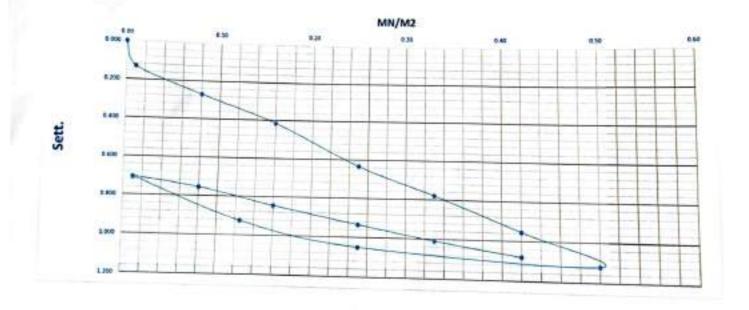
The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.


F = load (a = actionent) F = diameter of the plat

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

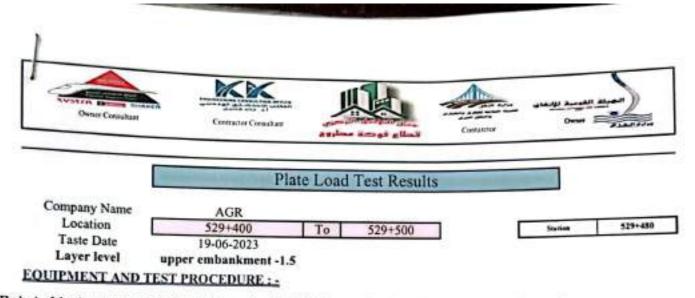
Loading	Les	d Load	Stree	Diel 1	Dia 2	Dial J	Sett, 1	Sett. 1	Set. J	Avg. Sett.
Stage No.	Bar	KN	MNM	-		en	**		-	-
0.000	0.0	0.000	0.00	18.39	18.04		0.009	0.000		0.000
1.000	2.1	0.707	0.01	18.22	17.95		0.170	0.090		0.130
2.000	17.1	5.652	0.08	18.01	17.88		0.380	0.160		0.270
0.050	34.2	11.304	0.16	17.81	17.79		0.580	0.250		0.415
4.000	53.4	17.663	0.25	17.47	17.69		0.920	0.350		0.63
5.000	70.5	23.315	0.33	17.28	17.59		1.110	0.450		0.78
6.000	89.7	29.673	0.42	17.04	17,48		1.350	0.560		0.95
7.000	106.8	35.325	0.50	16.83	17.36		1.560	0.680		1.120
8.000	53.4	17.663	0.25	16.93	17.40	L	1.460	0.640		1.050
9.000	26.7	8.831	0.12	17.13	17.45		1.260	0.590		0.925
9.000	2.1	8.707	0.01	17.43	17.59		0.960	0.450		0.705
10.000	2.1	0.707	0.01	17.43	17.59	1.000	0.960	0.450		0.705
11.009	17.1	5.652	0.08	17.36	17.56	1.00	1.030	0.480		0.755
12.000	34.2	11.304	0.16	17.23	17.51		1.160	0.530		0.845
13.000	53.4	17.663	0.25	17.10	17.46		1.290	0.580		0.935
14.000	70.5	23.315	0.33	17.00	17.41		1.390	0.630	-	1.010
15.000	89.7	29.673	0.42	16.90	17.37	-	1,490	0.670		1.080


	100		45	50
0.7 01	0.35	0.81062		
0.3 0,	0.15	0,3%88	6.413/3	
0.701	0.35	1.02556	0.22055	0.2
0,301	0,15	0.80501	0.22055	
D(nm)	300			
Ext	108,76	1		
Di.	204.03			
Ares (Sq.m.)	8.87965			

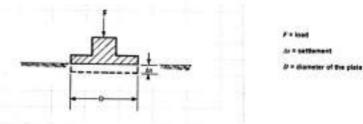
	r, =0.75 + D + da i de
₽,	- deformation modulus
Δσ	= load increment
4.	- settlement increment

D = diameter of the plate, generally 0.30 m

For this calculation $d\sigma$ and dx are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}


Lab. Specialist

Name :


Sign :

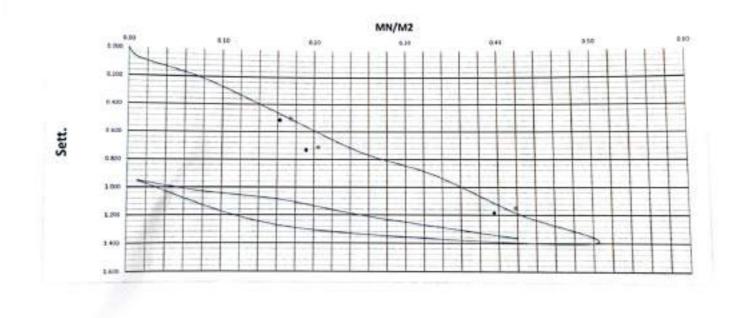
Cons ultant Engineer Hassa Name : Sign : 2023

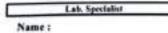
The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

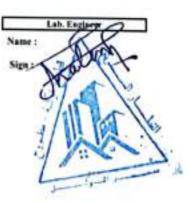
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter	r = ;	300mm

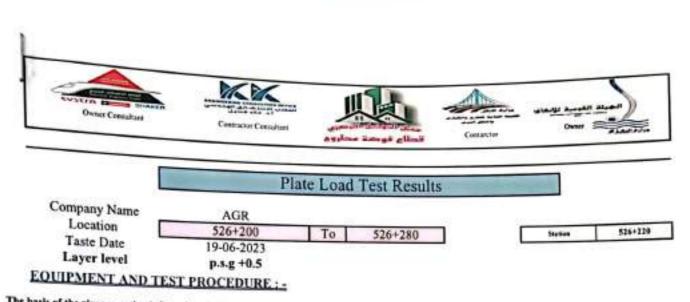

Loading	Lost	Lord	Stress	Dul 1	Dial1	Dul 3	Sett. 1	Sett.2	Sett. 3	Avg.
Stage No.	Bar	KN	MN/M3			-		-		-
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.96	19.90		0.040	0,100		0.070
2.000	17.1	5.652	0.08	19.85	19.72		0.150	0.280		0.215
0.080	34.2	11.304	0.16	19.68	19.40		0.320	0.600		0.460
4.000	53.3	17.663	0.25	19.41	19.10		0.590	0.900		0.745
5.000	70.5	23.315	0.33	19.35	18.83		0.650	1.170		0.910
6.000	89.8	29.673	0.42	19.11	18.51	200	0.890	1.490		1.190
7.000	106.8	35.325	0.50	19.01	18.19	1. 1	0.990	1.810		1.400
8.000	53.4	17.663	0.25	19.08	18.25		0.920	1.750		1.33
9.000	26.7	8.831	0.12	19.18	18.38		0.820	1.620	-	1.220
9.000	2.1	0.707	0.01	19.44	18.66		0.560	1.340	-	0.95
10.000	2.1	0.707	0.01	19.44	18.66	-	0.560	1.340	-	0.950
11.000	17.1	5.652	0.08	19.40	18.54		0.600	1.460	-	1.03
12.000	34.2	11.304	0.16	19.36	18.47		0.640	1.530	-	1.08
13.000	53.3	17.663	0.25	19.22	18.38	-	0.780		-	
14.000	70.5	23.315	0.33	19.16	18.28	-		1.620	-	1.200
15.000	89.8	29.673	0.42	19.10	18.17		0.840	1.720	-	1.28

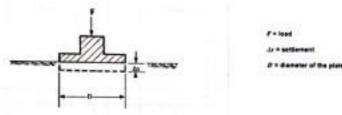

			15	3.0	
0.7 e,	0.35	1.00425			
0.3 01	0.15	0.42938	0.57688	0.2	
0.7e1	0.35	1.29889			
0.301	9.15	1.11001	0.18888	0.2	
D (mm)	300				
Evg	78.01				
En	238.25	F			
Area (54.00	9.97965			-	

ENDERI	3.05	


1	, = 0.75 - D + Do / ds
Ε,	= deformation modulus
D.	= load increment
Ds	= settlement increment
D	= diameter of the plate, generally 0.30 m

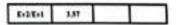
For this calculation $d\sigma$ and dx are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$



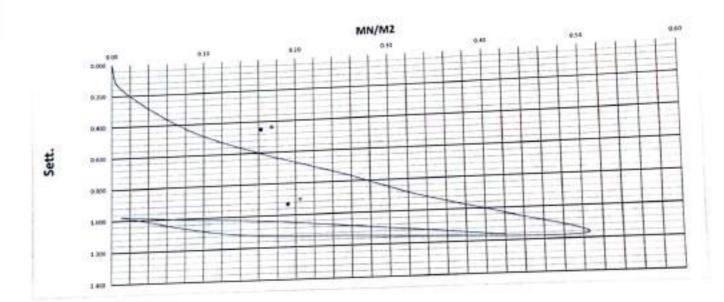

Sign :

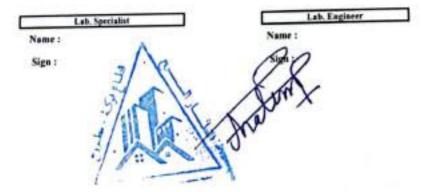
Name : Hassa 2016/2023 Sign :

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.



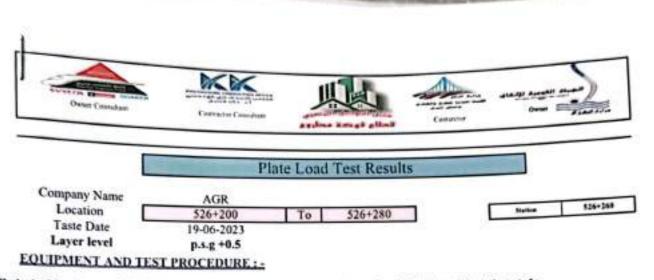
The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

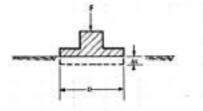

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack


	2004						()	2	_	2
Loading	Load	Load	Sten	Dial 1	Dul 2	Dut3	Sen. 1	Sett. 2	Sett.3	Avg. Set.
Stage No.	Bar	KN	MNMD	-		-	-	-		
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.74	19.95	J	0.260	0.050		0.155
2.000	17.1	5.652	0.08	19.30	19.85		0.700	0.150		0.425
0.080	34.2	11.304	0.16	19.10	19.70	2	0.900	0.300		0.600
4.000	53.3	17.663	0.25	18.90	19.60	3 8	1.100	0.400		0.750
5.000	70.5	23.315	0.33	18.70	19.50		1.300	0.500		0.900
6.000	89.8	29.673	0.42	18.56	19.38		1.440	0.620		1.030
7.000	106.8	35.325	0.50	18.47	19.18	0.00	1.530	0.820		1.175
8.000	53.4	17.663	0.25	18.52	19.20		1.480	0.800		1.140
9.000	26.7	8.831	0.12	18.54	19.25		1.460	0.750		1.105
9.000	2.1	0.707	0.01	18.63	19.42		1.370	0.580		0.975
10.000	2.1	0.707	0.01	18.63	19.42	0	1.370	0.580		0.975
11.000	17.1	5.652	0.08	18.60	19.39	1	1,400	0.610		1.005
12.000	34.2	11.304	0.16	18.58	19.36	1	1.420	0.640	100	1.030
13.000	53.3	17.663	0.25	18.55	19.30	1 1	1.450	0.700		1.075
14.000	70.5	23.315	0.33	18.51	19.26		1,490	0,740	-	1.115
15.000	89.8	29.673	0.42	18.48	19.19	-	1.520	0.810		1.165

		1	15	54	
0.7 0,	0.35	0.96313			
03 a1	8.15	0.57813	0.325	0.1	
0.7e1	0.35	1.12611			
0.3aj	0.15	1.035	1 and a state	0.2	
D (mm)	300				
Evi	138.46.				
Evy	493.92				
Ares (Sq.mi	8.47965				

	E, = 4.75 - D - de / di
ε,	 deformation modulus
D.	Icad increment
D:	= settlement increment
D	= diameter of the plate, generally 0.38 m



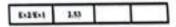

Consultant Engineer Name : Hassan 223 Sign :

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

الممسوحة ضوئيا بـ CamScanner

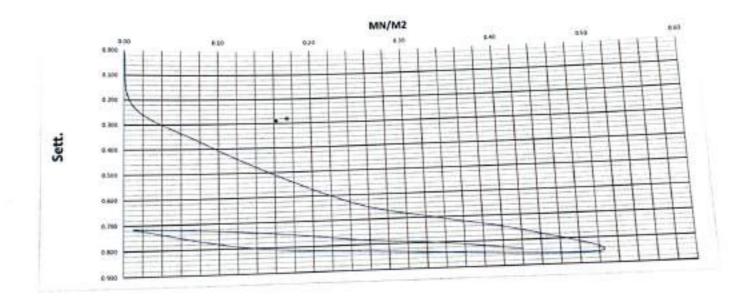
The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = load Ja = sufferent D = diameter of the plat


The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.50 m and D = 0.752 m are used

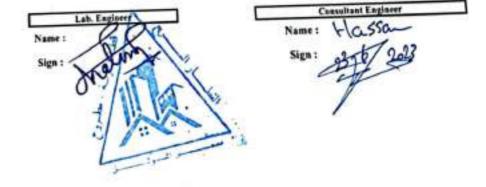
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

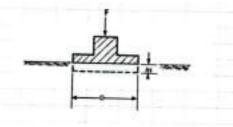
Diameter =	300m
Diameter -	200400


Loadag	Loud	Load	Stree	Dial I	Dall	Dal 3	Sett.1	Sen.1	Sen.3	Avg.
Stage No.	Ber	KN	MNM2	-	-	-	-	-	-	-
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000	1	0.000
1.000	2.1	0.707	0.01	19.80	19.75		6.200	0.250		0.225
2.000	17.1	5.652	0.08	19.66	19.60		0.340	0.400	1-3	0.370
0.080	34.2	11.304	0.16	19.59	19.39		0.410	0.610		0.510
4.000	53.3	17.663	0.25	19.51	19.21		0.490	0.790		0.640
5.000	70.5	23.315	0.33	19.48	19.12		0.520	0.880		0.700
6.600	89.8	29.673	0.42	19.46	19.02		0.540	0.980	1	0.760
7.000	106.8	35.325	0.50	19.38	18.91		0.620	1.090		0.855
8.000	53.4	17.663	0.25	19.39	18.96		0.610	1.040		0.82
9.000	26.7	8.831	0.12	19,41	19.00		0.590	1.000		0.79
9.000	2.1	0.707	0.01	19.49	19.08		0.510	0.920	1	0.71
10.000	2.1	0.707	0.01	19.49	19.08		0.510	0.920		0.71
11.000	17.1	5.652	0.08	19.48	19.07		0.520	0.930		9.72
12.000	34.2	11.364	0.16	19.45	19.06		0.550	0.940		0.74
13.000	53.3	17.663	0.25	19.42	19.02		0.580	0.980		0.78
14.000	70.5	23.315	0.33	19.40	19.00	10.00	0.600	1.000		0.80
15.000	89.8	29.673	0.42	19.38	18.95	-	0.620	1.050		0.8

			13	34
0.7 0,	0.35	0.67687		
63 4	0.15	0.4925	1.19-0.5	
6.Taj	0.35	0.80778		
8,301	0.15	0.735	0.07213	
D (mm)	380			
Ex.	244.87	1		
En	613.33			
Ares (Sq m)	5.97565			

	E. = 4.75 - D - Ao / As
ĸ,	 deformation modulus
D.	Ioad increment
D.	- settlement increment
D	= diameter of the plate, generally 0.30 m


For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$


Sign t

D

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

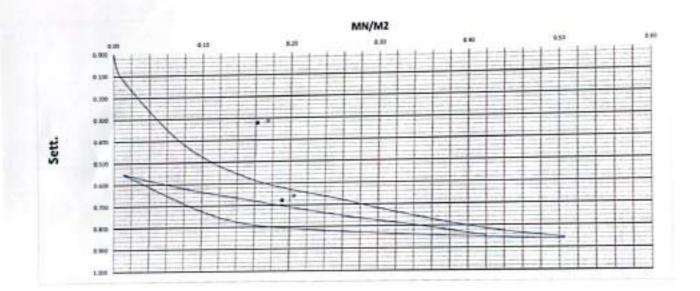
F = load dr = battement D = diameter of the plate

ĺ

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

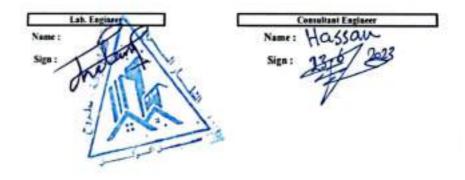
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Leading	Loud	I Lord	Stress	Dial 1	Dial 2	Dial 3	Sett, 1	Set.1	Ser. 3	Avg.
Stage No.	Bar	KN	MN/M2	-	-	-	-			Sett.
0.000	0.0	6.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.85	19.92		0.150	0.080		0.11
2.600	17.1	5.652	0.08	19.42	19.74		0.580	0.260		0.420
0.080	34.2	11.304	0.16	19.22	19.61		0.780	0.390		0.585
4.000	53.3	17.663	0.25	19.14	19.52		0.860	0.480		0.670
5.000	70.5	23.315	0.33	19.06	19.45	-	0.940	0.550		0.74
6.000	89.8	29.673	0.42	19.03	19.34	-	0.970	0.660		0.81
7.000	106.8	35.325	0.50	18.97	19.31		1.030	0.690		0.860
8.000	53,4	17.663	0.25	19.01	19.35		0.990	0.650		0.820
9.000	26.7	8.831	0.12	19.07	19.41		0.930	0.590	-	0.76
9.000	21	0.707	0.01	19.36	19.54		0.640	0,460	-	0.55
10.000	2.1	0.707	0.01	19.36	19.54	-	0.640	0.460	-	0.55
11.000	17.1	5.652	0.08	19.28	19.48		0.720	0.520	-	
12.000	34.2	11.304	0.16	19.22	19.42	-			-	0.62
13.000	53.3	17.663	0.25	19.12	19.39	-	0.780	0.580	_	0.68
14.000	70.5	23.315	0.33			-	0.880	0.610	-	0.74
15.000		29.673	0.42	19.06	19.36	- 11	0.940	0.640		0.79

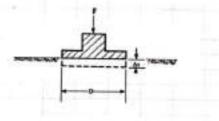

		- 1	15	50
9.7 et	0.35	0.77562		
0.3 e,	0.15	0.56438	9.21125	0.2
0.701	0.35	0.80222		
8.301	0.15	0.69001	0.11222	0.2
D (mm)	300			
Es	213.021	1		-
En	401.02	1		
Area (Sq.m)	8.07865		-	

	_	-	_
Ex2Ext	1.11 /		
		_	

	E. = 4.75 - D - da / As
ε,	• deformation modulus
0.	Ioad increment


- Ds = settlement increment
- B = diameter of the plate, generally 0.30 m


For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$


Lab. Specialist Name :

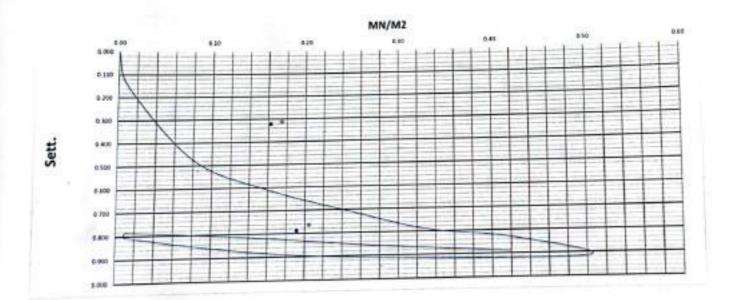
Sign :

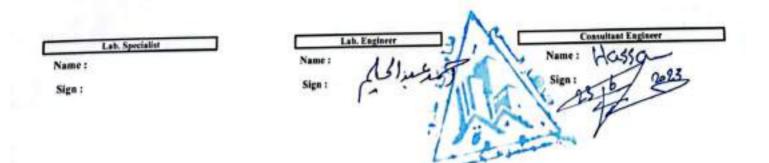
The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

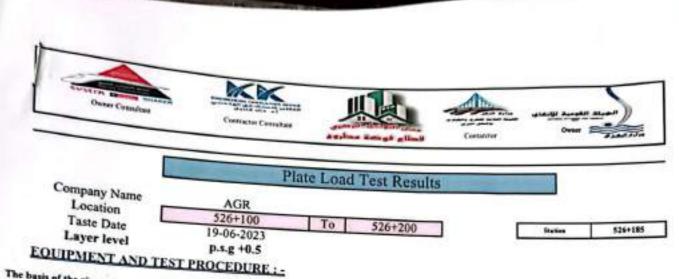
F = Isad de = satSamant D = diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack


Lordin	E Les	d Lasd	Stress	Dial1	Dial 2	Dial 3	Sett. 1	Set. 1	Sett . 3	Avg
Stage No	n. Bar	KN	MNM3		-	-	-	-	-	-
0.000	0.0	6.000	0.00	20.00	20.00		6.000	0.000		0.000
1.000	2.1	0.787	0.01	19.90	19.80		6.100	0.200		0.150
2.000	17.1	5.652	0.08	19.75	19.30		0.250	0.700		0.475
0.080	34.2	11.304	0.16	19,59	19.19		0.410	0.810		0.610
4.000	533	17.663	0.25	19.48	19.10		0.520	0.900	1	0.710
5.000	70.5	23.315	0.33	19.38	19.04		0.620	0.960		0.790
6.000	89.8	29.673	0.42	19.34	19.00		0.660	1.000		0.834
7.009	106.8	35.325	0.50	19.26	18.91		0.740	1.090		0.91
8.000	53.4	17.663	0.25	19.27	18.92	Territo I	0.730	1.080		0.90
9.000	26.7	8.831	0.12	19.31	18.95		0.690	1.050		0.87
9.000	2.1	0.707	0.01	19.39	19.00		0.610	1.000		0.80
10.000	2.1	0.707	0.01	19.39	19.04		0.610	0.960	-	0.78
11.000	17.1	5.652	0.08	19.38	19.02		0.620	0.980		0.80
12.000	34.2	11.304	0.16	19.36	19.00		0.640	1.000		0.82
13.000	53.3	17.663	0.25	19.32	18.98		0.680	1.029		0.85
14.000	70.5	23.315	0.33	19.30	18.96		0.700	1.040		0.87
15.000	89.8	29.673	0.42	19.28	18.94		0.720	1.060		0.8


		- 1	45	A#	
0.7 at	0.35	0.75563		1.	
8.3	0.15	0.59312	9.1625	0.2	
0.7e1	0.35	0.87444			
0.30;	0.15	0.815	0.05944	0.2	
D (mm)	300				
En	276.92				
Er;	757.03				
Area (Sq.m)	8.07045			-	


E-1/E-1	1.73	
1. Sector 60.57		

I	- # 75 + D + Ad / As
ε,	= deformation modulus
D.	= load increment
0.	settlement increment
D	= diameter of the plate, generally 0.30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$



The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is

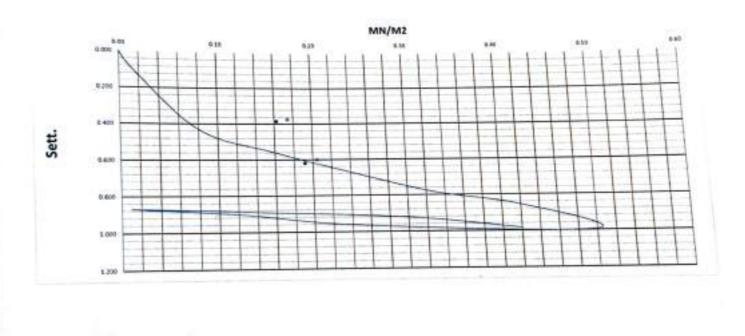
recorded. The following sketch shows the principle of the test.

F + load Ar * 1886 5 - diameter of the plots

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

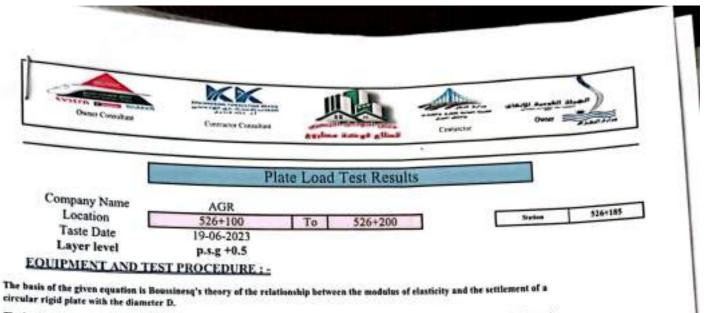
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

	Lead	4 L	test	Load	Strend	Dall	Dial 2		1	-	_	
1	Stage N	10. B	er	KN	MNM			Dial)	Sett. 1	Sett.1	Sett. 3	Avg. Sell.
1	0.00		.0		-	-	-	-	-	-	-	-
ł	1.000	-	-	0.000	0.00	20.00	20.00		6.000	0.000		0.000
ł		-	1	0.707	0.01	19.91	19.94		0.090	0.060		0.075
H	2.000	17	1	5.652	0.08	19,46	19.68	1	0.540	0.320	-	
L	9.080	34.	2	11.304	0.16	19.30	19.58	-	0.700	0.420		0.430
	4.000	53.	3 1	17.663	0.25	19.12	19.51	-			-	0.560
Г	5.000	70,	5 1	3.315	0.33	18.95		-	0.880	0.490		0.685
F	6.000	89.8	-	9.673		10000	19,48		1.050	0.520		0.785
F	7.000	-	+		0.42	18.85	19.44		1.150	0.560		0.855
⊢		106.	-	5.325	0.50	18.71	19.30		1.290	0.700		0.995
-	8.009	53,4	1	7.663	0.25	18.75	19.32		1.250	0,680		0.965
394	9.000	26.7	8	.831	0.12	18.81	19.38		1.190	0.620	-	
1	9.000	2.1	0.	707	0.01	18.86	19.40	-			-	0.905
1	0.000	2.1	0.	707	0.01	18.86		-	1.140	0.600	-	0.870
11	000.1	17.1	-	652			19.40	_	1.140	0.600		0.870
-			-	-	0.08	18.85	19.39		1.150	0.610		0.880
-	.009	34.2	11.	304	0.16	18.83	19.38		1.170	0.620		0.895
13,	.000	53.3	17.	663	0.25	18.81	19.37		1.190	0.630	-	0.910
14.	000	70.5	23.3	315	0.33	18.78	19.35	-	1.220		-	
15.	000	89.8	29.6	73		18.71	19.32	-	1.290	0.650	-	0.935

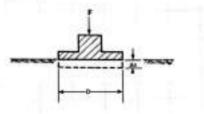

			33	3.0
0.7 et	0.35	0.7325	State of	1200
0.3 o ₁	0.15	0.54375	0.18875	9.2
0.702	0.35	0.94611		-
0.301	0.15	0.89	0.05611	0.2
D (mm)	300			
Evi	238.414	-		
Ex ₁	881.99			-
Ares (Sq.m)	8.07965		100	-

	_	
EvilEvil	3.36	

		E. = 0.75 . D . da / A.
	ç.,	= deformation modulus
0		Ioad increment
0	,	- settlement increment
- 9	D	= diameter of the plate, generally 0.30 m


For this calculation dig and div are usually taken from the load span between 0.3 grant and 0.7 grant

D

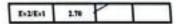


Lab. Specialist	Lab. Engineer Convoltant Engineer Name : 1/1 / Name : HOSSO
Name : Sign :	Sign: 32 67 2023
or Fur -	

١

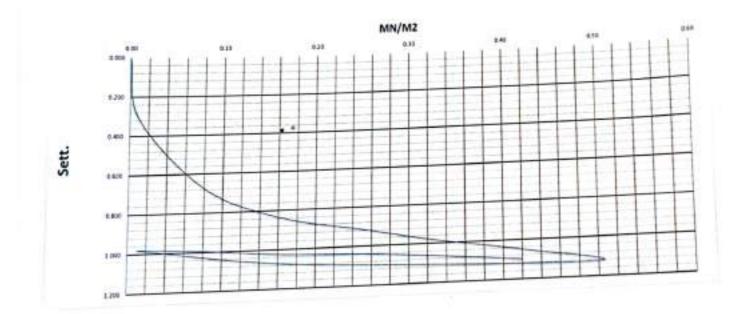
The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = load .is = sottement B = diameter of the plate


The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

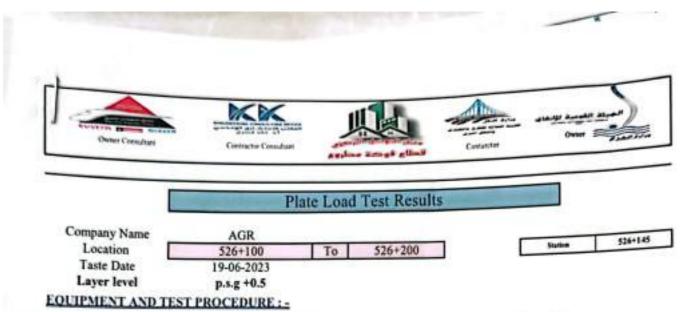
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.82 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

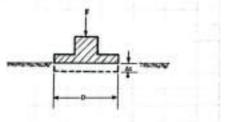
Diameter =	300mm
Diameter -	3000000


Loading	Lord	Lood	Stress	Dial I	Dial 1	Dial 3	Set. 1	5en. 2	Sect. 3	Arg. Sett.
Stage No.	Bar	KN	MN912	-	-	-	-	-	-	-
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.63	19.74		0.370	0.260		0.315
2.000	17.1	5.652	0.08	19.30	19.35	1	0.700	0.650		0.675
0.680	34.2	11.304	0.16	19.08	19.25		0.920	0.750		0.835
4.000	53.3	17.663	0.25	18.97	19.20	1	1.030	0.800		0.915
5.000	70.5	23.315	0.33	18.85	19.18	8	1.150	0.820		0.985
6.000	89.8	29.673	0.42	18.78	19.12	1	1.220	0.880		1.050
7.000	106.8	35.325	0.50	18.65	19.10		1.350	0.900		1.125
8.000	53.4	17.663	0.25	18.69	19.12	1	1.310	0.880		1.095
9.000	26.7	8.831	0.12	18.74	19.15		1.260	0.850		1.055
9.000	2.1	0.707	0.01	18.82	19.22		1.180	0.780		0.980
10.000	2.1	0.707	0.01	18.82	19.22		1.180	0.780		0.980
11.000	17.1	5.652	0.08	18.80	19.21		1.200	0.790	6 U	0.99
12.000	34.2	11.304	0.16	18.76	19.19	-	1.240	0.810	8	1.02
13.000	53.3	17.663	0.25	18.75	19.17	-	1.250	0.830		1.04
14.000	70.5	23.315	0.33	18.72	19.15		1.280	0.850		1.06
15.000	89.8	29.673	0.42	18.67	19.13		1.330	0.87		1.10

			45	he	
0.7 o ₁	0.35	0.98437		0.1	
63 e,	0.15	0.815	0.10937		
9.7e1	0.35	1.07278			
0.307	0,15	1.01	10.00278	6.1	
D (mm)	300				
Evi	265.68	+			
Ev ₃	716.83				
Area (Sq.m)	8.87865				

4	E. = 8.75 · D · Ao / As
£,	- deformation modulus
0.	= load increment
D.	- settlement increment
D	= diameter of the plate, generally 0.30 m


For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}


Lab. Specialist

Name :

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

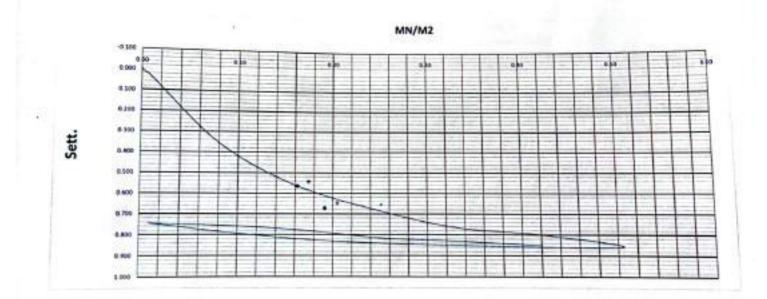
F = load do = settement B = diameter of the pla

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

Londay	Losd	Lord	Seens	Dial 1	Dial 2	Dia13	Sell, 1	Sen. 2	Sen.3	Arg.
Stage No.	Bar	RN.	MNMI	-	***	-	-	-	-	-
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.95	19,98		0.050	0.020		0.035
2.600	17.1	5.652	0.08	19.54	19.75		0.460	0.250		0.355
0.080	34.2	11.304	0.16	19.30	19.58		0.700	0.420		0.560
4.000	53.3	17.663	0.25	19.15	19.48		0.850	0.520		0.68
5.000	70.5	23.315	0.33	19.04	19.43		0.960	0.570		0.765
6.000	89.8	29.673	0.42	19.00	19,40		1.000	0.600		0.80
7.000	106.8	35.325	0.50	18.92	19.36		1.080	0.640		0.86
8.000	53.4	17.663	0.25	18.94	19.38	1	1.068	0.620		0.84
9.000	26.7	8.831	0.12	19.00	19.39		1.000	0.610		0.80
9.000	2.1	0.707	0.01	19.68	19.43	1	0.920	0.570		0.74
10.000	2.1	0.707	0.01	19.08	19.43		0.920	0.570		0.74
11.000	17.1	5.652	0.08	19.07	19.42		0.930	0.580		0.75
12.000	34.2	11.384	0.16	19.04	19.41		0.960	0.590	-	0.77
13.000	53.3	17.663	0.25	18.98	19.39	-	1.020	0.610		0.81
14.000	70.5	23.315	0.33	18.96	19.38	-	1.040	0.620	-	
15.000	89.8	29.673	0.42	18.94	19.36	-	1.060	0.640	-	0.83

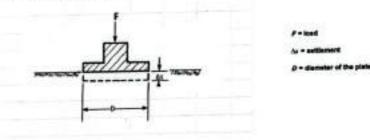

		1	48	As .
8.7 6	0.35	0.7475		
6.3 61	0.15	0.53438	0100	0.2
8.70;	0.35	0.83444		
6.301	0.15	0.765	0.00744	
D (mm)	300			
Evi	211.14			
Evi	648.91			
Arm (Sq.m.	8.07865			

_	_	_	
EvilEvi	1.07		1

E. = 0.75 - D - do / ds				
E,	- deformation modulus			
0.	= load increment			
D.	= settlement increment			

D = diameter of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}


Lab. Specialist Name : Sign :

Lab. Eng Name : Sign : Sign :

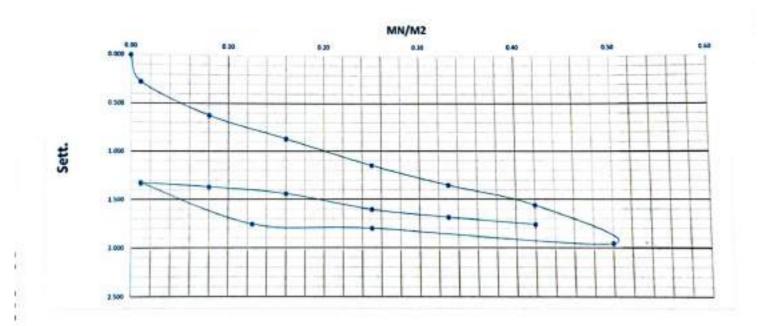
Consultant Engineer Name: Hassan 2007 -2023

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

Diameter = 3	400mm
--------------	-------


Loading	Lost	Loui	Sires	Dial 1	Dial 2	Dial 3	Sett. 1	Sett. 3	Sett , 3	Avg. Sell.
Stage No.	84	KN	MNMI			-	-	-		-
0.000	0.0	0.000	0.00	7.38	8.50		0.000	0.000		0.000
1.000	2.1	0.707	0.01	7,26	8.07		0.120	0.430		0.275
2.000	17.1	5.652	0.08	7.14	7.49		0.240	1.010		0.625
0.080	34.2	11.384	0.16	6.95	7.19		0.430	1.310		0.87
4.000	53.4	17.663	0.25	6.85	6.73		0.530	1.770		1.15
5.000	70.5	23.315	0.33	6.73	6.44		0.650	2.060		1.35
6.000	89.7	29.673	0.42	6.61	6.15		0.770	2.350		1.56
7.000	106.8	35.325	0.50	6.28	5.69		1.100	2.810		1.95
8.000	53.4	17.663	0.25	6.49	5.79		0.890	2.710		1.80
9.000	26.7	8.831	0.12	6.53	5.84		0.850	2.660		1.75
9.000	2.1	0.707	0.01	6.68	6.55	100	0.700	1.950	1	1.32
10.000	2.1	0.707	0.01	6.68	6.55	- 175	0.700	1.950		1.32
11.000	17.1	5.652	0.08	6.64	6.50	-	0.740	2.000		1.37
12.000	34.2	11.304	0.16	6.62	6.38		0.760	2.120		1.44
13.000	53,4	17.663	0.25	6.55	6.12	-	0.830	2.380		1.60
14.000	70.5	23.315	0.33	6.50	6.01	-	0.880	2.490		1.68
15.000	89.7	29.673	0.42	6.45	5.91		0.930	2.590		1.76

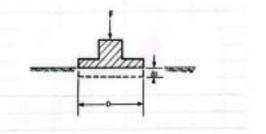
			45	Ar
0.7 et	0.35	1.21438	0.375	0.2
0.3 ø ₁	0.15	0.83938		
0.701	0.35	1.70167		0.2
0.3e1	0.15	1.415	0.10000	
D(mm)	300			
Ext	120.00			
Eve	156.98	1		
Ares (Sq.m)				

- 14	E, = 2.75 + D - Aa / As
z,	= deformation modulus
đσ	- load increment
41	= settlement increment
D	- diameter of the plate, generally 0.30 m

•

Name :

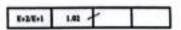
5


E

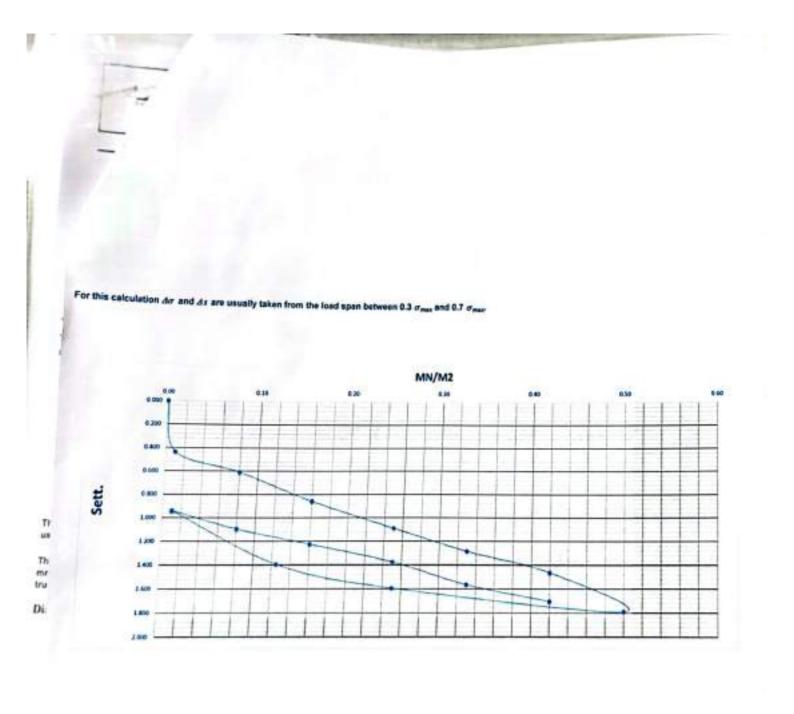
Hassar-Name : 2023 Sign :

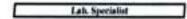
	KK				يعممية للإمان	(
Owner Coreschast	Costractor Consultant	*		Contamotor	Owner	
	Р	late Load	Test Result	S		
Company Name	P	late Load		5		479+920
Company Name Location		To	530+000	5	Station	529+920
	AGR			5	Station	529+920

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step in recorded. The following sketch shows the principle of the test.


Fallend 4 - 405 natar of the plats

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

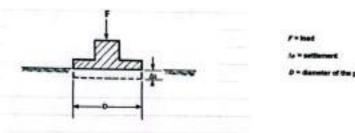

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack


Louise	Lead	Load	Streat	Dial 1	Dial 2	Dial 3	Sett. 1	Sett. 3	Sett , 3	Avg. Sett.
Stage No.	lu.	KN	MNMI	-			-	-	-	
0.000	0.0	0.000	0.00	8.23	6.52		8.000	0.000		0.000
1.000	2.1	0.707	0.01	7.81	6.07		0,420	0.450		0.435
2.000	17.1	5.652	0.08	7.65	5.88		0.580	0.640		0.610
0.680	34.2	11.304	0.16	7.30	5.73		0.930	0.790		0.860
4.000	53.4	17.663	0.25	7.11	5.46		1.120	1.060		1.090
5.000	70.5	23.315	0.33	6.91	5.27		1.320	1.250		1.285
6.000	89,7	29.673	0.42	6.68	5.14		1.550	1.380	1	1.465
7.000	106.8	35.325	0.50	6.20	4.97		2.028	1.550	1	1.789
8,000	53.4	17.663	0.25	6.52	5.04		1.710	1,480		1.595
9.000	26.7	8.831	0.12	6.85	5.11		1.380	1.410	1	1.395
9.000	2.1	0.707	0.01	7.30	5.57		0.930	0.950		0.940
10.000	2.1	0.707	0.01	7.30	5.57	1	0.930	0.950		0.940
11.000	17.1	5.652	0.08	7.22	5.34		1.010	1.180		1.095
12.000	34.2	11.304	0.16	7.18	5.12		1.050	1.400		1.225
13.000	53,4	17.663	0.25	7.11	4.89	1	1.120	1.630		1.375
14.000	70.5	23.315	0.33	7.07	4.55	1.1.1	1.160	1.970	5-3	1.565
15.000	89.7	29.673	0.42	7.05	4.29	2	1.180	2.230		1.70

		 1 	48	he .
0.7 es	0.35	1.18154	0.35279	0.2
6.3 ei	0.15	0.82875	0.35479	
8.701	6.35	1.59611		
0.301	0.15	1.25002	0.3461	61
D (mm)	300			
Evi	127.56			
En	130.02			
Arms (Se.m)	8.07965		01C V	

1	1, = 0.75 - D - do / As
£.,	- deformation modulus
da	Ioad increment
dı.	- settlement increment
D	= diameter of the plate, generally 0.30 m

Name :



Consultant E 2023 Hasta Name : Sign

- Consultant	Contractor Corrections	1		Contector	القومية الإلغان مست	1000) 10000
	Р	late Load	Test Resu	lts		
Company Name	AGR					
Location	527+000	To	527+060		Station	\$27+02
Taste Date Layer level OUIPMENT AND TES	15/6/2023 Ferma			_	L	

circular rigid plate with the diameter D.

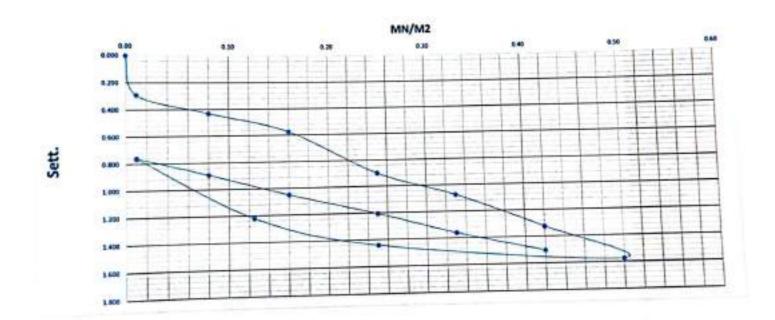
The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

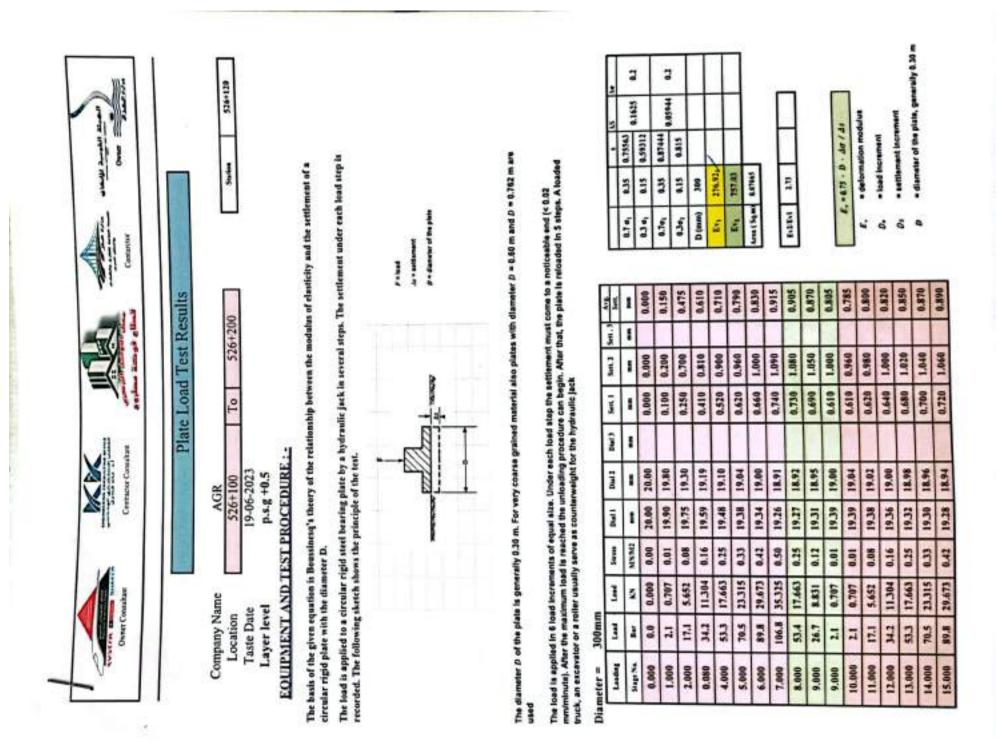
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

Diameter = 300mm

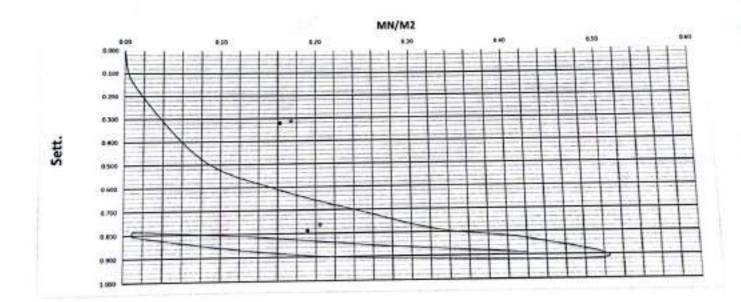
Louing	Losd	Land	Stress	Dial 1	Dial 3	Dial 3	Sett. 1	Sett, 2	Sett . 3	Avg.
Stage No.	Bar	KN	MNIMI							
0.000	0.0	0.000	0.00	5.81	6.67		0.000	0.000		0.000
1.000	2.1	0.707	0.01	5.74	6.16		0.070	0.510		0.290
2.000	17.1	5.652	0.08	5.56	6.06		0.250	0.610		0.430
0.080	34.2	11.304	0.16	5.34	5.99		0.470	0.680		0.575
4.000	53.4	17.663	0.25	4.97	5.71		0.840	0.960		0.900
5.000	70.5	23.315	0.33	4.80	5.53		1.010	1.140		1.07
6.000	89.7	29.673	0.42	4.42	5.41		1.390	1.260		1.32
7.000	106.8	35.325	0.50	4.11	5.22		1.700	1.450	3	1.57
8.000	53.4	17.663	0.25	4.32	5.28	Sec. 1	1.490	1.390	1	1.44
9.000	26.7	8.831	0.12	4.70	5.34		1.110	1.330		1.22
9.000	2.1	0.707	0.01	5.10	5.86		0.710	0.810		0.76
10.000	2.1	0.707	0.01	5.10	5.86		0.710	0.810	1.0	0.76
11.000	17.1	5.652	0.05	5.00	5.70	1.1	0.810	0.970		0.89
12.000	34.2	11.304	0.16	4.95	5.43		0.860	1.240		1.05
13.000	53.4	17.663	0.25	4.85	5.22		8.960	1.450		1.20
14.000	70.5	23.315	0.33	4.78	4.98	1000	1.030	1.690		1.30
15.000	89.7	29.673	0.42	4.75	4.72	-	1.060	1.950		1.50


			45	he	
0.7 et	0.35	1.10625			
0.3 0,	0.15	0.55688	0.54938	63	
6,70;	8.35	1.39222		0.2	
6.307	0.15	1,02001	1 Com		
D(mm)	300	_			
Ev	81.91				
Ev3	120.90				
Ares (Sq.m)				102	

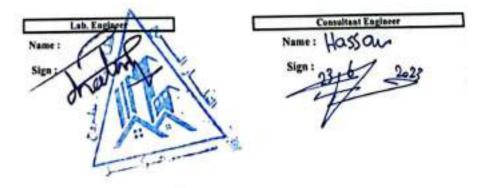
		_
E-2/E-1	1.48	


- 1	E. = 0.75 - D + Au / As
٤,	· deformation modulue
da	- load increment
41	· settlement Increment
D	= diameter of the plate, generally 0.30 m

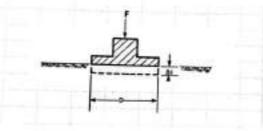
For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}



الممسوحة ضوئيا بـ CamScanner



For this calculation $d\sigma$ and dz are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max} .


Lab. Specialist

Name :

Outer Creatan	Connector Construer	M.	يغييد بومنه	
	Plat	e Load Test Resu		
Company Name Location	AGR 526+100	To 526+200	 States	526+145

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

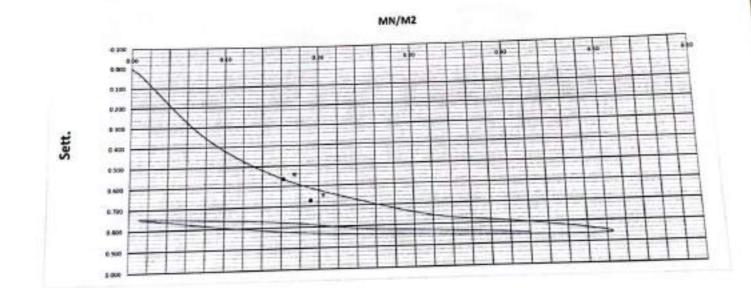
F = blad Ar = balflerbert D = diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

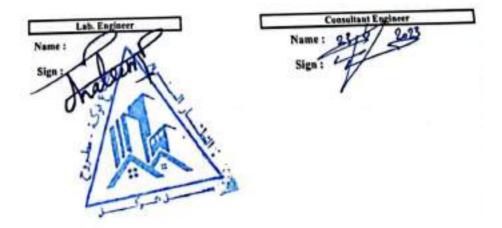
Diameter	-	300mm

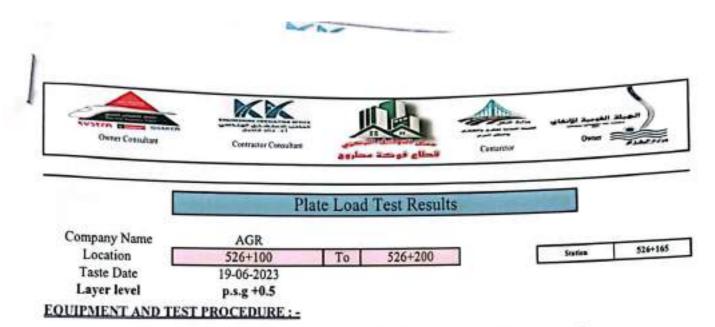
Losd	•1 L	ad Los	4 Stress	Dial I	Dial 2	Diel 3	Sen, 1	Sett. 2	Sett. 3	Avg.
Stage ?	No. B.	ur KN	MNMI		-	-	-	-	-	-
0.00	0 0.	0 0.00	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.	1 0.70	0.01	19.95	19.98		0.050	0.020		0.035
2.000	17.	1 5.652	0.08	19.54	19.75	2	0.460	0.250		0.355
0.080	34.	2 11.30-	4 0.16	19.30	19.58		0.700	0.420		0.56
4.000	53.3	3 17.663	0.25	19.15	19.48	-	0.850	0.520		0.68
5.000	70.5	23.315	0.33	19.04	19.43		0.960	0.570		0.76
6.000	89.8	29.673	0.42	19.00	19.40		1.000	0.600		0.80
7.000	106.8	35.325	0.50	18.92	19.36		1.080	0.640		0.864
8.000	53.4	17.663	0.25	18.94	19.38	ie UN	1.060	0.620		0.84
9.000	26.7	8.831	0.12	19.00	19.39		1.000	0.610	1	0.80
9.000	2.1	0.707	0.01	19.08	19.43	1	0.920	0.570	1.00	0.74
10.000	2.1	0.707	0.01	19.08	19.43		0.920	0.570		0.74
11.000	17.1	5.652	0.08	19.07	19.42		0.930	0.580	2.4	0.75
12.000	34.2	11.304	0.16	19.04	19.41		0.960	0.590	1.2	0.77
13.000	53.3	17.663	0.25	18.98	19.39		1.020	0.610		0.81
14.000	70.5	23.315	0.33	18.96	19.38		1.040	0.620		0.830
5.000	89.8	29.673	0.42	18.94	19.36		1.060	0.640		0.856


	Sec. 1	1	15	3.0	
0.7 e,	0.35	0.7475			
0.3 0,	8.15	0.53438	0.11313	0.2	
0.701	0.35	0.83444		0.2	
0.3e1	0.15	0.765	0.06944		
D (mm)	300				
Evi	211.14,	/			
En	645.01				
Ares (Sq.m)	8.07065				

		_	-
Evaluation	3.97		

E. = 0.75 · D · do / ds		
E.	= deformation modulus	
D.	Ioad Increment	
Dı	 settlement increment 	


D = diameter of the plate, generally 0.30 m

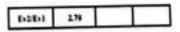

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}

Lab. Specialist

Name :

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

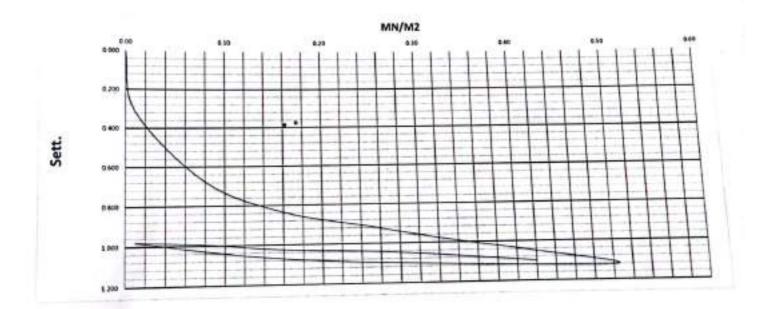
F = load As = settlement B = diameter of the plate

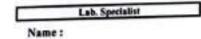

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

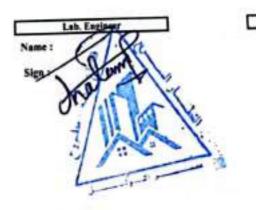
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

This make	 300mm
Diamete	Soomn

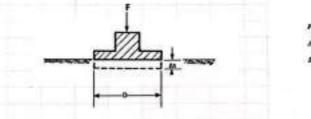
Loading	Losd	Last	Strest	Dul 1	Dial 2	Dial 3	Sett. 1	Sett. 2	Sett. 3	Avg. Sett.
Stage No.	Bar	KN	MNME	-	-	-	**	-	-	
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.63	19.74		0.370	0.260		0.315
2.000	17.1	5.652	0.08	19.30	19.35		0.700	0.650		0.675
0.080	34.2	11.304	0.16	19.08	19.25		0.920	0.750		0.835
4.000	53.3	17.663	0.25	18.97	19.20		1.030	0.800	1	0.91
5.000	70.5	23.315	0.33	18.85	19.18	1.4	1.150	0.820	1	0.98
6.000	89.8	29.673	0.42	18.78	19.12		1.220	0.880	1	1.05
7.000	106.8	35.325	0.50	18.65	19.10	-	1.350	0.900	-	1.12
8.000	53.4	17.663	0.25	18.69	19.12	8	1.310	0.880		1.09
9.000	26.7	8.831	0.12	18.74	19.15	-	1.260	0.850		1.05
9,000	2.1	0.707	0.01	18.82	19.22		1.180	0.780		0.98
10.000	2.1	0.707	0.01	18.82	19.22		1.180	0.780		0.98
11.000	17.1	5.652	0.08	18.80	19.21		1.200	0.790		0.99
12.000	34.2	11.304	0.16	18.76	19.19		1.240	0.810		1.02
13.000	53.3	17.663	0.25	18.75	19.17		1.250	0.830		1.84
14.000	70.5	23.315	0.33	18.72	19.15		1.280	0.850		1.06
15.000	89.8	29.673	0.42	18.67	19.13		1.330	0.870		L10


	5	1	AS	3.0
0.7 01	0.35	0.98437	0.16937	
0.3 01	0.15	0.815	0.10737	
0.7e,	0.35	1.07278		0.2
0.301	0.15	1.01	e.corre	-
D(mm)	300	1		
Ext	265.68	1		
Ev,	716.83			
Ares (Sq.m)	0.07045			




	E. = 2.75 . D . do / dz
E,	- deformation modulus
0.	- load increment
D.	settlement increment
D	= diameter of the plate, generally 0.30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$



C	assitant Engineer
Name :	Hassan
Sign :	237 2019
	m

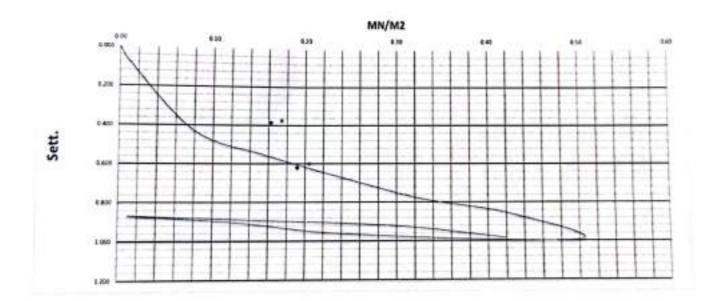
The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = load Ar = settlement D = diameter of the pilete

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

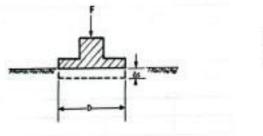

Londing	Losd	Lond	Stress	Dial 1	Dist 2	Dial 3	Sett. 1	Sen. 1	Sett.3	Avg.
Stage No.	Bar	KN	MNM1		-	-	-	-		-
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.91	19.94		0.090	0.060		0.075
2.000	17.1	5.652	0.08	19.46	19.68	1	0.540	0.320		0.430
0.080	34.2	11.304	0.16	19.30	19.58	1	0.700	0.420	1	0.560
4.000	53.3	17.663	0.25	19.12	19.51		0.880	0.490		0.685
5.000	70.5	23.315	0.33	18.95	19.48		1.050	0.520		0.785
6.000	89.8	29.673	0.42	18.85	19.44		1.150	0.560		0.855
7.000	106.8	35.325	0.50	18.71	19.30		1.290	0.700		0.995
8.000	53.4	17.663	0.25	18.75	19.32	1.000	1.250	0.680		0.965
9.000	26.7	8.831	0.12	18.81	19.38	-	1.190	0.620	-	0.905
9.000	2.1	0.707	0.01	18.86	19.40	à	1.140	0.600	-	0.870
10.000	2.1	0,707	0.01	18.86	19.40		1.140	0.600		0.870
11.000	17.1	5.652	0.08	18.85	19.39	1	1.150	0.610		0.880
12.000	34.2	11.304	0.16	18.83	19.38		1.170	0.620	-	0.895
13.000	53.3	17.663	0.25	18.81	19.37		1.190	0.630	-	0.91
14.000	70.5	23.315	0.33	18.78	19.35	-	1.220	0.650	-	Contraction of the
15.000	89.8	29.673	0.42	18.71	19.33	-	1.290	0.680	-	0.93

		1	AS	40
0.7 e,	0.35	0.7325		
0.3 01	0.15	0.54375	0.18875	
0.701	0.35	0.94611		
0.301	0.15	0.89	0.05611	0.2
D (mm)	300			
Evi	238.41-			
Eva	801.99			
Ares (Sq mi	0.07045			-

E+2/E+1	3.36			
---------	------	--	--	--

	E. = 2.75 - D + do / As
E,	- deformation modulus
D.	Ioad Increment
Dı	• settlement increment
D	= diameter of the plate, generally 0.30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

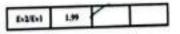

Lab. Specialist Name :

Name : Hassa 23-16/2013 Sign :

	KK			A start	يقوميذ الإعاد	
Owner Consultant	Contractor Consultant	-		Contarctor	Owner	
	P	late Load	Test Results	5		
Company Name	P	late Load	Test Results	5		526+40
Company Name Location		Plate Load	S26+460	5	Station	526+49
	AGR]	Station	526+49

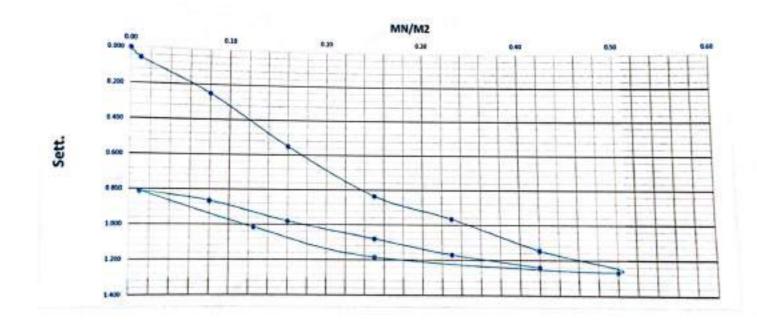
The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

/ - ised /a = satisment D = dameter of the pla


The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.50 m and D = 0.752 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

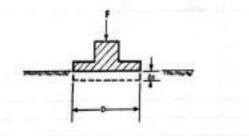
Diameter = 300mm


Leading	Loud	Land	Stress	Dial 1	Dial 3	Dial 3	SetL 1	Sett.3	Sett. 3	Aug. SetL
Stage No.	Bar	KN	MN/M2	-	-	-		-		-
0.000	0.0	0.000	0.00	10.93	11.08		0.000	0.000		0.000
1.000	2.1	0.707	0.01	10.89	11.01		0.040	0.070		0.055
2.000	17.1	5.652	0.08	10.78	10.73		0.152	0.350		0.251
0.050	34.2	11.304	0.16	10.61	10.30		0.320	0.780		0.550
4.000	53.4	17.663	0.25	10.43	9.91		0.500	1.170		0.835
5.000	70.5	23.315	0.33	10.34	9.74	-	0.590	1.340	10	0.965
6.000	89.7	29.673	0.42	10.21	9.51		0.720	1.570	-	1.145
7,000	106.8	35.325	0.50	10.11	9.37		0.820	1.710		1.265
8.000	53.4	17.663	0.25	10,18	9.46		0.750	1.620		1.185
9.000	26.7	8.831	0.12	10.31	9.67		0.620	1.410		1.015
9,000	2.1	0.707	0.01	10.46	9.93		0.470	1.150		0.810
10,000	2.1	0.707	0.01	10.46	9.93		0.470	1.150		0.810
11.000	17.1	5.652	0.08	10.43	9.85	-	0.500	1.230		0.865
	34.2	11.304	0,16	10.35	9.70		0.580	1.380		0.980
12.000		17.663	0.25	10.28	9.57		0.650	1.510		1.080
13.000	53,4		0.33	10.20	9.47		0.730	1.610		1.170
14.009	70.5	23.315		10.13	9.40	7-8-1	0.800	1.680		1.240
15,000	89.7	29.673	0.42	10.13	3.45	-	17/10/10		-	

			AS	Le .	
0.7 0,	0.35	1.04	0.52737	0.2	
0301	0.15	0.51263	a carso	-	
0.701	0.35	1.18556	0.26555	0.2	
6.Je,	0.15	0.92001	444.00		
D(mm)	300				
Evi	85.33				
Ev ₃	169.46	1			
Ares (Sq.m)	8.07065				

	t, = 0.75 · D · do / do
I,	= deformation modulus
60	+ load increment
41	 eettiement increment
D	= diameter of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$



Consultant Engineer Hassan 2023

الممسوحة ضوئيا بـ CamScanner

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

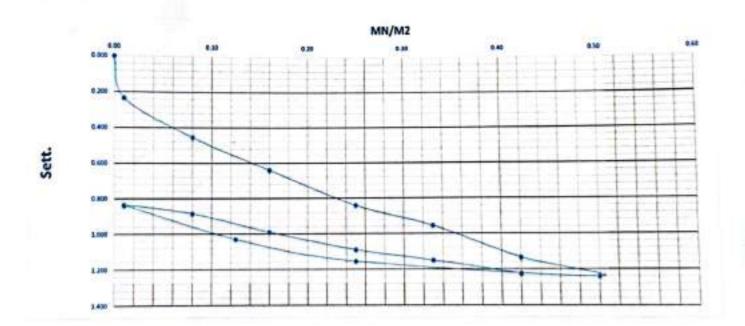
F = load Ju = sattlement B = damater of the plat

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

Lasting	Losd	Last	Stress	Dial I	Dial 3	Dial 3	Sett. 1	Sett. 1	Sett , 3	Avg.
Stept No.	Bar	KN	MNMI	-		-		-	-	-
0.000	0.0	0.000	0.00	10.18	12.11		0.000	0.000		0.000
1.000	2.1	0.707	0.01	10,15	11.67		0.030	0.440		0.235
2.000	17.1	5.652	0.05	10.09	11.29	4 4	0.090	0.820		0.455
0.080	34.2	11.304	0.16	10.00	11.01		0.180	1.100		0.640
4.000	53.4	17.663	0.25	9.82	10.79	1	0.360	1.320		0.840
5.000	70.5	23.315	0.33	9,72	10.66		0.460	1,450		0.95
6.000	89,7	29.673	0.42	9.57	10.45		0.610	1.660		1.13
7.000	106.8	35.325	0.50	9.49	10.32		0.690	1,790		1.24
8.000	53.4	17.663	0.25	9.56	10.42		0.620	1.690		1.15
9.000	26.7	8.831	0.12	9.65	10.58		0.530	1.530		1.83
9.000	2.1	0.707	0.01	9.79	10.83	1	0.390	1.280		0.835
10.000	2.1	0.707	0.01	9.79	10.83		0.390	1.280		0.83
11.000	17.1	5.652	0.08	9.75	10.77		0.430	1.340		0.88
12.000	34.2	11.304	0.16	9.67	10.64		0.510	1.470		0.996
13.000	53.4	17.663	0.25	9.61	10.50		0.570	1.610		1.090
14.000	70.5	23.315	0.33	9.56	10.43		0.620	1.680		1.150
15.000	89.7	29.673	0.42	9.50	10.34		0.680	1.770		1.225


٨

	4		AS	3.0
0.7 ei	0.35	1.04313		
0.3 e1	0.15	0.61688	0.42025	
0.701	0.35	1.16667		
0.30,	0.15	0.93501	0.0100	
D(mm)	300			
Er.	105.57			
E11	194.25			
Ares (Sq.m)	8.07065			

		 _
E-3E-1	1.84	
_	_	

-	E. = 0.75 - D + Do / As
۲.	= deformation modulus
40	= load increment
41	 aettiement increment
D	= diameter of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Consultant Engineer Name: Hassan 2023 Sign :

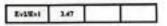
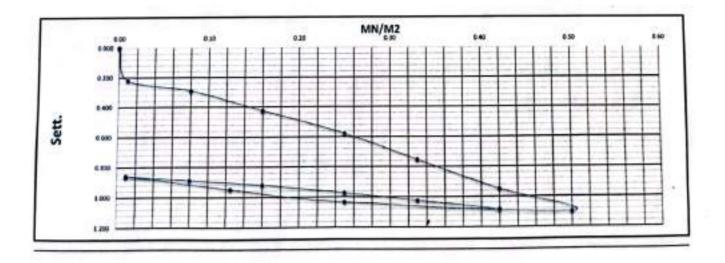

THE OWNER AND A STR

	Plate Load	Test	Resul	ts	
A real former and the					

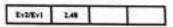
Layer:	EMBANKMENT	-1.5		COMPANY	AGR COMPANY
Station:	529+520	TO	529+620	Location	529+600
Date:	13-06-23				

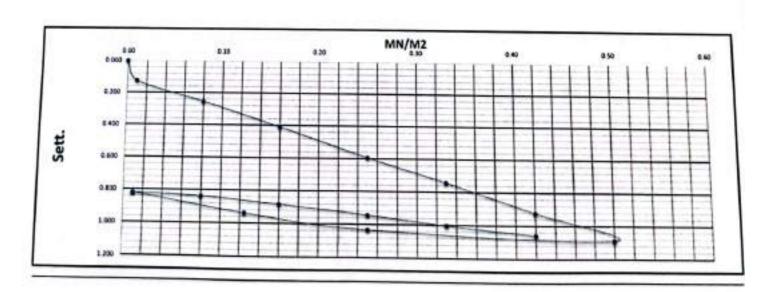

Londing	Lond	Lost	Strees	Diel I	Duit	Diel 3	Set. 1	Sell.1	Set .3	Avg. Sett.
Stage Nu.	Bar	KN	MNM2	-	-	-	-	-	-	-
0.000	0.0	0.000	0.00	7.30	7.50		0.000	0.000		0.004
1.000	1.0	0.707	0.01	7.10	7.56		0.200	0.240	5	0.224
2.000	7.9	5.652	0.08	7.03	7.49	12.1	0.270	0.310		0.29
0.080	15.8	11.304	0.16	6.91	7.34		0.390	0.450		0.42
4.000	24.7	17.663	0.25	6.77	7.17		0.530	0.630		0.58
5.000	32.6	23.315	0.33	6.61	6.98		0.690	0.820		0.75
6.000	41.5	29.673	0.42	6.43	6.77		0.870	1.030		0.95
7.000	49,4	35.325	0.50	6.30	6.60	100	1.000	1.200		1.10
8.000	24.7	17.663	0.25	6.13	6.70	Sec.	0.970	1.100	100	1.03
9.000	12.4	8.831	0.12	6.40	6.80	Same.	0.900	1.000	900	0.95
9.000	1.0	0.707	0.01	6.48	6.90	stant-	0.820	0.900	100	0.86
10.000	1.0	0.707	0.01	6.48	6.90		0.820	0.900		0.86
11.000	7.9	5.652	0.08	6.45	6.87		0.850	0.930		0.89
12.000	15.8	11.304	0.16	6.43	6.83		0.870	0.970		0.92
13.000	24.7	17.663	0.25	6.39	6.76	Contra l	0.910	1.040		0.97
14.000	32.6	23.315	0.33	6.35	6.70	- Andrews	0.950	1.100		1.02
15.000	41.5	29.673	0.42	6.30	6.63		1.000	1.170		1.08

	1	1	15	30	
0.7 e,	0.35	0.51875	0.41063		
0.3 e,	0.15	0.40813	8.41045		
0.70	0.35	1.03833		0.2	
0.301	0.15	0.92	0.11033		
D (mm)	309				
Ev,	109.59				
Ev.	380.29				
Area (Sq m)	0.07065				

LOAD Y

Hassan Consultant Engineer Lab. Specialist Lab. Engineer وكالمنطقية لل المعمل المرو والقطار الرين فو Name : Name : Name Sign : Sign : 3 25.0




Plate Load Test Results Layer: AGR COMPANY EMBANKMENT COMPANY -1.50 Station: 527+700 527+740 TO 527+840 Location Date: 12-06-23 Loading Load Load Stows Dial1 Dial2 Т Ave

country of	Lees	Leef	Stress	Dial 1	Diet 2	Diel 3	Sell, 1	Sett.2	Sett. 3	Avg.
Stage No.	Bar	KN	MN/M2	-	-	-	-	-	m	-
0.000	0.0	0.000	0.00	6.49	5.40		0.000	0.000		0.000
1.000	1.0	0.707	0.01	6.38	5.26		0.110	0.140		0.125
2.000	7.9	5.652	0.08	6.28	5.10		0.210	0.300		0.255
0.080	15.8	11.304	0.16	6.17	4.90		0.320	0.500		0.410
4.000	24.7	17.663	0.25	6.05	4.65	1	0.440	0.750		0.595
5.000	32.6	23.315	0.33	5.93	4.47		0.560	0.930		0.745
6.000	41.5	29.673	0.42	5.79	4.25		0.700	1.150		0.925
7.000	49.4	35.325	0.50	5.66	4.05		0.830	1.350	3	1.090
8.000	24.7	17.663	0.25	5.71	4.11	0.00	0.780	1.290	Sector	1.035
9.000	12.4	8.831	0.12	5.79	4.22	100	0.700	1.180		0.94
9.000	1.0	0.707	0.01	5.88	437	100	0.610	1.030	1000	0.82
10.000	1.0	0.707	0.01	5.88	4.37		0.610	1.030		0.820
11.000	7.9	5.652	0.08	5.87	4.34	1.00.01	0.620	1.060		0.84
12.000	15.8	11.304	0.16	5.83	4.29	-	0.660	1.110	1	0.88
13.000	24.7	17.663	0.25	5.78	4.22	- 6	0.710	1.180		0.94
14.000	32.6	23.315	0.33	5.73	4.15		0.760	1.250		1.00
15.000	41.5	29.673	0.42	5.68	4.09	1	0.810	1.310		1.06

	-		45	Ar		
0.7 a	8.35	8.78063	0.39	0.3		
0.3 4,	0.15	0.39063				
0.701	0.35	1.01722				
0.301	0.15	0.86	0.15/22			
D (mm)	300					
Evi	115.38					
Ev.	286.22					
Area (5q.m)	0.07965					

Lab. Specialist Lab. Engineer **Consultant Engineer** Name : Name : asson Name : Sign : مراحمة فببيدة للمقاولات المعمل المركزى فالقطار الربي فوكة مطرو Sign : 2/5

الممسوحة ضوئيا بـ CamScanner

Contactor

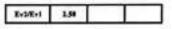
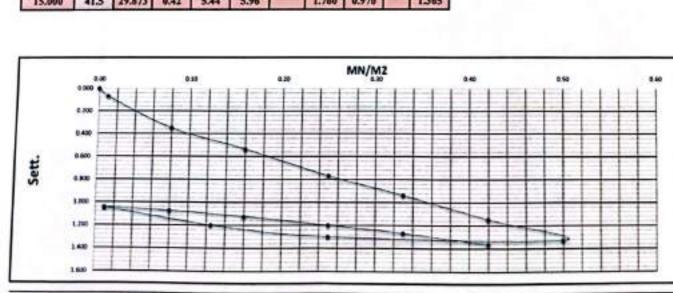


Plate Load Test Results


Layer:	EMBANKMEN	г -1.50		COMPANY	AGR COMPANY
Station:	527+700	TO	527+840	Location	527+780
Date:	12-06-23	24			

Loading	Lend	Lend	Stream	Dial 1	Dial 3	Dial 3	Set. 1	Sett.1	Sett.3	Avg.
Siegr No.	Bar	KN	MNMI		-				-	-
0.000	0.0	0.000	0.00	7.20	6.93	20.10	0.000	0.000		0.000
1.000	1.0	0.707	0.01	7.11	6.88		0.090	0.050		0.070
2.000	7.9	5.652	0.08	6.75	6.68		0.450	0.250		0.350
0.080	15.8	11.304	0.16	6.49	6.57	1	0.710	0.360		0.535
4.000	24.7	17.663	0.25	6.20	6.39		1.000	0.540		0.770
5.000	32.6	23.315	0.33	6.01	6.24		1.190	0.690		0.940
6.000	41.5	29.673	0,42	5.80	6.03	2	1.400	0.900	20	1.150
7.000	49.4	35.325	0.50	5.57	5.90		1.630	1.030		1.330
8.000	24.7	17.663	0.25	5.61	5.92	all the	1.590	1.010	1	1.300
9.000	12.4	8.831	0.12	5.72	6.01		1.480	0.920		1.200
9.000	1.0	0.707	0.01	5.89	6.15		1.310	0.780	- Alerton	1.045
10.000	1.0	0.707	0.01	5.89	6.15		1.310	0.780		1.045
11.000	7.9	5.652	0.08	5.85	6.13		1.350	0.800		1.075
12.000	15.8	11.304	0.16	5.78	6.10		1.420	0.830		1.125
13.000	24.7	17.663	0.25	5.68	6.05		1.520	0.880	iler:	1.200
14.000	32.6	23.315	0.33	5.60	5.99		1.600	0.940		1.270
15,000	41.5	29.673	0.42	5.44	5.96	-	1.760	0.970	-	1.365

1.11	_	1	45	Le .	
0.7 e,	0.35	0.9925	8,48963		
0.3 e,	0.15	0.51188	9.48903	0.2	
0.701	8.35	1.29111	9.18611	0.2	
0.3e,	0.15	1.105	9.10011		
D (mm)	300	1		5	
Ev	93.63				
Ev1	241.79				
Ares (Sq.m)	0.07045			2	

 Lah. Specialist
 Lah. Engineer
 Consultant Engineer

 Name :
 ۲
 ۲
 ۲

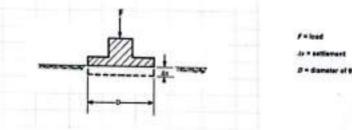
 Sign :
 ۲
 ۲
 ۲


 Name :
 ۲
 ۲
 ۲

 Sign :
 ۲
 ۲
 ۲

 Name :
 ۲
 ۲
 ۲

 Name :
 ۲
 ۲
 ۲


 Name :
 ۲
 ۲
 ۲

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a

circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

Loading	Lead	Load	Stress	Dial I	Dial 3	Dial 3	Sett. 1	5en.2	Sett.3	Ang. Sett.
Stage Na.	Bar	KN	MANU	-	-			-		-
0.000	0.0	0.000	0.00	20.00	20.00		0,000	0.000		0.000
1.000	2.1	0.707	0.01	19.95	19.99		0.050	0.010		0.030
2.000	17.1	5.652	0.08	19.89	19.90		0.110	0.100		0,105
8.080	34.1	11.304	0.16	19.81	19.79		0.190	0.210		0.200
4.600	53.3	17.663	0.25	19.72	19.64		0.280	0,360		0.320
5.000	70.5	23.315	0.33	19.70	19.55		0,300	0,450		0.37
6.000	89.8	29.673	0.42	19.64	19.45	-	0.360	0.550		0.45
7.000	106.8	35.325	0.50	19.59	19.30	-	0.410	0.700		0.55
8.000	53.4	17.663	0.25	19.62	19.40	-	0.380	0,600	-	0.49
9.000	26.7	8.831	0.12	19.68	19.50	-	0.320	0.500		0.41
9.000	2.1	0.707	0.01	19.78	19.69		0.220	0.310	-	0.26
10.000	2.1	0.707	0.01	19.78	19.69	-	0.220	0.310	-	
11.000	17.1	5.652	0.08	19.73	19.65		0.279	0.350		0.26
12.000	34.2	11.304	0.16	19.70	19.56	-	0.300		-	0.31
13.000	53.3	17.663	0.25	19.68	19.50		0.300	0.440	-	0.37
14.000	70.5	23.315	0.33	19.62	19.41	-		0.500	-	0.41
15.000	89.8	29.673	0.42	19.59	19.41	-	0.380	0.590	-	0.48

		1	AS	44	
0.7 o	0.35	0.3675			
0.3 0,	0.15	0.18813	0.17937	0.1	
0.70,	0.35	0.49722	0.14222		
0.3e1	0.15	8,355		0.2	
D (mm)	300				
Ext	258.87				
En	316.42				
Ares (Sq.m)	8.07065				

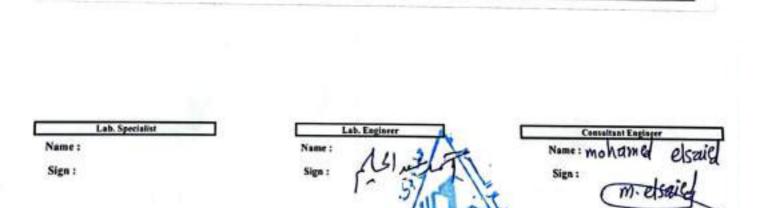
	_	
1.25		
	1.35	1.35

	E. = 8.15 - D - do / ds
8.	= deformation modulus
D.	= load increment
De	· settlement increment
D	= diameter of the plate, generally 0.30 m

0000 X18 0.30 K30 A40

0.105

0.200


8.500

8.400

8500

0.000

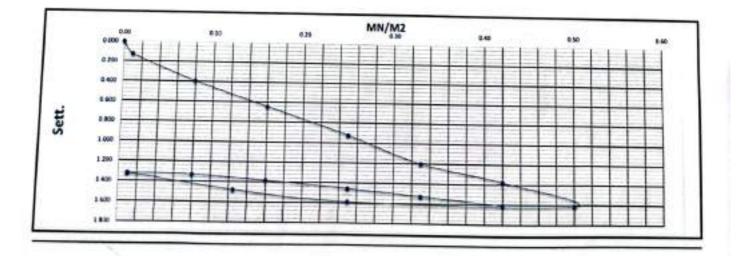
Sett.

For this calculation $d\sigma$ and $d\pi$ are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

.

الممسوحة ضوئيا بـ CamScanner

Plate Load Test Results


-1.5				
	100.00		COMPANY	AGR
	TO	529+300	Location	529+180
05-06-23	(E			
	-1.5 529+160 05-06-23	529+160 TO	529+160 TO 529+300	529+160 TO 529+300 Location

Loading	Land	Last	Stree	Dial 1	Diel 2	Dial	Sen.1	Set. 2	L.	A-1
Stage No.	Bar	KN	MNMI			-			Sett.3	Set.
0.000	0.0	0.000	0.00	7.24	7.66		0.000	-	-	-
1.000	1.0	0.707	0.01	7.09	7.56	-		0.000		0.000
2.000	7.9	5.652	0.08	6.78	7.33		0.150	0.100	-	0.12
0.080	15.8	11.304	0.16	6.48	7.13	-	0.460	0.330	-	0.395
4.000	24.7	17.663	0.25	6.14	6.91		0.760	0.530		0.645
5.000	32.6	23.315	0.33	5.82	10000	- 2	1.100	0.750		0.925
6.000	41.5	29.673	0.42		6.67	-	1.420	0.990		1.205
7.000	49.4	35.325		5.63	6.51	_	1.610	1.150		1.380
8.000	24.7		0.50	5.42	6.25	-	1.820	1.410		1.615
9.000		17.663	0.25	5.46	6.26	(16)	1.780	1.400	14	1.590
	12.4	8.831	0.12	5.61	6.33	1	1.630	1.330	1917	1.486
9.000	1.0	0.707	0.01	5.81	6.44	P.K.	1.430	1.220		1.325
10.000	1.0	0.707	0.01	5.81	6.44		1.430	1.220		1.325
11.000	7,9	5.652	0.08	5.80	6.43		1.440	1.230	-	1.335
12.000	15.8	11.304	0.16	5.73	6.40		1.510	1.260		1.385
13.000	24.7	17.663	0.25	5.63	6.35		1.610	1.310		1.460
14.000	32.6	23.315	0.33	5.54	6.30		1.700	1.360		1.530
15.000	41.5	29.673	0.42	5.44	6.24		1.800	1,420	-	1.610

			45	A.e
6.7 aj	0.35	1.17438		1000
63 m	0.15	8.61375	0.36663	0.1
6.7ø _k	0.35	1.54778		420
0.3aj	0.15	1.345	0.10278	8.2
D (mm)	300	-		
Ev.	80.27			
Ev.	111.92			
Ares (Sq.m)				

Evilia	2.76		
--------	------	--	--

Lab. Specialist Name :

Lah. Engineer	Consultant Engineer
شركة نمرية الكتاريج	Name: Hassan
Ilazal IL	Sign:
ووعالقطار السدوري	-
ف مربع مور مربع ده - مطرو	

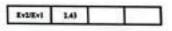
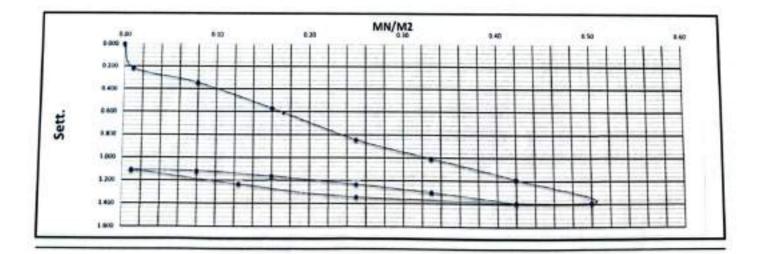


Plate Load Test Results


Layer:	-1.5			COMPANY	AGR
Station:	529+160	TO	529+300	Location	\$29+268
Date:	05-06-23	1911 - 19120) - SA			

Lording	Lend	Lest	Seress	Dial 1	Dial 2	Deal 3	Sett. 1	Sett. 2	Sett . 3	Arg.
Stage No.	Ber	KN.	MNMI	-	-	-	-	-	-	-
0.000	0.0	0.000	0.00	7.29	7.35	1	0.000	0.000		0.000
1.009	1.0	0.707	0.01	7.05	7.16		0.240	0.190		0.215
2.000	7.9	5.652	0.08	6.90	7.05	1	0.390	0.300		0.345
0.080	15.8	11.304	0.16	6.65	6.85	-	0.640	0.500		0.570
4.000	24.7	17.663	0.25	6.34	6.61		0.950	0.740		0.845
5.000	32.6	23.315	0.33	6.14	6.48	1	1,150	0.870		1.010
6.000	41.5	29.673	0.42	5.94	6.32	à	1.350	1.030		1.19
7.000	49.4	35.325	0.50	5.72	6.14		1.570	1.210		1.39
8.000	24.7	17,663	0.25	5.78	6.17	5	1.510	1.180	100	1.34
9.000	12.4	8.831	0.12	5.92	6.25		1.370	1.100	100	1.23
9.000	1.0	0.707	0.01	6.08	6.34	24	1.210	1.010	111	1.11
10.000	1.0	0.707	0.01	6.08	6.34	6.15	1.210	1.010	1	1.11
11.000	7.9	5.652	0.08	6.07	6.33		1.220	1.020		1.12
12.000	15.8	11.304	0.16	6.01	6.30	1	1.280	1.050		1.16
13.000	24.7	17.663	0.25	5.91	6.26	1000	1.380	1.090		1.23
14.000	32.6	23.315	0.33	5.83	6.20	7	1.460	1.150	1	1.30
15.000	41.5	29.673	0.42	5.72	6.13	1	1.570	1.220	1	1.39

			45	M	
4.7 ei	0.35	1.015			
6.3 e,	0.15	0.54188	0,47313	0.1	
0.7a1	0.35	1.325		0.2	
0.301	0.15	1.13	6.195		
D (mm)	390	2			
Evi	95.11				
Evg	230.77				
Area (Sq.m)	8.07965	1000		308	

Lab. Specialist Name : Sign :

Lab. Engineer شر المن المطلدة المقاولة ا المعمل المركزي وعالقطاران من فوكة - مطر

Flasson Name : As Sign :

California	
CONTRACTOR DESIGNATION	

Contractor Consultant

TO

. .

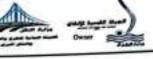
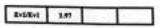
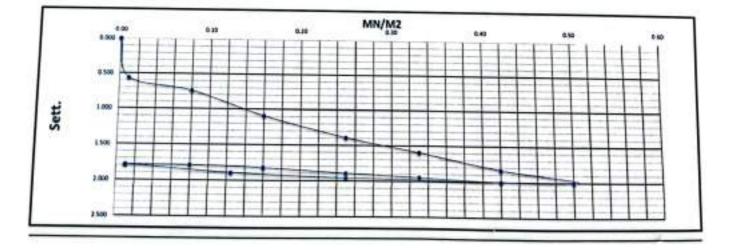


Plate Load Test Results

Layer:	
Station:	
Dates	


 COMPANY
 AGR

 526+100
 Location
 526+910


Londing	Land	Land	Breat.	Diel I	Diel 2	Diala	Sec.1	Set 1	Sett. 3	Are
Stage No.	Bar	KN	MINIMI			-	-	-	-	Sec.
0.000	0.0	0.000	0.00	6.92	7.24	-	0.000	0.000	-	0,000
1.000	1.0	0.707	0.01	6.35	6.68		0.570	0.560	-	0.565
2.000	7.9	5.652	0.08	6.18	6.49	-	0.740	0.750	- 2	0.745
0.080	15.8	11.304	0.16	5.84	6.13	-	1.080	1.110		1.095
4.000	24.7	17.663	0.25	5.55	5.82	-	1.370	1.420	-	1.395
5.000	32.6	23.315	0.33	5.31	5.65		1.610	1.590		1.600
6.000	41.5	29.673	0.42	4.97	5.51	-	1.950	1.730	-	1.840
7.000	49.4	35.325	0.50	4.72	5.43	-	2.200	1.810	-	
8.000	24.7	17.663	0.25	4.72	5.52	-	2.200	1.729	-	2.005
9.000	12.4	8.831	0.12	4.74	5.62		2.180	1.620	-	1.960
9.000	1.0	0.707	0.01	4.82	5.76	-	2.100	1.480	-	1,900
10.000	1.0	0,707	0.01	4.82	5.76	-	2.100	1.480		1.790
11.000	7.9	5.652	0.08	4.81	5.76	-	2.110		-	1.790
12.000	15.8	11.304	0.16	4.78	5.72	-		1.480	-	1.79
13.000	24.7	17.663	0.25			-	2.140	1.520	-	1.830
14.000	32.6		-	4.74	5.62	-	2.180	1.620	- 11	1.900
		23.315	0.33	4.71	5.55		2.210	1.690	1.	1.95
15.000	41.5	29.673	0.41	4.68	5.47	1	2.240	1.770	1	2.00

0.5 + 526+000 05-06-23

	0		15	3.	
4.7 aj	0.35	1.49563		0.2	
6.3 0	0.15	1.05125	0.000.00		
0.7e1	0.35	1.96332		0.2	
0.3e,	0.15	1.8	e.serrs		
D (mm)	300				
Ev.	69.84				
Er	177.40				
ires (Sq.mb	8.07345			22	

Consultant Engineer Hay Name : Name : f Sign : T

Plate Load Test Results

Layer: Station: Date:

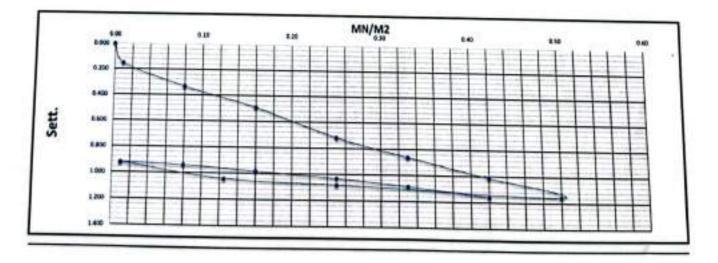
0.5+ 526+000 05-06-23

TO

526+100

COMPANY

AGR 526-048 Location


Louding	Losi	Land	Stress	Dial 1	Diel 2	Diel 3	Sell.1	Set. 1	Sett.3	A12.
Stage Na.	Bar	+ KN	MINIME	-			-			Sett
0.000	0.0	0.000	0.00	7.19	7.30		0.000	0.000		0.000
1.000	1.0	0.707	0.01	6.98	7.20		0.210	0.100		0.155
2.060	7.9	5.652	0.08	6.78	7.04		0.410	0.260	1	0.335
0.080	15.8	11.364	0.16	6.65	6.85		0.540	8.450		0.49
4.000	24.7	17.663	0.25	6.49	6.56	-	0.760	0,740		9.72
5.000	32.6	23.315	0.33	6.38	6.38		0.810	0.920		0.86
6.000	41.5	29,673	8.42	6.26	6.20		0.930	1.100	-	1.01
7.000	49.4	35.325	0.50	6.17	6.01	100	1.020	1.290		1.15
8.000	24.7	17.663	0.25	6.27	6.05	19-Call	0.920	1.250	Sec. in	1.08
9.000	12.4	8.831	0.12	6.33	6.07	11-5	0.860	1.230	1	1.04
9.000	1.0	0.707	0.01	6.46	6.18	- Maria	0,730	1.120	100	8.92
10.000	1.0	0.707	0.01	6.46	6.18	1000	0.730	1.120	-	0.92
11.000	7.9	5.652	0.08	6.45	6.15		0.740	1.150	-	0.94
12.000	15.8	11.304	0.16	6.42	6.10	1	0.770	1.200	-	0.98
13.000	24.7	17.663	0.25	6.38	6.04	-	0.810	1.260		1.03
4.000	32.6	23.315	0.33	6.30	6.01		0.890	1.290	-	-
5.000	41.5	29.673	0.42	6.20	5.97	-	0.990	1.330	-	1.09

			55	he .	
6.7 ei	6.35	6.8915			
0.3 e1	8.15	0.475	6.41/2	-	
0.702	0.35	1.18556	0.14055		
8.3e,	0.15	0.965	0.14633		
D (mm)	300	1			
Evi	197.78				
Ev.	328.16				
Ares (Sq.m)	4.07045				

Ex1Ev1 1.57

LOAD UNLOAD RELOAD

Г

Lab. Specialist Name :

Sign :

ab. Engipeer 1 - au Name : Sier

Consultant Engineer Name : Hassan Sign : The

الممسوحة ضوئيا بـ CamScanner

COMPANY

Location

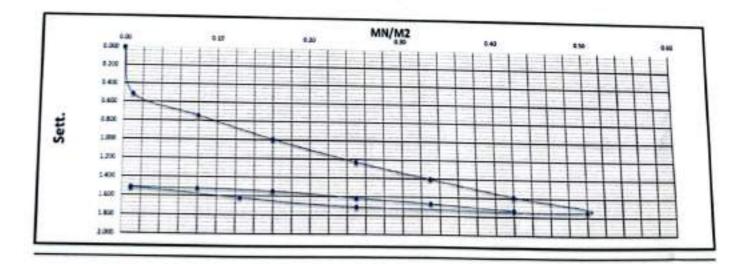
Plate Load Test Results 0.5 + 526+000 05-06-2

Layer: Station: Date:

ſ .

_	TO	526+100
---	----	---------

Landing	Land	Land	Stress	Peti	Dedi	Dada			-	-
Step %s.	-	-	MINH3		-		Sec. 1	Sec.1	Set.3	Avg. SetL
6.000	0.0	0.000	0.00	6.00	-	-	-		-	-
1.000	1.0	0.707		6.95	7.02		0.000	0.000	1	0.000
2.000	-	-	0.01	6.28	6.66	_	8.670	0.360		0.51
-	7.9	5.651	0.08	6.01	6.47		0.940	0.550		0.74
0.050	15.8	11.304	0.36	5.71	6.27		1.240	0.750		0.99
4.000	24.7	17.663	0.25	5.45	6.06		1.500	0.960	-	-
5.000	32.6	23.315	0.33	5.27	5.89	-	1.680		-	1.23
6.000	41.5	29.673	0.42	5.07	5.72	-		1.130	-	1.40
7.000	49.4	35.325	0.50	4.92		-	1.880	1.300	-	1.59
1.000	24.7	17.663	0.25	-	5.56	-	2.030	1.460	1	1.74
9.000				4.98	5.57	1.5	1.970	1.450	Sec.	1.71
	12.4	8.831	0.12	5.12	5.61	1.	1.830	1.410		1.61
9.600	1.0	0.707	0.01	5.25	5.69	1.00	1.700	1.330	150	1.5
10.000	LO	0.707	0.01	5.25	5.69		1.700	1.330	-	1.5
11.000	7.9	5.652	8.08	5.24	5.68	-	1.710	-	-	-
12.000	15.8	11.304	0.16	5.22	5.65	-		1.340	-	1.5
13.000	24.7	Contraction of the				-	1.730	1.370		1.5
		17.663	0.25	5.13	5.61		1.820	1.410		1.6
14.000	32.6	23,315	0.33	5.06	5.57	1 23	1.890	1.450		1.6
15.000	41.5	29.673	0.42	4.96	5.54		1.990	1.480	1	1.7


			45	he .
8.7 a	8.35	1.45438		
8.3 +1	0.15	8.96375	6.49963	•1
8.701	8.35	1.68444	8.14944	12.2
0.3eg	0.15	1.535		•.3
D (mm)	309			
En	91.72			
Ev.	391.12			
um (Sq.mt	8.87665		1	-

AGR

526+068

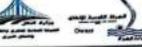
Real 1.30

LOAD UN LOAD RE LOAD

Lab. Specialist Name : Sign :

Lab. Engineer - Name: Shehad Hameli · Mige ... 150

Consultant Engineer Name: Hasson Sign :


الممسوحة ضوئيا ہـ CamScanner

COMPANY
CARSENS STREET, BALLARS

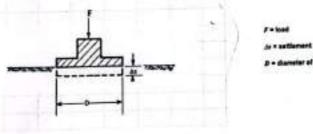
Г

	A REAL PROPERTY OF	Plate Loa	d Test Results		
Layer:	0.50 +			-	
Station:	526+000	TO	1201100	COMPANY	AGR
Date:	05-06-23		526+100	Location	\$26+885

Landing	Les	4 Loud	Stress	Dial 1	Dial 2	Dist	Sert. 1		-	Arg
Stage Na	Bur	KN	MINH				Sent.1	Sen. 2	Sett.3	fort.
0.000	0.0	0.000	0.00	6.24	6.88		-			-
1.000	1.0	0.707	0.01	-		-	0.000	0.000		0.000
2.000	7.9	5.652	0.08	6.03	6.68	2	8,210	0.200		0.205
0.080	15.8	the state of the s	-	5.80	6.49		0.440	0.390		0.41
4.000	-	1210.01		5.63	6.37	15	8.619	0.510		0.560
	24.7		0.25	5.41	6.20	13	0.830	0.680	0	0.75
5.000	32.6	23.315	0.33	5.30	6.11	5.00	0.940	0.770		0.85
6.000	41.5	29.673	0.42	5.17	5.97		1.070	0.910		0.99
7.000	49.4	35,325	0.50	5.06	5.82		1.180	1.060	-	-
8.000	24.7	17.663	0.25	5.12	5.86	The second	1.120		-	1.12
9.000	12.4	8.831	0.12	5,26	5.89	Contraction of the	the second second	1.020	1200	1.07
9.000	1.0	0.707	0.01	5.46		1000	0.980	0.990	1	0.98
10.000	1.0	0.707			5.94	1000	0.780	0.940	1	0.86
11.000			0.01	5.46	5.94		0.780	0.940		0.86
a sure of the local division of the local di	7.9	5.652	0.08	5.44	5.91	1	0.800	0.970	1	0.88
12.000	15.8	11.304	0.16	5.34	5.88		0.900	1.000	1	0.95
13.000	24.7	17.663	0.25	5.23	5.84		1.010	1.040	-	1.02
14.000	32.6	23.315	0.33	5.16	5.82		1.080		-	-
15.000	41.5	29,673	0.42	5.09	5.80	-	-	1.060	-	1.07
-	-	10		2.47	3.80		1.150	1.080	1.00	1.11

1000	- James La		45	40	
0.7	8.35	0.87615			
9.3	0.15	0.54188	0.33438	0.3	
0.701	0.35	1.08			
0.3e1	9.15	4.91	0.17	0.3	
D (mm)	300				
Ev.	134.58				
ENT .	344.71				
Arsa (Sq.m)	8.07065	-	-	-	

Ev2/Ex1 1.97


Lab. Specialist Name :

Name :

Lab, Eng **Consultant Engineer** Name: - SLe Hamidi Л Hassan Name : Sign : As Sign : 2023

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

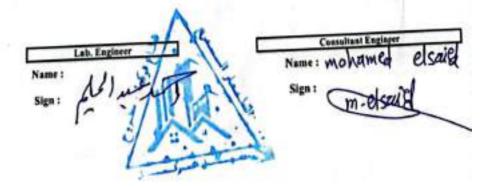
The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

neter =	300m	1	Street	Dull	Diel 3	Dial 3	Sett.1	Set.1	Sett , 3	Avg.
Loading	Load	Loud		-	-	-				-
Stage No.	Bar	KN	MNM2		_	-	0.000	0.000		0.000
0.000	0.0	0.000	0.00	20.00	20.00	_		0.050		0.075
1.000	2.1	0.707	0.01	19.90	19.95	_	0.100			-
2.000	17.1	5.652	0.08	19.55	19.71		0.450	0.296	-	0.370
0.080	34.2	11.304	0.16	19.27	19.55		0.730	0.450		0.590
4.000	53.3	17.663	0.25	19.13	19.48		0.870	0.520		0.69
	70.5	23.315	0.33	19.00	19,40		1.000	0.600		0.80
5.000		29.673	0.42	18.90	19.32		1.100	0.680		0.89
6.000	89.8			18.71	19.20		1.290	0.800		1.04
7.000	106.8	35,325	0.50			-		0,780		1.01
8.000	53.4	17.663	0.25	18.75	19.22	_	1.250		-	
9.000	26.7	8.831	0.12	18.80	19.23		1.200	0.770	-	0.98
9.000	2.1	0,707	0.01	18.86	19.35		1.140	0.650		0.89
10.000	2.1	0.707	0.01	18.86	19,35		1.140	0.650		0.89
			0.08	18.85	19.33		1.150	0.670		0.91
11.000	17.1	5.652				-	1.160	0.680		0.93
12.000	34.3	11.304	0.16	18.84	19.32	-			-	0.9
13.000	53.3	17.663	0.25	18.81	19.30		1,190	0.700	-	-
14.000	70.5	23.315	0.33	18.80	19.26		1.200	9.740	1	0.9
15.000	89.8	29.673	0.42	18.74	19.20		1.260	0.800		1.0

			45	14	
0.7 01	0.35	0.75438		0.2	
0.3 0,	0.15	0.5615			
0.70,	8.35	0.98333		0.2	
0.3a	0.15	0.925		-	
D (mm)	300				
Eri	234.53				
EN	771.45				
Ares (Sq.m)	4.87965		20-12		

	_	
Experi	3.29	


	E. = 0.75 · D · da / ds
r.	= deformation modulus
0.	Ioad increment
0.	- settlement increment
D	· diameter of the plate, generally 0.30 m

MN/M2 6.90 652 0.00 0.88 0.20 8.33 8.000 8,200 8.400 Sett. 8.600 0.600 1.000

Sign :

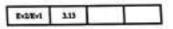
For this calculation do and d e usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$ 1.2

COMPANY

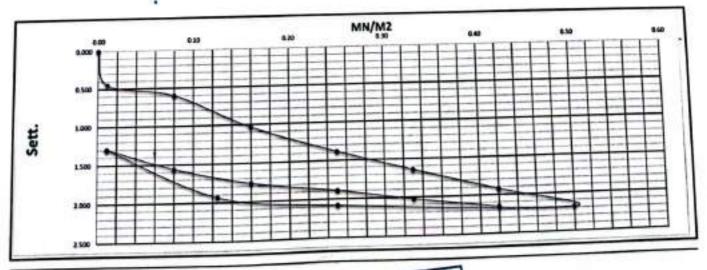
SAMPLE LOCATION

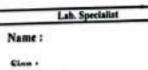
Plate Load Test Results

527+300


Layer: Station: Date: -1.5 527+200 TO 3\6\2023

Londing	Losd	Loud	Street	DWI	Dial 2	Dial 3	Sen.1	Sec. 2	Sett. 3	Avg.
										Sett
Stage No.	Bar	KN	MNMI	-	-	1985	-	, mini		-
0.000	0.0	0.000	0.00	14.07	17.20	1	0.000	0.000		0.000
1.000	2.4	0.707	0.01	13.62	16.75		0.450	0.450	1.00	0.450
2.000	18.8	5.652	0.08	13.59	16.57	1.10	0.570	0.630	E	0.600
0.080	37.7	11.304	. 0.16	13.10	16.10	199	0.970	1.100		1.035
4.000	58.9	17.663	0.25	12.79	15.71	3	1.280	1.490	1-5	1.385
5.000	77.7	23.315	0.33	12.54	15.44	100	1.530	1.760		1.645
6.000	98.9	29.673	0.42	12.26	15.16		1.810	2.040	100	1.925
7.000	117.8	35.325	0.50	12.00	14.90	1	2.070	2.300		2.185
8.000	58.9	17.663	0.25	12.12	14.98	TELL.	1.950	2.220		2.085
9.000	29.4	8,831	0.12	12.27	15.13	124	1.800	2.070		1.935
9.000	2,4	0.707	0.01	12.79	15.89	20	1.280	1.310		1.29
10.000	2.4	0.707	* 0.01	12.79	15.89	1	1.280	1.310	1	1.29
11.000	18.8	5.652	0,08	12.54	15.61		1.530	1.590		1.56
12.000	37.7	11.304	0.16	12.32	15.42		1.750	1.780		1.76
13.000	58.9	17.663	0.25	12.18	15.30		1.890	1.900		1,89
14.000	77.7	23.315	0.33	12.04	15.18		2.030	2.020		2.02
15.000	98.9	29.673	0.42	11.90	15.06	The D	2.170	2.140		2.15


			AS	40
0.7 01	0.35	1.6975		
0.3 m	0.15	0.98062	0./1990	
0.7m	0.35	2.05389	0.22886	8.2
6301	0.15	1.82563	e.msse	
D(mm)	300			
Evi	62.77			
Ev ₂	196.62			
Ares (Sq.mit	8.07065		10 C C	15


AGR

\$17+260

الممسوحة ضوئيا بـ CamScanner

and the second s
and a derivative of the
STATUS OF STREET, STREET,

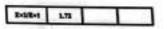
TO

Plate Load Test Results

527+500

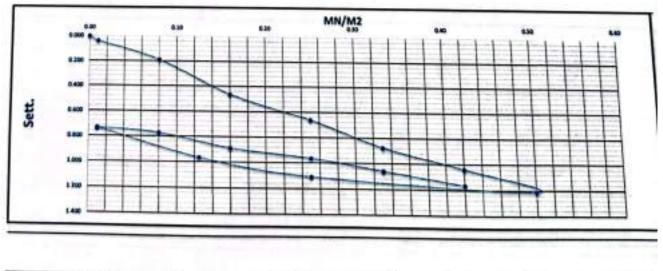
COMPANY	
---------	--

Layer: Station: Date:


Londing	Land	Last	-	Dist	Dist 1	Dial 3	Bell I	Sec. 1	Sec.3	Ark.
Stage Na.	Ber	NON.	MINIME	-	-	-	-		-	-
9.000	8.0	0.000	0.00	7.63	7.65		0.000	9.000	100	8.008
1.000	1.0	8.707	0.01	7.60	7.60	14.7	0.830	8.050		0.049
2.000	7.9	5.652	80.08	7.43	7.47		0.200	0.180		0.190
8.680	15.8	11.304	0.16	7.18	7.17		0.450	0.480	1	0.465
4.000	24.7	17.663	0.25	7.04	6.91		0.590	0.740		0.665
5.000	32.6	23,315	0.33	6.92	6.61	1	0.710	1.040		0.875
6.000	41.5	29.673	8.42	6.82	6.38	11	0.810	1.270		1.048
7.090	49.4	35.325	0.50	6.63	6.23	1.1	1.000	1.420		1.210
R.000	24.7	17.663	0.25	6.70	6.36	(ALD)	0.930	1.290		1.110
9.000	12.4	8.831	8.12	6.82	6.53	1245	0.810	1.120		0.965
9.000	1.0	0.707	0.01	7.03	6.78	124	0.600	0.870		0.735
10.000	1.0	0.707	8.01	7.03	6.78	100	0.600	0.870		0.73
11.000	7.9	5.652	0.05	6.99	6.74	. Line La	0.640	0.910		0.77
12.000	15.8	11.304	0.16	6.88	6.62	1000	0.750	1.030		0.89
13.000	24.7	17.663	0.25	6.81	6.54	1	0.820	1.110	1	0.96
14.000	32.6	23.315	0.33	6.71	6.45	- Martin	0.920	1.20	0	1.06
15.000	41.5	29.673	0.42	6.61	6.34		1.020	1.31	0	1.16

-1.5

31/05/2023


527+300

			A\$	
8.7	1.35	0.89125		
83 .	8.15	8.43063	0.40083	
6.7ez	8.35	1.86333		
0.30	8.15	4.815	0.36833	•3
D (mm)	300			
Es,	97.69			
In	161,78			
Ares (Bq.m				

LOAD RE LOAD

Lab. Specialist Lab. Engineer Consultant Engineer Hassan Name : Name : Name : Sign : Sign : ركزى روعالقطارالسريع/فوكة - مع

Plate Load Test Results

0

Layer: Station: Date:

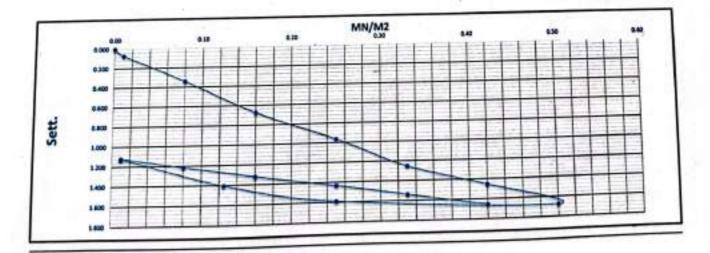
-1.5 527+300 31/05/2023

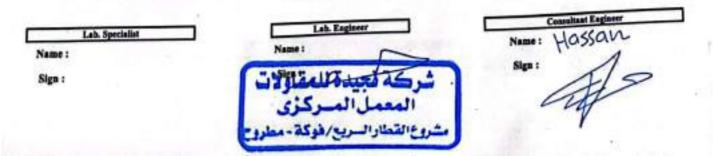
TO 527+500

Louis	Leni	Lood	Street	Dial I	Field 3	Dial 3	Sen. 1	Set. 1	Sen.3	Arg.
Stage No.	Bar	KN	MNMI			-		-		-
0.000	0.0	0.000	0.00	7.61	6.30	- 3	0.000	0.000	2	8.090
1.000	1.0	8.707	0.01	7.56	6.21	1	0.050	0.090	100	0.070
2.000	7.9	5.652	0.05	7.27	5.96	12-3	0.340	0.340		0.340
0.080	15.8	11.304	0.16	6.88	5.68	100	0.730	0.620	1.25	0.675
4.000	24.7	17.663	0.25	6.55	5.43		1.069	0.870	-	0.965
5.000	32.6	23.315	0.33	6.23	5.17		1.380	1.130		1.255
6.000	41.5	29.673	0.42	6.02	4.98		1.590	1.320		1.45
7.000	49.4	35.325	0.50	5.80	4.76	1 8	1.810	1.540	120	1.67
8.000	24.7	17.663	0.25	5.91	4.82	math	1.700	1.480	100	1.59
9.000	12.4	8.831	0.12	6.15	4.95	1	1,460	1.350	100	1.40
9.000	1.0	0.707	0.01	6.45	5.22	Sec.	1.169	1.060	126	1.12
10.000	1.0	0.707	0.01	6.45	5.22		1.160	1.080		1.12
11.000	7.9	5.652	80.0	6.30	5.18	-	1.310	1.120		1.21
12.000	15.8	11.304	0.16	6.14	5.13		1.470	1.170		1.32
13.000	24.7	17.663	0.25	6.01	5.03		1.600	1.270		1.43
14.000	32.6	23.315	0.33	5.90	4.93	1-17	1.710	1.370		1.54
15.000	41.5	29.673	0.42	5.77	4.83		1.840	1.470		1.65

			45	44	
0.7 0	8.35	1.2625			
83 41	0.15	8.43313		-	
8.701	8.35	1.56556	6556 6,25555		
4.3m	8,15	1.31001	6.13555	-	
D(nn)	300			£	
Ev.	71.58		1		
Ev,	176.09			1	
Ares (5q.m)	-		16.		

AGR


517+450


E+3.8+1	1.46	

COMPANY

Location

COMPANY

Location

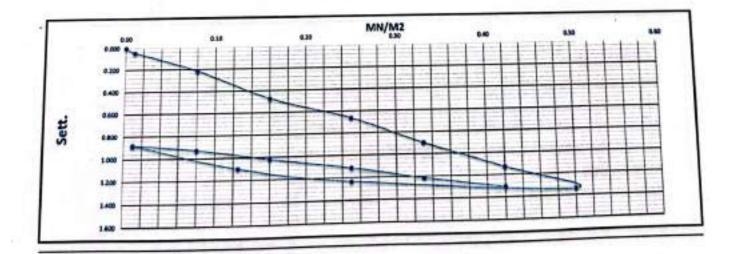
Layer: Station: Date:

-1.5	
527+500	
31/05/2023	-

5 TO 527+700

Leading	Losi	Losd	-	DMI	1411	Dials	Sec. 1	8m.1	Seet . 3	Arg.
Sings No.	Bar	KN	MINING	-		-	-	-	-	-
0.000	0.0	0.000	0.00	7.95	7.34	10.7	0.000	0.000		0.000
1.000	1.0	8,707	0.01	7.92	7.28	10-54	0.030	0.060	11	0.045
2.000	7.9	5.651	0.08	7.79	7.07	2.12	0.168	0.270		0.215
0.080	15.8	11.304	0.16	7,58	6.76	100	0.370	0.580	1	0.475
4.000	24.7	17.663	0.25	7.43	6.53	1 2	0.520	0.810	8	0.665
5.000	32.6	23.315	0.33	7.25	6.24	11.15	0,700	1.100		0.900
6.000	41.5	29.673	0.42	7.09	5.94	100	0.860	1,400	1	1.134
7.000	49.4	35.325	0.50	6.94	5.67	47.5	1.010	1.670		1.34
\$.000	24.7	17.663	0.25	7.02	5.80	No.	0.930	1.540		1.23
9.000	12.4	8.831	8,12	7.14	5.95	536	0.810	1.390		1.10
9.000	1.0	6.707	0.01	7.35	6.18	Fins	0.600	1.160	10	0.88
10.000	1.0	0.707	0.01	7.35	6.18		0.600	1.160		0.85
11.000	7.9	5.652	0.08	7.31	6.12		0.640	1.220		0.93
12.000	15.8	11.304	0.16	7.23	6.02	-	0.728	1.320		1.02
13.000	24.7	17.663	0.25	7.15	5.91	100	0.800	1.430		1.11
14.000	32.6	23.315	0.33	7.05	5.81	104	0.900	1.530		1.21
15.000	41.5	29.673	8.42	6.96	5.71	1.1-51	0.998	1.630		1.3

	_		M		
0.7 0,	0.35	9.94635			
0.3 -	8.15	8.4425	Cools	-	
8.701	0.35	1.23411		·	
4.30	8.15	6.99001	10.25611	-	
D (mm)	300	1			
En	89.33	1			
Evi	175.71	r			
Area (Sa mi					


AGR

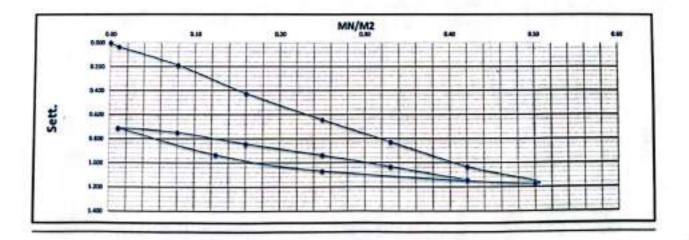
537+568

V

E+38+1 1.97

Consultant Engineer Lab. Engineer Name: Hassan С Lab. Specialist Name : Name : Sign : Jas, Sign : مركمة للبينان مسركري المعمل المسركزي روع القطار السريع/فوكة - معلوا

Plate Load Test Results

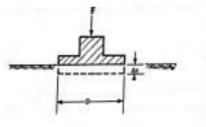

Layer:	-1.5			COMPANY	AGR
Station:	527+500	TO	527+700	Location	527+660
Date:	31/05/2023	10			0.5

Londing	Lond	Last	Stream	Del I	3Nd 3	Dist	Set.1	Set. 1	Set.3	Arg.
Stage No.	Ber	KM.	MNNG	-		-	-	-	-	-
0.000	0.0	0.000	0.00	7.09	7.19		0.000	0.000		0.000
1.000	1.0	0.707	0.01	7.04	7.17		0.650	0.020		0.035
2.000	7.9	5.652	0.08	6.83	7.08	1.1	8,279	0.110	1	0.190
0.080	15.8	11.304	0.16	6.53	6.90		0.568	0.290		0.425
4.000	24.7	17.663	0.25	6.27	6.72	1 2	0.820	8.479		0.645
5.000	32.6	23.315	6.33	6.06	6.56	11.2	1.030	0.630		0.830
6.000	41.5	29.673	0.42	5.84	6.37	11000	1.250	8.820		1.035
7.000	49,4	35.325	0.50	5.69	6.24	4 4	1.409	0.950		1.175
8.000	24.7	17.663	0.25	5.83	6.31	-	1.260	0.880	580	1.070
9.000	12.4	8.831	0.12	5.97	6.44	100	1.129	0.750		0.935
9.000	1.0	0.707	0.01	6.18	6.68	-	0.910	0.510	1.2	0.710
10.000	1.0	0.707	0.01	6.18	6.68	1	0.910	0.510		0.710
11.000	7.9	5.652	0.08	6.13	6.65	20	0.960	0.540	1	0.750
12.000	15.8	11.304	0.16	6.83	6.56	- and	1.060	0.630		0.845
13.000	24.7	17.663	0.25	5.93	6.47		1.160	0.720	1	0.940
14.000	32.6	23.315	8.33	5.83	6.38	100	1.260	0.810	100	1.035
15.000	41.5	29.673	0.42	5.71	6.28	1217	1.380	0.910		1.145

2			48	M
8.7 ej	0.35	4.9125		
83 e1	0.15	4.39563	0.31666	
0.703	0.35	1.05144		
6.30,	0.15	8.79	0.36944	
D (mm)	300			
Evi	87.84	<u>R</u>		
En.	167.01-			
Area (Sq.m)	1.07945			

Delited.	1.43	
1 - C.S.		

LOAD UNLOAD E LOAD



.

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

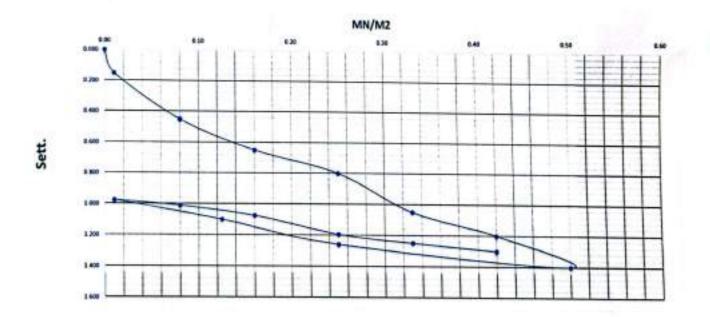
The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

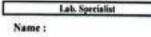
F = load Ar = settlement B = diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

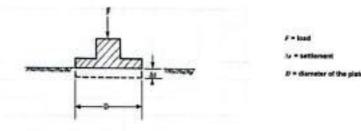
Distantiant	300mm
Diameter =	200mm


									4
Losd	Land	Stress	Dial 1	Dial 2	Dial 3	Sett.1	Sett. 2	Sett. 3	Avg. Sett.
Bar	KN	MNM2					-		
0.0	0.000	0.00	13.30	13,10		0.000	0.000		0.000
2.4	0.707	0.01	13.20	12.90		0.100	0.200		0.150
18.8	5.652	0.08	12.95	12.55		0.350	0.550		0.450
37.7	11.304	0.16	12.80	12.30	行三百	0.500	0.800		0.650
58.9	17.663	0.25	12.70	12.10		0.600	1.000		0.800
77.7	23.315	0.33	12.60	11.70	8 3	0.700	1.400		1.050
98.9	29.673	0.42	12.50	11.50		0.800	1.600		1.200
117.8	35.325	0.50	12.30	11.30		1.000	1.800		1.409
58.9	17.663	0.25	12.50	11.38		0.800	1.720		1.260
29.4		0.12	12.65	11.55		0.650	1.550		1.100
2.4		0.01	12.80	11.65		0.500	1.450		0.975
		0.01	12.80	11.65		0.500	1.450	1	0.975
				11.63		0.550	1.470		1.010
						0.600	1.550		1.075
						0.740	1.650		1.195
						0.800	1.700	1	1.250
-						0.850			1.300
	Bar 0.0 2.4 18.8 37.7 58.9 77.7 98.9 117.8 58.9 29.4 2.4 18.8 37.7 58.9 29.4 2.4 18.8 37.7 58.9 77.7	Bas KN 0.0 0.000 2.4 0.707 18.8 5.652 37.7 11.304 58.9 17.663 77.7 23.315 98.9 29.673 117.8 35.325 58.9 17.663 29.4 8.831 2.4 0.707 18.8 5.652 37.7 11.304 58.9 17.663 29.4 8.707 2.4 0.707 18.8 5.652 37.7 11.304 58.9 17.663 77.7 23.315	Bas KN MKN/M2 0.0 0.000 0.001 2.4 0.707 0.01 18.8 5.652 0.08 37.7 11.304 0.16 58.9 17.663 0.25 77.7 23.315 0.33 98.9 29.673 0.42 117.8 35.325 0.50 58.9 17.663 0.25 29.4 8.831 0.12 2.4 0.707 0.01 18.8 5.652 0.08 37.7 11.304 0.12 29.4 8.831 0.12 2.4 0.707 0.01 18.8 5.652 0.08 37.7 11.304 0.16 58.9 17.663 0.25 77.7 23.315 0.33	Bar KN MINNE mm 0.0 0.000 0.00 13.30 2.4 0.707 0.01 13.20 18.8 5.652 0.08 12.95 37.7 11.304 0.16 12.80 58.9 17.663 0.25 12.70 77.7 23.315 0.33 12.60 98.9 29.673 0.42 12.50 117.8 35.325 0.50 12.30 58.9 17.663 0.25 12.50 117.8 35.325 0.50 12.30 58.9 17.663 0.25 12.50 29.4 8.831 0.12 12.65 2.4 0.707 0.01 12.80 2.4 0.707 0.01 12.80 18.8 5.652 0.08 12.75 37.7 11.304 0.16 12.70 58.9 17.663 0.25 12.56 37.7 11.304 0.16	Bar KN MAXMU2 ma mm 0.0 0.000 0.00 13.30 13.10 2.4 0.707 0.01 13.20 12.90 18.8 5.652 0.08 12.95 12.55 37.7 11.304 0.16 12.80 12.30 58.9 17.663 0.25 12.70 12.10 77.7 23.315 0.33 12.60 11.70 98.9 29.673 0.42 12.50 11.50 117.8 35.325 0.50 12.30 11.30 58.9 17.663 0.25 12.50 11.30 58.9 17.663 0.25 12.50 11.30 58.9 17.663 0.25 12.50 11.38 29.4 8.831 0.12 12.65 11.55 2.4 0.707 0.01 12.80 11.65 18.8 5.652 0.08 12.75 11.63 37.7 11.304 <td< td=""><td>Bar KN MNNM2 mm mm mm 0.0 0.000 0.00 13.30 13.10 12.90 2.4 0.707 0.01 13.20 12.90 18.8 5.652 0.08 12.95 12.55 37.7 11.304 0.16 12.80 12.30 13.10 58.9 17.663 0.25 12.70 12.10 12.30 77.7 23.315 0.33 12.60 11.70 11.88 98.9 29.673 0.42 12.50 11.50 11.70 98.9 17.663 0.25 12.50 11.30 13.90 58.9 17.663 0.25 12.50 11.38 14.0 29.4 8.831 0.12 12.65 11.55 14.0 24 0.707 0.01 12.80 11.65 14.0 24 0.707 0.01 12.80 11.65 15.0 18.8 5.652 0.08 12.75 <td< td=""><td>Norm Norm <th< td=""><td>Late Joint Late Joint Joint</td><td>Land Land Jame <th< td=""></th<></td></th<></td></td<></td></td<>	Bar KN MNNM2 mm mm mm 0.0 0.000 0.00 13.30 13.10 12.90 2.4 0.707 0.01 13.20 12.90 18.8 5.652 0.08 12.95 12.55 37.7 11.304 0.16 12.80 12.30 13.10 58.9 17.663 0.25 12.70 12.10 12.30 77.7 23.315 0.33 12.60 11.70 11.88 98.9 29.673 0.42 12.50 11.50 11.70 98.9 17.663 0.25 12.50 11.30 13.90 58.9 17.663 0.25 12.50 11.38 14.0 29.4 8.831 0.12 12.65 11.55 14.0 24 0.707 0.01 12.80 11.65 14.0 24 0.707 0.01 12.80 11.65 15.0 18.8 5.652 0.08 12.75 <td< td=""><td>Norm Norm <th< td=""><td>Late Joint Late Joint Joint</td><td>Land Land Jame <th< td=""></th<></td></th<></td></td<>	Norm Norm <th< td=""><td>Late Joint Late Joint Joint</td><td>Land Land Jame <th< td=""></th<></td></th<>	Late Joint Joint	Land Land Jame Jame <th< td=""></th<>


			AS	3.0	
6.7 e ₁	0.35	1.025	0.4	0.2	
63 ez	0.15	0.625			
0.701	0.35	1.26111	0.31611	0.2	
0.301	0.15	1.045	0		
D(mm)	300				
Evi	112.50				
Evj	208.23	1			
Area (So. w)	0.07965		10000	1.94	

	-	-	-
Ev1/Ev1	1.85		
Enancial			

1	r, = 0.75 - D - Ad / As
£.,	= deformation modulus
do	= load increment
41	= settlement increment
D	= diameter of the plate, generally 0.30 m

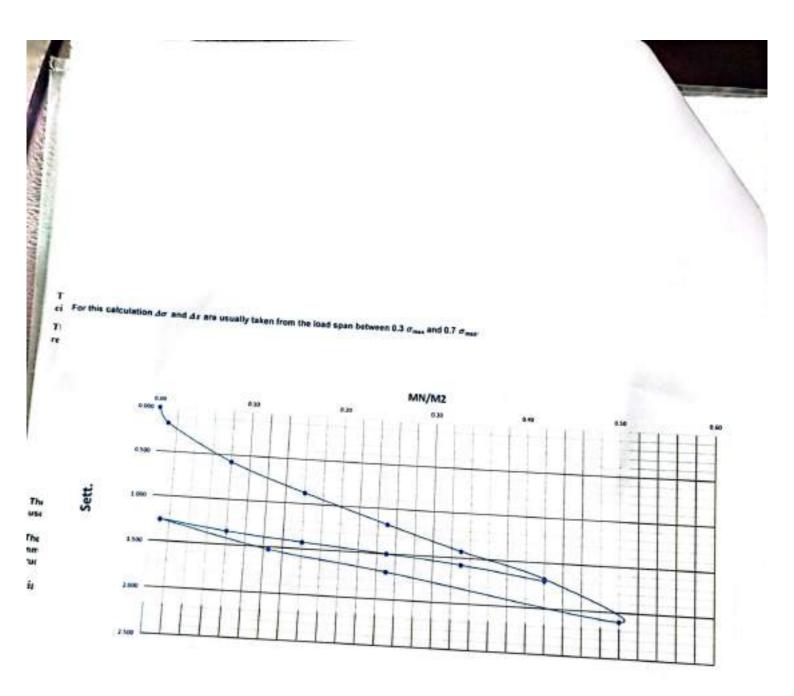

Sign :

Consultant Engineer Name : fl0.550 Sign :

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

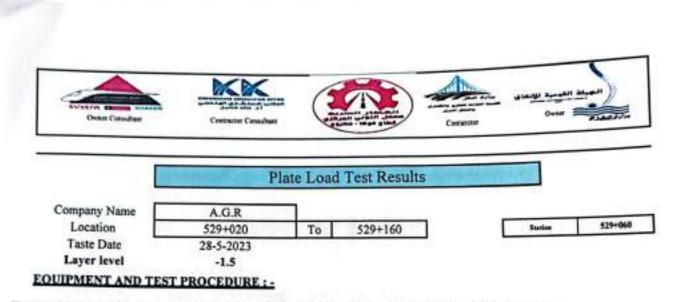
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excevator or a roller usually serve as counterweight for the hydraulic jack

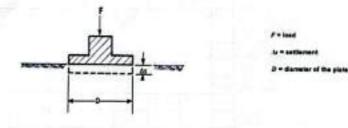

Diameter = 300mm

Loading	Losd	Loud	Stress	Dial 1	Diel 2	Dial 3	Sett, 1	Sec. 1	Sett.3	Avg. Sett.
Stage No.	Bar	KN	MN/M2	-	-		-		-	
0.000	0.0	0.000	0.00	17.90	17.30		0.000	0.000		0.000
1.000	2.4	0.707	0.01	17.75	17.10		0.150	0.200		0.17
2.000	18.8	5.652	0.08	17.30	16.75		0.600	0.550		0.575
0.080	37.7	11.304	0.16	16.95	16.50		0.950	0.800		0.87
4.000	58.9	17.663	0.25	16.60	16.25		1.300	1.050		1.17
5.000	77.7	23.315	0.33	16.35	16.00		1.550	1.300		1.42
6.000	98.9	29.673	0.42	16.05	15.80		1.850	1.500		1.67
7.000	117.8	35.325	0.50	15.60	15.40		2.300	1.900		2.10
8.000	58.9	17.663	0.25	16.00	15.80	-	1.900	1.500		1.70
9.000	29.4	8.831	0.12	16.15	16.00		1.750	1.300		1.52
9.000	2.4	0.707	0.01	16.39	16.30	1000	1.510	1.000		1.25
10.000	2.4	0.707	0.01	16.39	16.30		1.510	1.000	-	1.25
11.000	18.8	5.652	0.08	16.30	16.20		1.600	1.100		1.35
12.000	37.7	11.304	0.16	16.25	16.10		1.650	1.200		1.41
13.000	58.9	17.663	0.25	16.20	16.00		1.700	1.300		1.50
14.000	77.7	23.315	0.33	16.10	15.95		1.800	1.350		1.57
15.000	98.9	29.673	0.42	15.97	15.83		1.930	1.470		1.70

Summer of the	Lune 3		45	Ae .	
0.7 a,	0.35	1.30313			
0.3 e,	0,15	0.8375	0,46562	0.2	
0,702	0.35	1.60278	0.15777	1000	
0.302	0.15	1.44501	u.ism	0.2	
D(mm)	300				
Evi	96.64				
Erz	285.23 -	1			
Area (Sq.m)	8,87965				

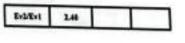
Evalert	1.95		
---------	------	--	--

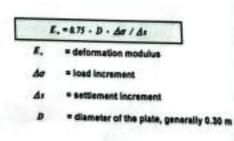

1	1. = 0.73 - D - Aσ / As
E,	= deformation modulus
Δσ	= load increment
4.	= settlement increment
D	= diameter of the plate, generally 0.30 m


Lab. Specialist Name :

Sign :

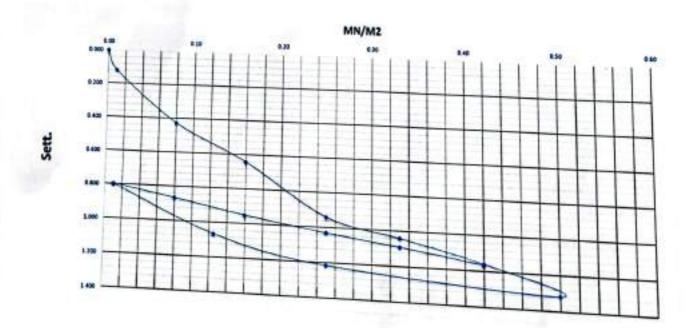
The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.


The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used


The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excevator or a roller usually serve as counterweight for the hydraulic jack.

Diameter = 300mm

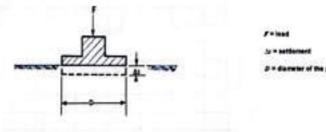
Loading	Last	Losd	Stress	Dial I	Dial 2	Dial 3	Sen. 1	Sett. 2	Set . 3	Avg. Sell.
Stepr No.	Bar	KN	MN/N3	-	-	-	-	-		-
0.000	0.0	0.000	0.00	15.85	13.68		0.000	0.000		0.000
1.000	2.4	0.707	0.01	15.75	13.54		0.100	0.140		0.120
2.000	18.8	5.652	0.08	15.58	13.10		0.270	0.580		0.425
0.080	37.7	11.304	0.16	15.45	12.80	1	0.400	0.880		0.640
4.000	58.9	17.663	0.25	15.05	12.60	1	0.800	1.080		0.940
5.000	77.7	23.315	0.33	15.00	12.45	6	0.850	1.230	100	1.040
6.000	98.9	29.673	0.42	14.88	12.33	1 1	0.970	1.350		1.160
7.000	117.8	35.325	0.50	14.70	12.20		1.150	1.480	1	1.315
8.000	58.9	17.663	0.25	14.80	12.30		1.050	1.380		1.215
9.000	29.4	8.831	0.12	14.95	12.45		0.900	1.230	1	1.065
9.000	2.4	0.707	0.01	15.30	12.64		0.550	1.040		0.795
10.000	2.4	0.707	0.01	15.30	12.64	1	0.550	1.040		0.79
11.000	18.8	5.652	0.08	15.20	12.60		0.650	1.080	-	0.86
12.000	37.7	11.304	0.16	15.10	12.53	127	0.750	1.150	-	-
13.000	58.9	17.663	0.25	15.00	12.47		0.850		-	0.95
14.000	77.7	23.315	0.33	14.95	12.40			1.210	+	1.03
15.000	98.9	-	-			-	0.900	1.280	-	1.09
	79.7	29.673	0.42	14.90	12.30	16	0.950	1.380		1.16


-		1	45	he.
0.7 0,	0.35	1.02438		
0.3 e1	0.15	0.61313	0.41125	0.2
0,701	0.35	1,10667		1
0.3e1	0.15	0.93501	0.17166	0.1
D (mm)	300			
Evi	109.42			
Ev ₁	262.15	V		
Ares (Sq.m)	8.07045			-

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

. . .

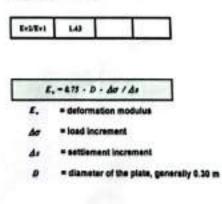
15 \$10

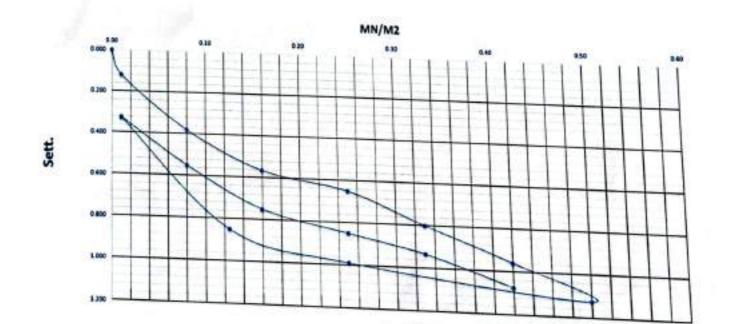

asultan: gineer Name : Hassan Sign : As

A.

C D

The load is applied to a circular rigid steel bearing plate by a bydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.


The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used


The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excevator or a roller usually serve as counterweight for the hydraulic jack

	Diameter =	= 300mm
--	------------	---------

Landing	Land	Losd	Sires	Dial 1	Diel 3	Dial 3	Sen. 1	Sen. 1	Sesi . 3	Avg.
Stage No.	Bar	KN	MNNI					-		-
0.000	0.0	0.000	0.00	12.10	11.10	4	0.000	0.000		0.000
1.000	2.4	6.707	0.01	11.98	10.98	8 3	0.120	0.120		0.120
2.000	18.8	5.652	0.08	11.70	10.74		0.400	0.360		0.380
0.080	37.7	11.304	0.16	11.50	10.57		0.600	0.530		0.565
4.000	58.9	17.663	0.25	11.40	10.50		0.700	0.600		0.650
5.000	77.7	23.315	0.33	11.25	10.35		0.850	0.750		0.800
6.000	98.9	29.673	0.42	11.08	10.20		1.020	0.900		0.960
7.000	117.8	35.325	0.50	10.90	10.05		1.200	1.050		1.125
8.000	58.9	17.663	0.25	11.02	10.20		1.080	0.900		0.990
9.000	29.4	8.831	0.12	11.20	10.30	1	0.900	0.800		0.850
9.000	2.4	0.707	0.01	11.80	10.75	1	0.300	0.350		0.325
10.000	2.4	0.707	0.01	11.80	10.75	1	0_300	0.350		0.325
11.000	18.8	5.652	0.08	11.60	10.50	1	0.500	0.600		0.550
12.000	37.7	11.304	0.16	11.35	10.35	1	0.750	0.750		0.750
13.000	58.9	17.663	0.25	11.20	10.30	5 - 6	0.900	0.800		0.850
14.000	77.7	23.315	0.33	11.15	10.18	8	0.950	0.920		0.935
15.000	98.9	29.673	0.42	11.00	10.05	1.	1.100	1.050		1.075

	2 XI-		15	h#	
0.7 e1	0.35	0.81563			
0.3 0,	0.15	0.54188	0.37375	0.1	
0.701	0.35	0.96611		0.3	
0.Je1	0.15	0.77502	0.19109		
D(mm)	300	2 .			
Evi	164.38				
Evj	235.49	1			
Arm (5q.m)	4.87965		-		

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Sign :

Hassan Name : Sign :

12100

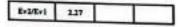
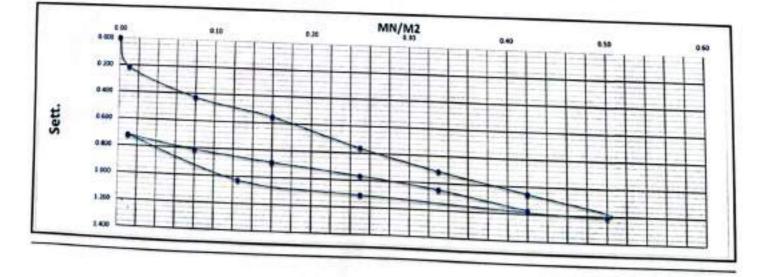

Contarctor

Plate Load Test Results


Layer:	EMBANKMEN	T -1.5		COMPANY	AGR COMPANY
Station:	529+700	TO	529+800	Location	529+740
Date:	25-05-23			Lovenion	

Loading	Load	Load	Stress	Diel 1	Dist 2	Dial 3	Sett. 1	Seit 1	Sett.3	Avg.
Stage No.	Bar	KN	MNMB	-	-	-			-	Sett.
0.000	0.0	9.000	0.00	6.39	7.39		0.000	0.000	-	0.000
1.000	1.0	0.707	0.01	6.25	7.10		0.140	0.290		0.215
2.000	7.9	5.652	0.08	6.11	6.81	-	0.280	0.580	-	-
0.080	15.8	11.304	0.16	5.97	6.70		0.420	0.690	-	0.430
4.000	24.7	17.663	0.25	5.81	6.44		0.580			0.555
5.000	32.6	23.315	0.33	5.69	6.26	-	0.380	0.950		0.765
6.000	41.5	29.673	0.42	5.61	6.06	-		1.130	-	0.915
7.000	49.4	35.325	0.50	5.53	5.83	-	0.780	1.330	-	1.055
8.000	24.7	17.663	0.25	5.62	5.94	-	0.860	1.560		1.210
9.000	12.4	8.831	0.12			-	0.770	1.450	1.00	1.110
9.000	1.0	0.707	1107	5.67	6.05		0.720	1.340	1	1.03
10.000	1.0	Contract of the	0.01	5.83	6.51		0.560	0.880		0.720
11.000		0.707	0.01	5.83	6.51	5-11	0.560	0.880		0.720
	7.9	5.652	0.08	5.78	6.37		0.610	1.020		0.81
12.000	15.8	11.304	0.16	5.70	6.30	1 A	0.690	1.090		0.890
13.000	24.7	17.663	0.25	5.65	6.19		0.740	1.200	121	0.970
14.000	32.6	23.315	0.33	5.59	6.09		0.800	1.300	100	1.050
15.000	41.5	29.673	0.42	5.43	6.00		0.960	1.390		1.17

	-		45	24	
0.7 a	0.35	0.91938			
0.3 ø _i	0.15	0.53938	0.38	0.2	
0.701	0.35	1.07778		0,2	
0.301	0.15	0.91001	0.16777		
D(mm)	300				
Evi	118.42				
Evy	268.23	1.			
Area (Sq.m)	0.07065	1000	0	1000	

LOAD UN LOAD RE LOAD

Lab. Engineer

had Han

Name :

ign :

Lab. Specialist Name : Sign :

Sign : 155 202 وف القطار السريع/فوكة - مطرق

70

Consultant Engineer

Name: Hassan

Contactor

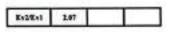
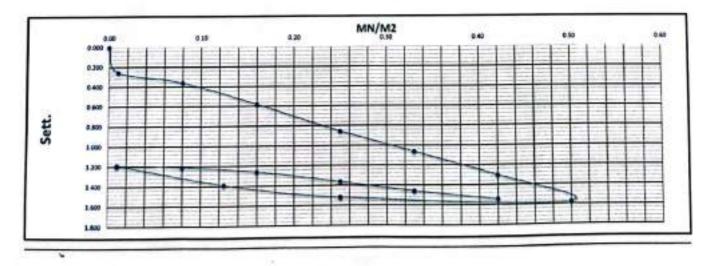

18

Plate Load Test Results


Layer:	EMBANKMENT	-1.5		COMPANY	AGR COMPANY
Station:	528+389	TO	528+389	Location	\$28+389
Date:	25-05-23				

Lording	Losi	Load	Stress	Dial 1	Dial 2	Dial 3	Sett. 1	Sett. 2	Sex.3	Avg.
Stage No.	Bar	KN	MNNI	-		-	-	-	-	-
0.000	0.0	0.000	0.90	6.22	6.32		0.000	0.000		0.000
1.000	1.0	0.707	0.01	6.02	6.01		0.200	0.310		0.255
2.000	7.9	5.652	0.08	5.93	5.89		0.290	0.430		0.360
0.080	15.8	11.304	0.16	5.75	5.63		0.470	0.690		0.580
4.000	24.7	17.663	0.25	5.49	5.34		0.730	0.950		0.855
5.000	32.6	23.315	0.33	5.31	5.10		0.910	1.220		1.065
6.000	41.5	29.673	0.42	5.12	4.81		1.100	1.510		1.305
7.000	49.4	35.325	0.50	4.93	4.46	814 - S	1.290	1.860		1.575
8.000	24.7	17.663	0.25	4.97	4.53	10.07	1.250	1.790	3	1.520
9.000	12.4	8.831	0.12	5.13	4.63	1000	1.090	1.690	100	1.39
9.000	1.0	0.707	0.01	5.33	4.83	1	0.890	1.490	100	1.19
10.000	1.0	0.707	0.01	5.33	4.83		0.890	1,490		1.19
11.000	7.9	5.652	0.08	5.32	4.80	1	0.900	1.520	1	1.210
12.000	15.8	11.304	0.16	5.27	4.75	1	0.950	1.570		1.26
13.000	24.7	17.663	0.25	5.15	4.66	200	1.070	1,660	1	1.36
14.000	32.6	23.315	0.33	5.04	4.58	Free	1.180	1.740	int.	1.46
15.000	41.5	29.673	0.42	4.95	4.50	8	1.270	1.820	1000	1.54

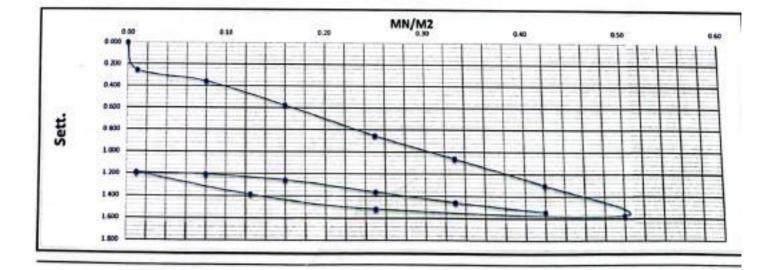
	10-00	1	45	44	
0.7 a ₁	0.35	1.06875	0.51625	0.2	
0.3 ej	0.15	0.5525	4.31444		
0.7e,	0.35	1.47889	0.24889	0.2	
0,3e1	0.15	1.23	0.24687		
D (mm)	360				
Ev.	87.17				
Ev.	184.81	1			
Ares (Sa mà	1.07965			11	

Contactor

And After Owner

Plate Load Test Results

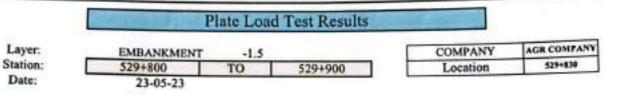
Layer:	EMBANKMENT	0.00		COMPANY	AGR COMPANY
Station:	528+389	TO	38+389	Location	528+389
Date:	25-05-23				


Looding	Land	Losd	Stress	Dial 1	Dial 2	Dist 3	Sett. 1	Sec. 1	Sen.3	Avg.
Stage No.	Bar	KN	MNND	-	-	-	-	-		-
0.000	0.0	0.000	0.00	6.22	6.32		0.000	0.000		0.000
1.000	1.0	0.707	0.01	6.02	6.01		0.200	0.310		0.255
2.000	7.9	5.652	0.08	5.93	5.89		0.290	0.430	5.5	0.360
0.080	15.8	11.304	0.16	5.75	5.63		0.470	0.690		0.580
4.000	24.7	17.663	0.25	5.49	5.34		0.730	0.980		0.855
5.000	32.6	23.315	0.33	5.31	5.10	1	0.910	1.220	1	1.065
6.000	41.5	29.673	0.42	5.12	4.81		1.100	1.510		1.305
7.000	49.4	35.325	0.50	4.93	4.46		1.290	1.860		1.57
8.000	24.7	17.663	0.25	4.97	4.53	6.0	1.250	1.790	1000	1.52
9.000	12.4	8.831	0.12	5.13	4.63		1.090	1.690	1	1.39
9.000	1.0	0.707	0.01	5.33	4.83	12/10/201	0.890	1.490	-	1.19
10.000	1.0	0.707	0.01	5.33	4.83	1.00	0.890	1.490		1.19
11.000	7.9	5.652	0.08	5.32	4.80	1.1.1	0.900	1.520		1.21
12.000	15.8	11.304	0.16	5.27	4.75		0.950	1.570		1.26
13.000	24.7	17.663	0.25	5.15	4.66		1.070	1.660	1	1.36
14.000	32.6	23.315	0.33	5.04	4.58		1.180	1.740		1.4
15.000	41.5	29.673	0,42	4.95	4.50	1000	1.270	1.820		1.5

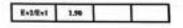
			15	10	
0.7 e1	0.35	1.06875		0.2	
0.3 ei	0.15	0.5525	0.51625	0.4	
0.7e1	0.35	1.47889		0.2	
0.301	0.15	1.23	0.24889		
D (mm)	300				
Ev,	\$7.17	1			
Ev.	180.81	1		1	
Area (Sq.mi)	0.07065		-		

Ex2/Ev1	1.07	
	_	 _

LOAD UN LOAD RE LOAD



Centurotor



Londing	Lond	Lord	Stress	Diel 1	Diel 3	Dial 3	Sett. 1	Sett. 3	Sett.3	Avg
Stage No.	Bar	KN	MN/MI	-		-	-	-		510.
0.000	0.0	0.000	0.00	6.86	8.03	8 . T. H	0.000	0.000		0.000
1.000	1.0	0.707	0.01	6.03	7.87		0.830	0.160		0.495
2.000	7.9	5.652	0.08	5.85	7.84		1.010	0.190		0.600
0.050	15.8	11.304	0.16	5.59	7.78		1.270	0.250		0.760
4.000	24.7	17.663	0.25	5.39	7.73	1	1.470	0.300		0.885
5.000	32.6	23.315	0.33	5.15	7.66		1.710	0,370		1.040
6.000	41.5	29.673	0.42	4.90	7.62	15	1.960	0.410		1.185
7.000	49.4	35.325	0.50	4.73	7.52		2.130	0.510		1.320
8.000	24.7	17.663	0.25	4.77	7.61	100	2.090	0.420	The state	1.25
9.000	12.4	8.831	0.12	4.87	7.64	1200	1.990	0.390	100	1.19
9.000	1.0	0.707	0.01	5.03	7.69	200	1.830	0.340		1.08
10.000	1.0	0.707	0.01	5.03	7.69	1000	1.830	0.340		1.08
11.000	7.9	5.652	0.08	4.99	7.65		1.870	0.380	11	1.12
12.000	15.8	11.304	0.16	4.93	7.58	-	1.930	0.450		1.19
13.000	24.7	17.663	0.25	4.86	7.55		2.000	0.480	1	1.24
14.000	32.6	23.315	0.33	4.76	7.49	1	2.100	0.540		1.32
15.000	41.5	29.673	0.42	4.68	7.42		2.180	0.610	-	1.39

			45	2.0	
9.7 a,	0.35	1.06688		0.2	
0.3 et	0.15	0.74	0.31969		
0.70,	0.35	1.33667	0,17166	0.3	
0.301	0.15	1.165	0.17160		
D (mm)	390	1			
Evi	137.67				
Ev.	262.14	1			
tread Second				-	

Ares (Sq.m) 8.07065

MN/M2 0.00 0.10 0.20 0.40 0.50 0.000 8,200 6.400 0.600 Sett. 0.800 . 1.000 1 . 1,200 1.400 1.600

Lab, Specialist

Name :

Sign :

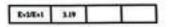
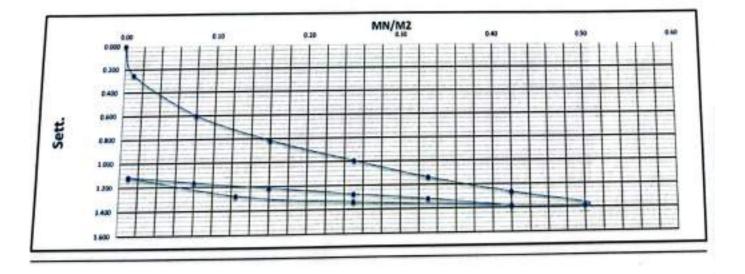
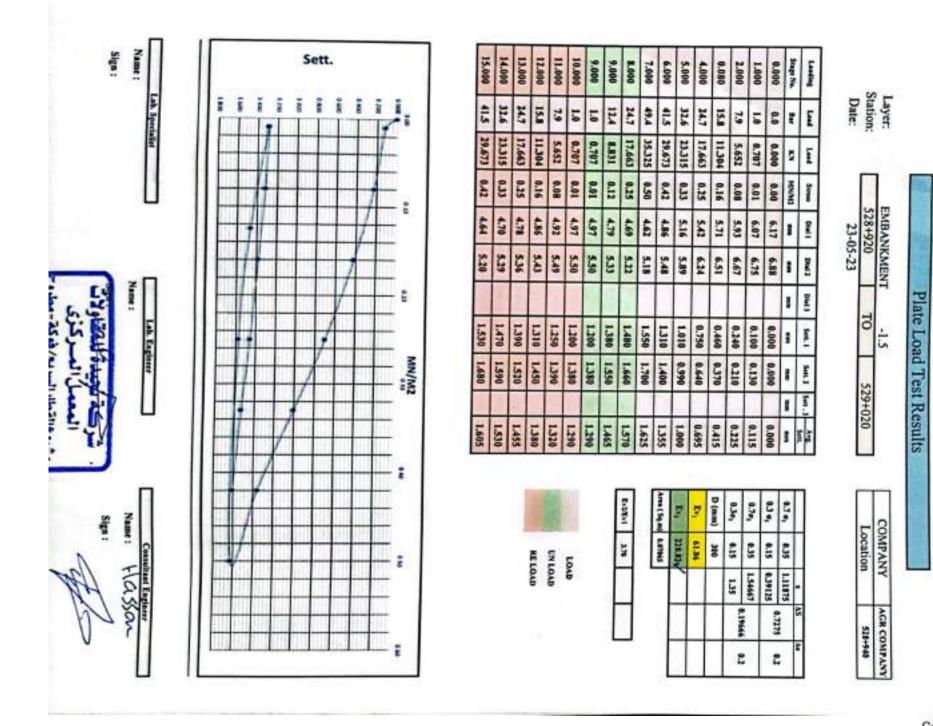


		Plate Loa	id Test Results	1	
Layer:	EMBANKMEN	т -1.5		COMPANY	AGR COMPANY
Station:	529+800	TO	529+900	Location	\$19+880
Date:	23-05-23				

Lording	Les	Loud	Stress	Dial I	Diel 3	Diel 3	Set. 1	Sett. 3	Sett . 3	Avg.
Step No.	Bur	KN	MINIMO	-	-	-				-
0.000	0.0	0.000	0.00	5.95	6.58		0.000	0.000		0.000
1.000	1.0	0.707	0.01	5.64	6.39		0.310	0.190		0.250
2.000	7.9	5.652	0.08	5.17	6.16		0.780	0.420	1. 1	0.600
0.080	15.8	11.304	0.16	4.86	6.04		1.090	0.540	*	0.815
4.000	24.7	17.663	0.25	4.61	5.93		1.340	0.650	0 11	0.995
5.000	32.6	23.315	0.33	4.42	5.83		1.530	0.750		1.14
6.000	41.5	29.673	0.42	4.27	5.72		1.680	0.860		1.270
7.000	49.4	35.325	0.50	4.18	5.58		1.770	1.000		1.385
8.000	24.7	17.663	0.25	4.24	5.61	100	1.710	0.970		1.340
9.000	12.4	8.831	0.12	4.32	5.65		1.630	0.930	<u>8 - 8</u>	1.280
9.000	1.0	0.707	0.01	4.52	5.78	Contract of	1.430	0.800	57.	1.115
10.000	1.0	0.707	0.01	4.52	5.78		1.430	0.800		1.115
11.000	7.9	5.652	0.08	4.46	5.74		1.490	0.840	5. 3	1.165
12.000	15.8	11.304	0.16	4.40	5.70		1.550	0.880		1.215
13.000	24.7	17.663	0.25	4.32	5.66	1000	1.630	0.920		1.27
4.000	32.6	23.315	0.33	4.26	5.63	(mail)	1.690	0.950	1-1	1.320
5.000	41.5	29.673	0.42	4.18	5.58		1.770	1.000	6 2	1.38


			45	м
8.7 0,	0.35	1.16938		8.2
0.3 01	0.15	6.78813	0.00125	
0.74,	0.35	1.33444		
8.3e,	0.15	1.21501	allise.	
D (mm)	300			
Ev,	118.83		3	
Eva	376.76	1		
Arres (See mit	1.17545			1110

Arrs (Sq.mf 8.87965



Consultant Engineer Lab. Engineer Lab. Specialist Name: Hassan Name : Name : Ho Sign : Sign : وعالقطار السريع/فوكة - م

and the

2

XX

Cownetter Consultant

Centercla

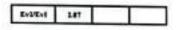
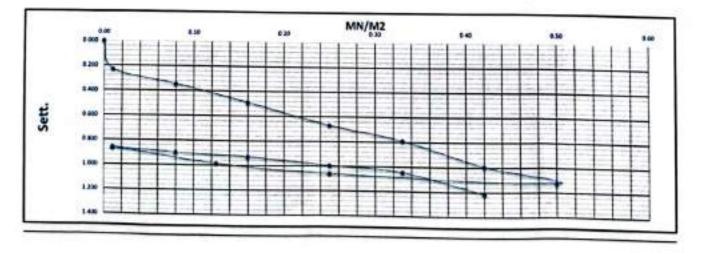


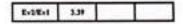
Plate Load Test Results


Layer:	EMBANKMENT	-1.5		COMPANY	AGR COMPANY
Station:	528+920	TO	529+020	Location	529+010
Date:	23-05-23				

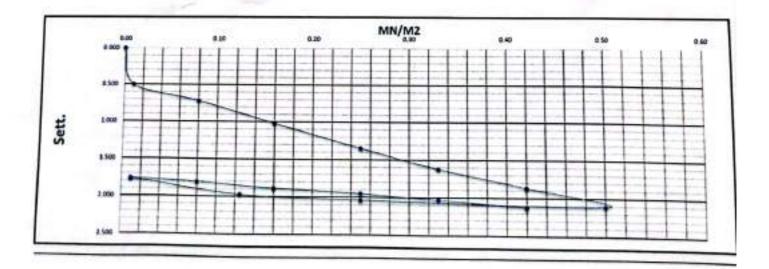
Londing	Lord	Last	Stress	Dial I	Dial 3	Dial 3	Set. 1	Sett. 1	Sett . 3	Arg.
Stage No.	Bar	KN	MNMI	-						-
0.000	0.0	0.000	0.00	6.18	7.40	3	0.000	0.000		0.000
1.000	1.0	0.707	0.01	5.95	7.17		0.230	0.230		0.230
2.000	7.9	5.652	0.08	5.83	7.06		0.350	0.340		0.34
0.080	15.8	11,304	0.16	5.67	6.93		0.510	0.470		0.490
4.000	24.7	17.663	0.25	5.46	6.78		0.720	0.620		0.67
5.000	32.6	23.315	0.33	5.33	6.67	1	0.850	0.730		0.79
6.000	41.5	29.673	0.42	5.09	6.50		1.090	0.900		0.99
7.000	49.4	35.325	0.50	4.93	6.40	1.4	1.250	1.000		1.12
8.000	24.7	17.663	0.25	4.98	6.48		1.200	0.920	1.8	1.06
9.000	12.4	8.831	0.12	5.05	6.56	0.050	1.130	0.840		0.98
9.000	1.0	0.707	0.01	5.16	6.70	1000	1.020	0.700		0.86
10.000	1.0	0.707	0.01	5.16	6.70	2	1.020	0.700	1	0.86
11.000	7.9	5.652	0.08	5.14	6.64		1.040	0.760		0.90
12.000	15.8	11.304	0.16	5.12	6.60		1.060	0.800		0.93
13.000	24.7	17.663	0.25	5.07	6.52		1.110	0.880	-	0.99
14.000	32.6	23.315	0.33	5.02	6.47		1.160	0.930		1.04
15.000	41.5	29.673	0.42	4.82	6.33	1	1.360	1.070		1.21

	1		45	40
0.7 0	0.35	0.88125		0.2
0.3 01	0.15	0.47188	0.409.38	0.5
0.70	0.35	1.08278		
0.30	0.15	0.94	0.14277	0.2
D (mm)	300	e - 2		
Eva	109.92			
Ev ₂	315.18			
Ares (Sq.m)	8.87065	S		

		COMPANY AGR COMPANY Location 525+460			81672.6 20.9	6.15 6.22	1.0 1.14056 0.14056 0.14555 0.1	300		Aver (Square (privile		Betteri 247			UN LOAD	RELOAD											/				Name: 1/0.550~	Sign: AS
Contractor	sults	0		Area .	8	0.000	0.080	0.240	0130	0.680	0.795	0.770	08970	0525	0.560	0.610	0.665	0.725	0.795							1	1					hi
	Plate Load Test Results	525+500		See	1					T				T	1	-		-		-	-				1		ŧ			Г	1	La transferration
	d Te:	-		Set. 2	1	0.000	0.060	0.150	0.430	0.770	0.910	0.530	0.600	0.600	0.640	0.700	0.770	0.830	016'0	MN/M2				17	Ĺ				11	1		3.3
ł	e Loa	-1.5 TO		Set.1	1	0.000	0.080		0350		_	0.660	_	-	-	_	_	-	0.680	-				Ľ		4	+			Lab. Eacincer		
Contactor Consultant	Plate		1	ĩ	1			IT	T	T			t							ŝ			1			+	+		11	3	Name:	14:5
Cost		525+360	2	in	1	6.80	6.73	959	6.21	6.04	5.90	105	1179	6.21	6.17	6.11	6.04	8	AFE				A			$\left \right $	H		11	L	ž	Ø
		525+360		ī	1	1.94	4.88	67.4	-	-		100	-	-		11	-	+	874		111	1			-	1	-	H				
		E S		-	TWWN W	-	0.08	-	679		-	0.12	-		-	-	-	-	-	5	-/	-	-		1	A					1	
				-	N MM	-	_	11.304		-		8.831 0	-	-		1200	100	1000			A	-	-		1		-					
		Layer: Station: Date:	1	-				11 8.21	_	41.5 29.			-			_	11.663	-					-		ľ		_			ialist		
		Star Da		+	-	-		-	-		-	-	-		0.00	-	1.42	-		1	8	0700	000		C 44	n a	-	8		Leb. Specialis		
				1	0.00	1.460	2.00	0.05	5.000	6.000	7.600	9.000	9.000	10.000	11.000	12.000	14,000	15.666		1			.11	əs						[]	Name:	1 8310


Plate Load Test Results

Layer:	EMBANKMENT	-1.5		COMPANY	AGR COMPANY
Station:	525+360	TO	525+500	Location	525+400
Date:	23-05-23				


Loading	Lond	Lord	Stress	Dial 1	Dial 3	Dial 3	Set. 1	Set. 1	Sett.3	Avg. Sett.
Stage No.	Bar	KN.	MNM	-	-	-	-		-	-
0.000	0.0	0.000	0.00	8.24	7.36		0.000	0.000		0.000
1.000	1.0	0.707	0.01	7.71	6.89		0.530	0.470		0.500
2.000	7.9	5.652	0.08	7.48	6.68		0.760	0.680		0.720
0.080	15.8	11.304	0.16	7.17	6.39		1.070	0.970		1.020
4.000	24.7	17.663	0.25	6.84	6.06		1.400	1.300		1.350
5.000	32.6	23.315	0.33	6.55	5.80	2	1.690	1.560		1.625
6.000	41.5	29.673	0.42	6.29	5.57	· · · · ·	1.950	1.790		1.870
7.000	49.4	35.325	0.50	6.05	5.33	1	2.190	2.030		2.110
8.000	24.7	17.663	0.25	6.09	5.43	(2.150	1.930	100	2.040
9.000	12.4	8.831	0.12	6.14	5.51		2.100	1.850		1.975
9.000	1.0	0.707	0.01	6.33	5.74	-	1.910	1.620	100	1.765
10.000	1.0	0.707	0.01	6.33	5.74		1.910	1.620	Len;	1.765
11.000	7.9	5.652	0.08	6.29	5.69		1.950	1.670	10.	1.810
12.000	15.8	11.304	0.16	6.22	5.60		2.020	1.760		1.890
13.000	24.7	17.663	0.25	6.16	5.53	1	2.080	1.830		1.955
14.000	32.6	23.315	0.33	6.08	5.45	4	2.160	1.910	-	2.03
5.000	41.5	29.673	0.42	6.00	535		2.240	2.010		2.12

	10000	1	35	Ar
9.7 e.	0.35	1.66	0.6775	0.7
0.3 4	0.15	0.9825	0.0773	
0.701	0.35	2.055	0.2	0.2
0.30,	0.15	1.855	0.4	9,5
D(mm)	300			
Evi	66.42			
Ev.	225.01	1	1.	
112442	a state and			-

Area [Sq.m) 0.07065

Lab. Specialist

Name :

Sign :

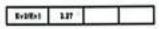
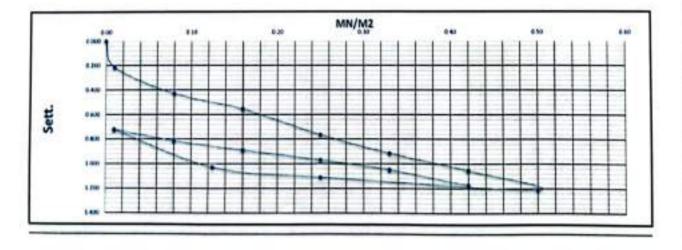


Plate Load Test Results

Layer:	EMBANKMENT	-1.5		COMPANY	AGR COMPANY
Station:	529+700	TO	529+800	Location	529+740
Date:	25-05-23				

Louing	Lood	Lord	Bren	Deal 1	19413	Biel 3	546.1	Set. 1	\$11.3	Asp.
Steps No.	Bur	KN	-	-	-	-		-	-	-
0.000	0.9	0.000	0.00	6.39	7.39		0.000	0.000		0.000
1.000	1.0	0.707	0.01	6.25	7,10		0.140	0.290		0.215
2.000	7.9	5.652	0.08	6.11	6.81		0.280	0.580		0.430
0.980	15.8	11.304	0.16	5.97	6.70		0.420	0.690		0.555
4.000	24.7	17.663	0.25	5.81	6.44	1	0.580	0.950		0.765
5.000	32.6	23.315	0.33	5.69	6.26		0.700	1.130		0.915
6.000	41.5	29.673	0.42	5.61	6.06		0.780	1.330		1.05
7.000	49,4	35.325	0.50	5.53	5.83		0.860	1.569	14	1.21
8.000	24.7	17.663	0.25	5.62	5.94	(PD)	0.770	1.450		LH
9.000	12.4	8.831	0.12	5.67	6.05	Starte .	0.720	1.340	100	1.03
9.000	1.0	0.707	0.01	5.83	6.51	Quit.	0.560	0.880	380	0.72
10.000	1.0	0.707	0.01	5.83	6.51		0.560	0.880		0,72
11.000	7.9	5.652	9.05	5.78	6.37	4.	0.610	1.029		0.81
12.900	15.8	11.304	0,16	5.70	6.30	100	0,690	1.090		0.89
13.000	24.7	17.663	0.25	5.65	6.19		0.740	1.200		0.97
14.000	32.6	23.315	0.33	5.59	6.09	4-2	0.800	1.380	100	1.05
15.000	41.5	29.673	0.42	5.43	6.00	1000	0.960	1.390		1.17

		L .	15	M.	
8.7 .	8.35	8.91938	0.38		
8.3 e.	8.15	0.53938			
0.7m	8.35	1.07778	0.14777	0.2	
0.301	0.15	0.91001	0.10717		
D (mm)	390			1	
Ev ₁	118,42	-			
Ev ₁	268.23	1			
Ares (Sq.m0	8.07865				



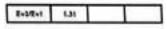
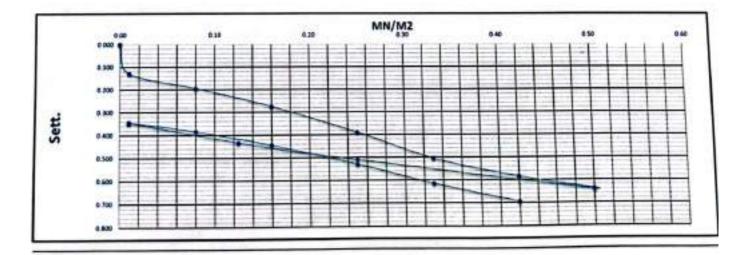
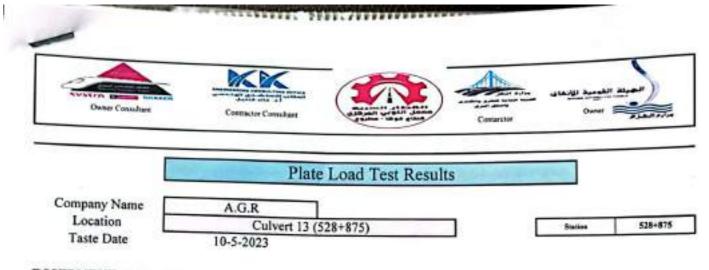


Plate Load Test Results

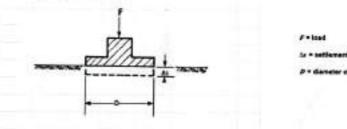
Layer:	EMBANKMENT	-1.5		COMPANY	AGR COMPANY
Station:	529+700	TO	529+800	Location	519+780
Date:	25-05-23			har and the second s	


Loading	Lost	Lord	Stress	Disti	Dial 3	Dial 3	Set. 1	Sett. 2	Sett.3	Avg.
Stage No.	Bar	KN	MNMI	-	-	-	-	-	-	-
0.000	0.0	0.000	0.00	6.17	6.67		0.000	0.000		0.000
1.000	1.0	0.707	0.01	6.07	6.51	1	0.100	0.160	1	0.130
2.000	7.9	5.652	0.08	6.04	6.41	1	0.130	0.260		0.195
0.080	15.8	11.304	0.16	5.99	6.30		0.180	0.370		0.275
4.000	24.7	17.663	0.25	5.88	6.18		0.290	0.490		0.39
5.000	32.6	23.315	0.33	5.73	6.10		0.440	0.570		0.50
6.000	41.5	29.673	0.42	5.66	6.01		0.510	0.660		0.58
7.000	49,4	35.325	0.50	5.63	5.93		0.540	0.740		0.64
8.000	24.7	17.663	0.25	5.83	5.99	1	0.340	0.680		0.51
9.000	12.4	8.831	0.12	5.89	6.08	2	0.280	0.590		0.43
9.000	1.0	0.707	0.01	5.98	6.17	-	0.190	0.500	1.11	0.34
10.000	1.0	0.707	0.01	5.98	6.17	1000	0.190	0.500		0.34
11.000	7.9	5.652	0.08	5.92	6.15	1	0.250	0.520		0.38
12.000	15.8	11.304	0.16	5.85	6.10		0.320	0.570		0.4
13.000	24.7	17.663	0.25	5.75	6.03		0.420	0.640	6	0.5
14.000	32.6	23.315	0.33	5.66	5.95		0.510	0.720		0.6
15.000	41.5	29,673	0.42	5.57	5.88		0.600	0.790		0.6

			45	A#
0.7 #	0.35	0.53688	0.27188	0.2
8.3 0,	0.15	0.265	0.11100	9.5
0.7#1	0.35	0.63278	0.20777	
0.30 ₁	8.15	0.425	0.20777	0.2
D (mm)	390			
Evi	165.52			
En	216.58		1	
Area (Sq.mt	8.87665			



UN LOAD RE LOAD


Lab. Engineer Consultant Engineer Lab. Specialist Hassan Name : Name : Name : F/S Sign : Sign : عالقطار السريع/فوكة

EOUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a zircular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

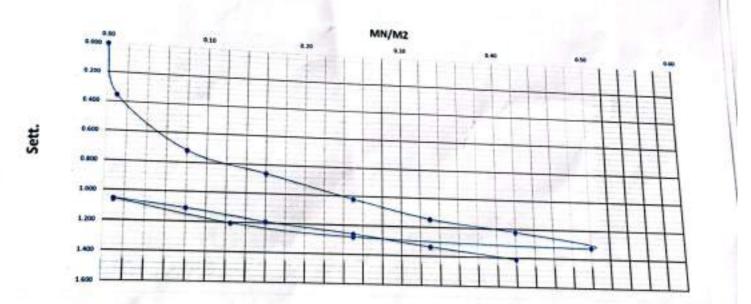
The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.752 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 nm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded ruck, an excavator or a roller usually serve as counterweight for the hydraulic jack

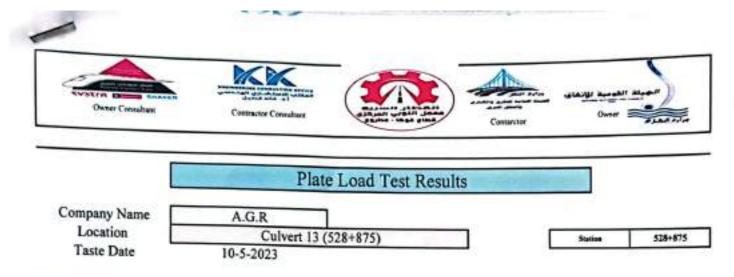
Diameter = 300mm

Loading	Land	Losd	Stress	Dial 1	Diel 3	Diat 3	Sett. 1	Sett. 2	Sett.3	Avg. Sett.
Stage No.	Bar	KN	MN/M2					-	-	
0.000	0.0	0.000	0.00	13.43	11.89		0.000	0.000		0.000
1.000	2.4	0.707	0.01	13.15	11.46	6	0.280	0.430		0.355
2.000	18.8	5.652	0.08	12.85	11.03	8 - S	0.580	0.860		0.720
0.080	37.7	11.304	0.16	12.70	10.90	5 - 17 19	0.730	0.990		0.860
4,000	58.9	17.663	0.25	12.49	10.79		0.940	1.100		1.020
5.000	77.7	23.315	0.33	12.35	10.68		1.080	1.210		1.145
6.000	98.9	29.673	0.42	12.29	10.59	1 1	1.140	1.300		1.220
7.000	117.8	35.325	0.50	12.20	10.48	1 1	1.230	1.410		1.320
8.000	58.9	17.663	0.25	12.24	10.52		1.190	1.370		1.280
9.000	29.4	8.831	0.12	12.32	10.59		1.110	1.300		1.205
9.000	2.4	0.707	0.01	12.51	10.70	1	0.920	1.190		1.055
10.000	2.4	0.707	0.01	12.51	10.70	1	0.920	1.190		1.055
11.000	18.8	5.652	0.08	12.45	10.65	3	0.980	1.240		1.110
12.000	37.7	11.304	0.16	12.34	10.60	100	1.090	1.290		1.190
13.000	58.9	17.663	0.25	12.30	10.50		1.130	1.390		1.26
14.000	77.7	23.315	0.33	12.25	10.40		1.180	1.490		1.33
15.000	98.9	29.673	0.42	12.15	10.35	1	1.280	1.540		1.410

		- E	45	40	
0.7 o ₁	0.35	1.1325	0.29		
0.3 σ1	0.15	0.8425	0.29	0.2	
0.7øj	0.35	1.35167			
0.3e1	0.15	1.16501	0.18666	0.3	
D(nm)	300	1			
Evi	155.17	1			
Eri	241.08				
Ares (Sq.m)	0.07065				

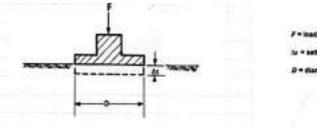

or of the plate

	_	 -
Eviteri	1.55	
	_	


	E, = 0.75 · D · do / ds
£,	= deformation modulus
40	= load Increment
40	= settlement increment
D	= diameter of the plate, generally 0.30 m

For this calculation do and ds are usually takend

the load span between 0.3 σ_{max} and 0.7 σ_{max}



EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a zircular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

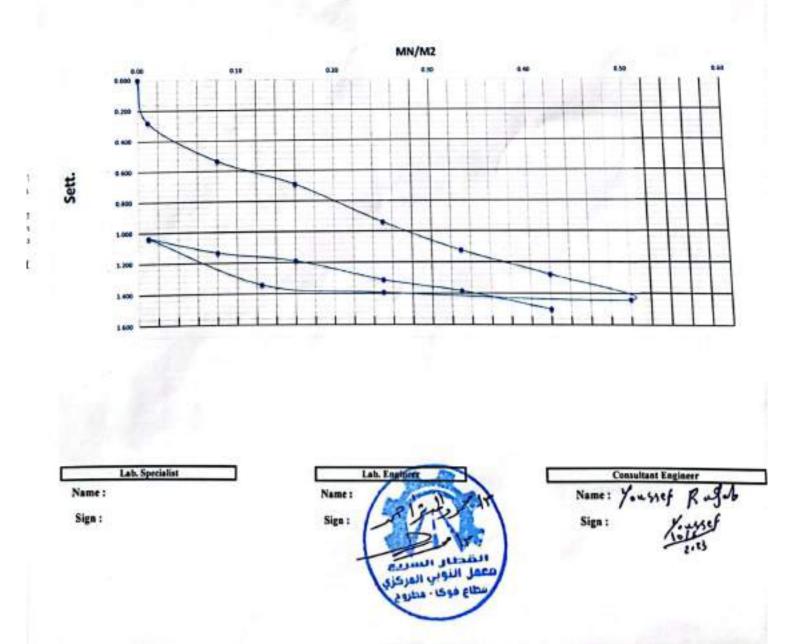
to = settlement D = diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.752 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 nm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded ruck, an excavator or a roller usually serve as counterweight for the hydraulic Jack

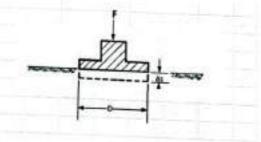
Diameter = 300mm

Loading	Load	Losd	Stress	Dial I	Dial 3	Dial 3	Sett, I	Sell. 3	Sett . 3	Avg. Sett.
Stage No.	Bar	KN	MN/M2	-		-	-	-	-	-
0.000	0,0	0.000	0.00	15.60	17.30		0.000	0.000		0.000
1.000	2.4	0.707	0.01	15.50	16.84		0.100	0.460		0.280
2.000	18.8	5.652	0.08	15.30	16.53		0.300	0.770		0.535
0.080	37.7	11.304	0.16	15.20	16.32	8	0.400	0.980		0.690
4.000	58.9	17.663	0.25	15.02	16.00		0.580	1.300		0.94
5.000	77.7	23.315	0.33	14.90	15.75		0.700	1.550		1.12
6.000	98.9	29.673	0.42	14.75	15.59		0.850	1.710		1.28
7.000	117.8	35.325	0.50	14.67	15.35		0.930	1.950		1.44
8.000	58.9	17.663	0.25	14.72	15.39		0.880	1.910		1.39
9.000	29.4	8.831	0.12	14.80	15,41		0.800	1.890		1.34
9.000	2.4	0.707	0.01	15.08	15.75		0.520	1.550		1.03
10.000	2.4	0.707	0.01	15.08	15.75		0.520	1.550		1.03
11.000	18.8	5.652	0.08	14.94	15.69		0.660	1.610		1.13
12.000	37.7	11.304	0.16	14.89	15.63		0.710	1.670		1.19
13.000	58.9	17.663	0.25	14.77	15.50		0.830	1.800		1.31
14.000	77.7	23.315	0.33	14.70	15.43		0.900	1.870		1.38
15.000	98.9	29.673	0.42	14.60	15.30		1.000	2.000		1.50


		1	15	he .
0.7 0	0.35	1,14	0.46938	
0.3 01	0.15	0.67063	0,40938	0.2
0.701	0.35	1.41056		
0.Jo ₁	0,15	1.23501	0.17555	0.2
D (mm)	300			
Evi	95.87			
Ev ₃	256.34			
Ares (Sq.m)	6.07965			

Ex2Ex1 2.67	
-------------	--

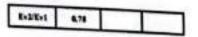
	E, = 0.73 · D · do / ds
₽,	= deformation modulus
Δσ	= load increment
de .	= settlement increment
D	= diameter of the plate, generally 0.30 m


V

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

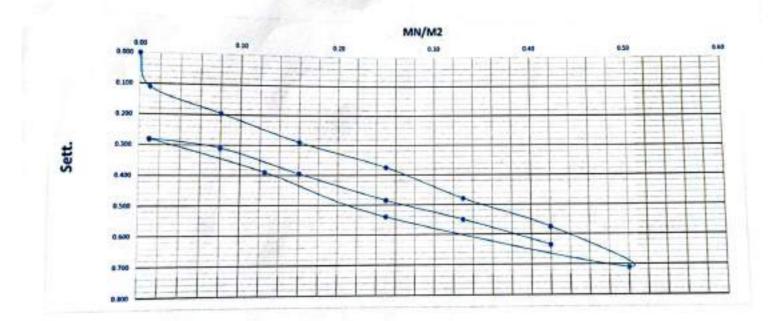
The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = load No = settlement D = dismeter of the plate


The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

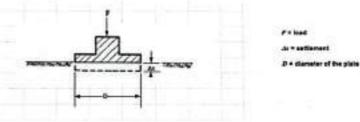
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 nm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded ruck, an excavator or a roller usually serve as counterweight for the hydraulic jack

)iameter = 300mm


Loading	Load	Lord	Stress	Dial I	Dial 2	Dial 3	Sett. 1			Ave
Stage No.	Bar	KN	MN/M2	-	-	-	-	Sett, 2	Sett. 3	SetL
0.000	0.0	0.000	0.00	7.63	5.61	-	-	-	-	-
1.000	2.1	0.707	0.01			-	0.000	0.000		0.000
2.000	17.1	5.652	0.08	7.48	5.54	-	0.150	0.070		0.110
0.080	34.2	-		7.39	5.46	5	0.240	0.150		0.195
4.000	-	11.304	0.16	7.26	5.40		0.370	0.210		0.290
	53.4	17.663	0.25	7.14	5.35	1	0.490	0.260		0.375
5.000	70.5	23.315	0.33	6.98	5.30		0.650	0.310	-	
6.000	89.7	29.673	0.42	6.84	5.25		0.790		-	0.486
7.000	106.8	35.325	0.50	6.62	5.20	-		0.360		0.57
8.000	53,4	17.663	0.25	6.88	-	1	1.010	0.410		0.710
9.000	26.7	8.831			5.28	100	0.750	0.330		0.540
9.000	2.1		0.12	7.68	5.38	-	0.550	0.230		0.39
10.000		0.707	0.01	7.20	5.48		0.430	0,136		0.28
	2.1	0.707	0.01	7.20	5.48	-	0.430	0.130	-	-
11.000	17.1	5.652	0.08	7.17	5.45		0.460		-	0.28
12.000	34.2	11.304	0.16	7.10	5.35	-		0.160	1	0.310
13.000	53.4	17.663	0.25	7.02	-	-	0.530	0.260		0.39
4.000	70.5	23.315	0.33	-	5.25		0.610	0.360	1	0.48
5.000	89.7	-		6.98	5.16		0.650	0.450		0.55
	07.1	29.673	0.42	6.92	5.05		0.710	0.560	-	0.635

	_		48	de .
0.7 01	0.35	0,45688	Same	1000
0.3 01	0.15	0.27813	0.17875	0.2
0.701	0.35	0.56889		
0.301	0.15	0.34	0.22889	0.2
D (mm)	300			-
Ex	251.75			-
Eva	196.60			-
tres (Sq.m)	8.07965		-	-

!	1, = 0.73 - D - Da / Ar
I,	= deformation modulus
40	= load increment
41	- settlement increment
D	= diameter of the plate, generally 0.30 m

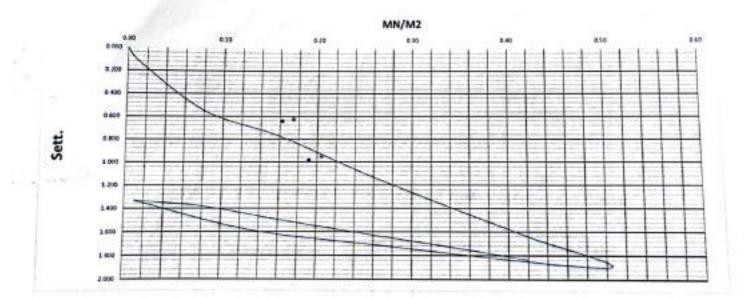

For this calculation $A\sigma$ and As are usually taken from the load span between 0.3 $\sigma_{\rm res}$ and 0.7 $\sigma_{\rm res}$

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

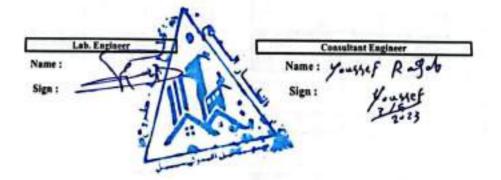
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Londing	Lead	Loud	Street	Dial 1	Disl 2	Dial 3	Sett. 1	Set. 1	Sett. 3	Avg.
Stage No.	Bar	KN	MNMZ	-	-	-		-	-	-
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000	1	0.000
1.000	2.1	0.707	0.01	19.98	19.80	New Y	0.020	0.200		0.110
2.000	17.1	5.652	0.08	19.75	19.15		0.250	0.850		0.550
0.089	34.2	11.304	0.16	19.60	18.85		0.400	1.150		0.775
4.000	53.3	17.663	0.25	19.40	18.40		0.600	1.600		1.100
5.000	70.5	23.315	0.33	19.20	18.08	1	0.800	1.920	1. 17	1.360
6.000	89.8	29.673	0.42	18.92	17.80		1.080	2.200	1.0	1.640
7.000	106.8	35.325	0.50	18.70	17.50		1.300	2.500		1.900
8.000	53,4	17.663	0.25	18.80	17.80	0	1.200	2.280		1.700
9.000	26.7	8.831	0.12	18.90	17.95		1.100	2.050		1.575
9.000	2.1	0.707	0.01	19.08	18.26	1	0.920	1.740	1.1.1	1.330
10.000	2.1	0.707	0.01	19.08	18.26		0.920	1.740		1.330
11.000	17.1	5.652	0.08	19.04	18.20		0.960	1.800		1.380
12.000	34.2	11.304	0.16	18.95	18.06		1.050	1.940		1.49
13.000	53.3	17.663	0.25	18.87	17.90	123	1.130	2.100		1.61
14.000	70.5	23.315	0.33	18.80	17.77	2.80	1.200	2.230		1.71
15.000	89.8	29.673	0.42	18.71	17.62		1.290	2.380		1.83

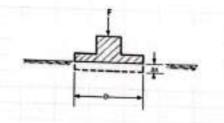

		1	15	1.0
0.7 di	0.35	1.4125		1.4
43	0.15	0.74687	0.00001	6.1
0.7aj	0.35	1.74167		0.2
0.30;	0.15	1.43801	0.51100	1
D (mm)	300			
Ev.	67.61			
Evy	144.39			
Area (Sq.m)	8.97645			

Ex2/Ex1	214	
ana an		 _

ı	. = 0.75 + D + do / ds
E,	- deformation modulus
D.	- load increment
Dı	settlement Increment
D	- diameter of the plate, generally 0.30 m



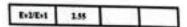
For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}


Sign :

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a

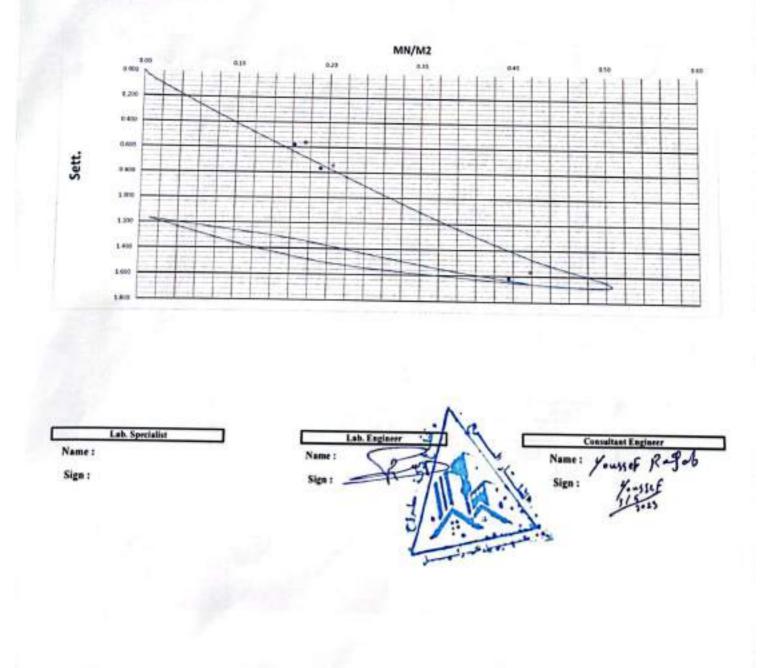
The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

Felend D . diamatar of Tes pis


The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are

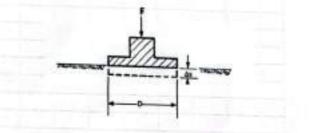
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm


Londing	Land	Lead	Stress	Dial 3	Dial 2	Dial 3	Sect. 1	Sen. 1	Sett. 3	Avg.
Stage No.	Bar	KN	MNMI	-		-			-	Sett.
0.000	0.0	0.000	0.00	20.00	20.00	1-	0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.92	19.96		0.080	0.040		0.060
2.000	17.1	5.652	0.08	19.63	19.70		0.370	0.300		0.335
0.080	34.2	11.304	0.16	19.33	19.42	-	0.670	0.580		0.624
4.000	53.3	17.663	0.25	19.00	19.12	1	1.000	0.880		0.940
5.000	70.5	23.315	0.33	18.74	18.85	1	1,260	1.150		1.205
6.000	89.8	29.673	0.42	18.48	18.58		1.520	1.420		1.470
7.000	106.8	35.325	0.50	18.28	18.35	-	1.720	1.650	-	-
8.000	53.4	17.663	0.25	18.42	18.47		1.580	1.530	-	1.68
9.000	26.7	8.831	0.12	18.58	18.62	-	1.420	1.380	-	1.55
9.000	2.1	0.707	0.01	18.82	18.84	-	1.180	1.160	-	1.40
10.000	2.1	0.707	0.01	18.82	18.84				-	1.17
11.000	17.1	5.652	0.08	18.75	18.77	-	1.180	1.160	-	1.17
12.000	34.2	11.304	0.16			-	1.250	1.230	-	1.24
13.000	53.3	17.663		18.66	18.70		1,340	1.300		1.32
14.000			0.25	18.52	18.58	1.1.1.1	1.480	1.420	1	1.45
	70.5	23.315	0.33	18.40	18.48		1.600	1.520	-	1.56
15.000	89.8	29.673	0.42	18.31	18.37		1.690	1.630		1.66

	_		45	44
0.7 01	9.35	1.28188		100
0.3 o1	0.15	0.58875	0.69313	0.1
0.701	0.35	1.58222		
0.3o;	0.15	1.31091	0.17212	0.3
D (mm)	308			-
Evi	64.92			-
Ev;	165.31			-
Area (Sq.m)	0.07045		-	-

1	- 4.75 - D - de / As
ε,	= deformation modulus
D.	= load increment
0.	- settlement increment
D	- diameter of the plate, genera

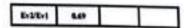

ally 0.30 r

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}

Owney Considered	Contractor Consultant			Contactor	القومية الإنماق Owner	العولة) (العولة) (العولة)
	P	late Load	Test Resu	lts		
Company Name	A.G.R					
Location	526+380	To	526+460		Station	526+419
Taste Date Layer level	13/4/2023 -1.5					
UIPMENT AND TES	T PROCEDURE : -					

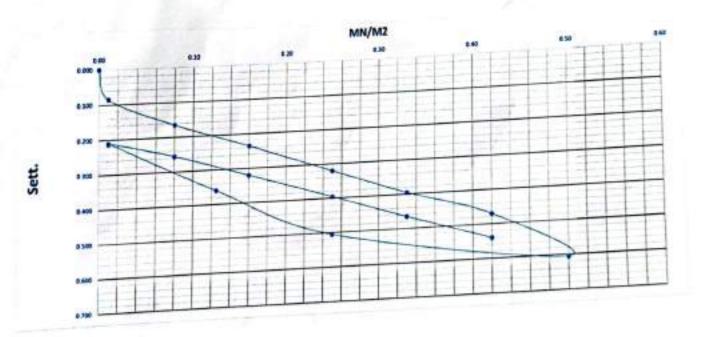
The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = load Ar = softward B = disruter of the plan


The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excevator or a roller usually serve as counterweight for the hydraulic jack

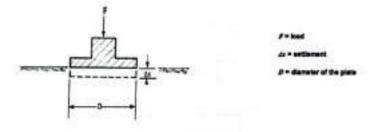
Diameter = 300mm


Loading	Lead	Lead	Stress	Dial 1	Dial 1	Dial 3	Sett. 1	SetL 1	Sett. 3	Avg.
Stage Na.	Bar	KN	MNMI			-		-	-	Sett.
0.000	0.0	0.000	0.00	6.68	5.61		0.000	0.000		0.000
1.000	2.1	0.707	0.01	6.58	5.54		0.100	0.070		0.085
2.000	17.1	5.652	0.08	6.50	5.46		0.180	0.150		0.165
0.080	34.2	11.304	0.16	6.42	5,40	-	0.260	0.210		0.235
4.000	53.4	17.663	0.25	6.30	5.35		0.380	0.260		0.320
5.000	70.5	23.315	0.33	6.20	5.30		0.480	0.310		0.395
6.000	89.7	29.673	0.42	6.10	5.25		0.580	0.360		0.470
7.000	106.8	35.325	0.50	5.88	5.20		0.800	0.410		0.605
8.000	53,4	17.663	0.25	6.00	5.28	-	0.680	0.330		0.50
9.000	26,7	8.831	0.12	6.19	5.38		0.490	0.230		0.36
9.000	2.1	0.707	0.01	6.39	5.48	-	0.290	0.130	-	0.21
10.000	2.1	0.707	0.01	6.39	5.48	-	0.290	0.130	-	0.21
11.000	17.1	5.652	0.08	6.33	5.45	-	0.350	0.160	-	0.25
12.000	34.2	11.304	0.16	6.30	5.35		0.380	0.260	-	0.32
13.000	53.4	17.663	0.25	6.25	5.25	-	0.430	0.360	-	0.32
14.000	70.5	23.315	0.33	6.20	5.16	1 22	0.480	0.450	-	
15.000	89.7	29.673	0.42	6.16	5.05		0.520	0.560	-	0.46

-			AS	he.	
0.7 a	0.35	0.35188		0.2	
0.3 0,	0.15	0.22625	0.12563		
0.701	9.35	0.48167		140	
0.301	0,15	0.3	0.18166	0.3	
D(mm)	300				
Ev.	358,21			-	
Ev ₁	247.71			1	
Ares (Sq.ml	8.07965			-	

1	r, = 0.73 · D · Au / Az
£,	= deformation modulus
40	= load increment
41	· sottlement increment
D	- diameter of the plats, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}


1010111

Younef Ragob Const Name : Sign :

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

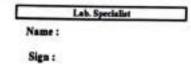
The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excervator or a rollier usually serve as counterweight for the hydraulic jack

Diameter = 300mm

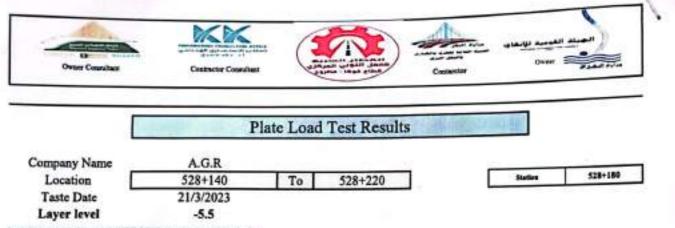
Londing	Les	4 Lond	Stress	Dial I	Dial 3	Dial 3	Sett. 1	SetL 2	Sett.3	Arg. SetL
Stage No.	Bar	KN	MNM2	-	-	-	-	-	-	-
0.000	0.0	0.000	0.00	11.70	9.80		0.000	0.000		0.000
1.000	2.4	0.707	0.01	11.50	9.73		0.200	0.070		0.135
2.000	18.8	5.652	0.08	11.35	9.60		0.350	0.200		0.27
0.080	37.7	11.304	0.16	11.25	9.52		0.450	0.280		0.365
4.000	58.9	17.663	0.25	11.10	9.38		0.600	0.420		0.510
5.000	77.7	23.315	0.33	10.95	9.25		0.750	0.550		0.650
6.000	98.9	29.673	0.42	10.80	9.15		0.900	0.650		0.775
7.000	117.8	35.325	0.50	10.69	9.05		1.010	0.750		0.880
8.000	58.9	17.663	0.25	10.75	9.10		0.950	0.700		0.825
9.000	29.4	8.831	0.12	10.84	9.15		0.860	0.650		0.755
9.000	2.4	0.707	0.01	10.97	9.20		0.730	0.600		0.665
10.000	2.4	0.707	0.01	10.97	9.20		0.730	0.600		0.665
11.000	18.8	5.652	0.08	10.85	9.05		0.850	0.750		0.800
12.000	37.7	11.304	0.16	10.75	8.95		0.950	0.850		0.900
13.000	58.9	17.663	0.25	10.64	8.80		1.060	1.000		1.030
14.000	77.7	23.315		10.55	8.75		1.150	1.050		1.100
15.000	98.9	29.673		10.44	8.70		1.260	1.100		1.180

			45	44	
0.7 e ₁	0.35	0.68312	0.31937	0.2	
93 ej	0.15	0.35375	0.31937		
0.7ej	0.35	1.11778		0.2	
0.301	0.15	0.93501	0.181.0		
D (mm)	300				
Ev ₁	136.62				
Ev,	246.22				
Ares (Sq.m)	8.07065			9-1-1	


Ex1/Evi	1.80		
---------	------	--	--

1	1. = 1.75 · D · As / As
E.	= deformation modulus
da	= load increment
41	= settlement increment
D	= diameter of the plate, generally 0.30 m

5


MN/M2 7.4 0.20 0.30 454 ¥ 200 0.40 Sett. 14 ۰. 1.1 ۰. 10 ۰. 112 1.00

For this calculation $d\sigma$ and dz are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$


Consultant Engine Name: Youssef Rugab Y. alsef Sign :

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

de = authement D = classelier of the piets

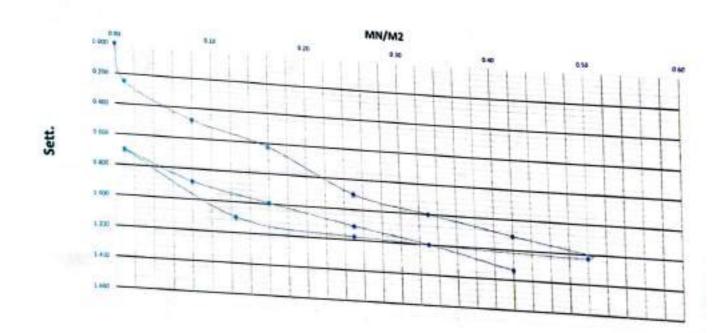
F = load

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.62 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excervator or a rollier usually serve as counterweight for the hydraulic jack

Diameter = 300mm

Landing	Level	Lond	Street	Dial I	Dial J	Dial 3	Sell. 1	Set. 2	Sett.3	Avg. Sett.
Stage No.	Bar	KN.	MNMI	-		-	-	-	-	-
0.000	0.0	0.000	0.00	16.60	17.80		0.000	0.000		0.000
1.000	2.4	0.707	0.01	16.40	17.50		0.200	0.300		0.250
2.000	18.8	5.652	0.08	16.30	17.14		0.300	0.660		0.480
0.080	37.7	11.304	0.16	16.15	17.00		0.450	0.800		0.625
4.000	58.9	17.663	0.25	15.95	16.65		0.650	1.150		0.900
5.000	77.7	23.315	0.33	15.85	16.55		0.750	1.250		1.000
6.000	98.9	29.673	0.42	15.78	16.40		0.820	1.400		1.110
7.000	117.8	35.325	0.50	15.70	16.25		0.900	1.550		1.225
8.000	58.9	17.663	0.25	15.74	16.30	-	0.860	1.500		1.180
9.000	29.4	8.831	0.12	15.80	16.40	12.2	0.800	1.400		1.100
9.000	24	0.707	0.01	16.15	16.85	-	0.450	0.950		0.700
10.000	2.4	0.707	0.01	16.15	16.85	2.2	0.450	0.950		0.700
11.000	18.8	5.652	0.08	15.98	16.65		0.620	1.150		0.885
12.000	37.7	11.304	0.16	15.86	16.55		0.740	1.250		0.995
13.000	58.9	17.663	0.25	15.78	16.40		0.820	1.400		1.110
14.000	77.7	23.315	0.33	15.70	16.30		0.900	1.500		1.200
15.000	98.9	29.673	0.42	15.58	16.15		1.020	1.650		1.335

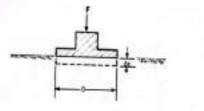

			45	44
0.7 ej	0.35	1.00938		
0.3 ei	0.15	0.60688	0.4015	0.2
0.7e1	0.35	1.23	2015	1.0
0.301	0.15	1.07002	0.15998	0.2
D (mm)	300			
Ev,	111.80			
Ev,	281.28			1
Arm (Sq.m)	8.87865			-

52	52

	1 4.75 - D - Ar / As
£.,	- deformation modulus
40	= load increment
4.	- settlement increment
D	= diameter of the plate, generally 0.30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between

and 0.7 g


Sign :

	Consultant Eng	ineer
Name :	Young	RgA
Sign :		inf
	12	2.23

B Owner Connulars	Centrarity Conscious			Comment	موسرة <u>الأر</u> عام. مرسل	
	P	late Load	Test Resu	lts	200	
ompany Name	A.G.R					
Location	528+620	To	528+700		Station	528+668
Taste Date Layer level	12-3-2023					
Layer level IPMENT AND TES	-5.5					

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

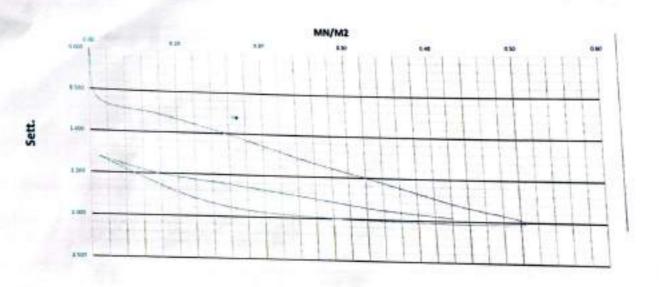
F = load Ar = settlement F = discourse of the piece

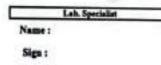
The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable and (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excervator or a roller usually serve as counterweight for the hydraulic jack

Distant and an		200	
Diameter	_	300	mm

Londing	-		Birtes	Dial 1	0623	Dal3	Sett. 1	Sec.1	Sec.)	Arg.
Stage Na.	3.0	10	MNMI		-					
0.000	6.0	0.000	0.00	10.16	18.71		0.000	0.000	1	0.000
1.000	2.4	0.707	0.01	9.71	17.93		0.450	0.780		0.615
2.600	18.8	5.652	0.08	9.62	17.68		0.540	1.030		0.785
0.080	37.7	11.304	0.16	9.46	17.38	5.55	0.700	1.330		1.015
4.000	58.9	17.663	0.25	9.21	17.04		0.950	1.670		1.310
5.000	77.7	23.315	0.33	9.02	16.79	1	1.149	1.920		1.530
6.000	98.9	29.673	0.42	8.75	16.53		1.410	2.180		1.795
7.000	117.8	35.325	0.50	8.46	16.36		1.700	2.350		2.025
8.000	58.9	17.663	0.25	8.52	16.38	1	1.640	2.330		1.985
9.000	29.4	8.831	0.12	8.68	16.57	1.18	1.480	2.140		1.810
9.000	2.4	0.707	0.81	9.13	17.11		1.030	1.608		1.315
10.000	2.4	0.707	0.01	9.13	17.11	1	1.030	1.600		1.315
11.000	18.8	5.652	0.08	9.00	16.85		1.160	1.860		1.510
12.600	37.7	11.304	0.16	8.91	16.72		1.250	1.990		1.620
13.000	58.9	17.663	0.25	8.82	16.54		1.340	2.170		1.755
14.000	77.7	23.315	0.33	8.71	16.40		1.450	2.310		1.880
15.000	98.9	29.673	0.42	8.58	1636		1.580	2.350		1.965

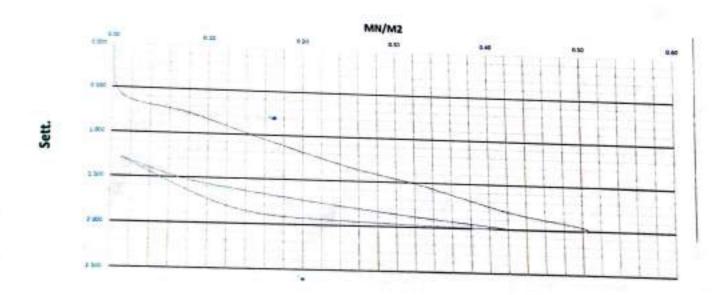

			48	3.0		
6.7 et	0.35	1.59375		1		
83	0.15	8,98625	0.6075			
8.741	8.35	1.29839		43		
8.34	0.15	1.78562	0.19387			
D (mm)	300					
Evi	74.07					
En	132.11					
Ares (Sq.m)	8.87945	100		-		


Bramvi	113		
_	_	_	

E = 8.15 - D - Sol de					
E,	· deformation modulus				
da	- load increment				
41	- settlement increment				

diameter of the plate, generally 0.30 m

and decomposition dor and do are usually taken from the lead span between 0.3 open and 0.7 days

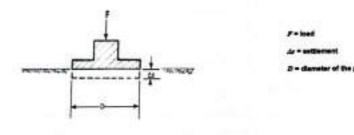


agh elsaid Name : mohamed Sign : medsale

					Ĩ	,	3	3						_		-				m OL J Yana	
1	100-100					5	9	6.1523								1	1		1	1	
1 8	Н					1.6338	8561071	1.9221	744.17		Π		Γ			e/4	Son mos	Trans.	et increa	-	
	ł	od the settlement of a under cach load step is		Albeded		1 500			100	11.4	197962	-	-			6,=675 . D . de/ A	automa a	tote Inc.	settleme	at the second	
4	Ц	rach lo	1	d D = 0.1		-		-	-		E*1 2	ten (Sun)	1101	4		4-4			;		
		oren the modulus of elarticity and the settlement of a a several steps. The settlement under each load step	.1	The diameter <i>D</i> of the plate is generally 0.36 m. For very coarse grained material also plates with diameter <i>D</i> = 0.60 m and <i>D</i> = 0.762 m are used. The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable and (< 0.02 montalistic). After the maximum load is reached the uniceding procedure can begin. After that, the plate is reloaded in 5 steps. A loaded brock, an excention of a filter usually same as counterweight for the hydraulic jack.	J.	0.7 -	1.2	6.7er			*	Ī	1	L.]-				
\$i. 1	п	actual of electricity steps. The settleme	111	to a new	Π	Т	-			5	•	-		1		-		-	-		
Cesul Alia	620	pe The		and	are a		0.00	0230	1.055	SPEL	1.540	1.810	2.005	1.825	1,290	1,290	1.500	11670	1,800	1.900	
Plate Load Test Results	528+620				1 100	_					-	-		-	-		-	-			
		de la re	1		Ĵ	+		0.600	-	-	_	_	1.756	-	1.100	1.100	1.320	1.450	1.580	1.690	-
ate L	To		-1+	d material detep the bure can be	ž	1	0.00	0350	1.090	1.400	1.640	1.970	1160	2.040	1.480	1.480	1.740	1.890	2.020	2.110	
	3	e relati	-	grained process	2	1			Γ								Π			1	-
	A.G.R 528+560 12-3-2023 -5.5 OCEDURI	ory of B		ate is generally 0.36 m. For very coarse out increments of equal size. Under as culturan load is reached the unloading ther usually earve as counterweight fo	ĩ	1	16.21	1991	15.19	14.92	14.77	14.56	14.46	14.60	15.11	15.11	14.19	14.76	14.63	1459	
-11 °	521 12-3 12-3	ng's the bearing		For ver	ī	+		11.15	-	-	-	-	11.69 11	-	-	-		-		-	
		Boundar Der D.	ł	n of agu	1	1		-	-	-	-	+	-	-	11.37	12.37	12.11	11.96	-	11.74	
	a D	dian Is 1 diame		(Inclusion of the second se			-	-	- 10 A		-	270			10.0		0.08	-	-	6.0	
- G	Dempany Nat Location Taste Date Layer level	and the second s		load In-	3	+-		0.707	-	_	212.62	29.673	E99741	1078	0.707	0.707	2595	11.304	17.663	21.02	1 8 7 8 1
11	Company Name A.G.R Location 528+560 Taste Date 12-3-2023 Layer level -5.5 EOUIPMENT AND TEST PROCEDURE :-	The basis of the given sequention is Bounsieurq's theory of the relationship between the a circular rigid plate with the diameter D. The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several recorded. The following sketch shows the principle of the test.		The diameter <i>D</i> of the pl used The load is applied in 6 is muchador). After the m prot, an accavator of a 1	300m	1	0.0	2 3	37.7	585	1.17		585	¥62	77	2.4	_	37.7		11.1	100
	103	r bada I bada I bada		d h spi	cler -	N MAR	0.000	1,000	0.080	4.000	000	1 000	900	9.000	9.000		-		-	+	
		48 A 8		11 11	Diameter	-		-	1	Ľ	-					10.	H	12.600	13.000	14.000	A CT

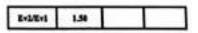
الممسوحة ضوئيا بـ CamScanner

For this calculation do and do are usually taken from the load span between 0.3 core and 0.7 core



الممسوحة ضوئيا بـ CamScanner

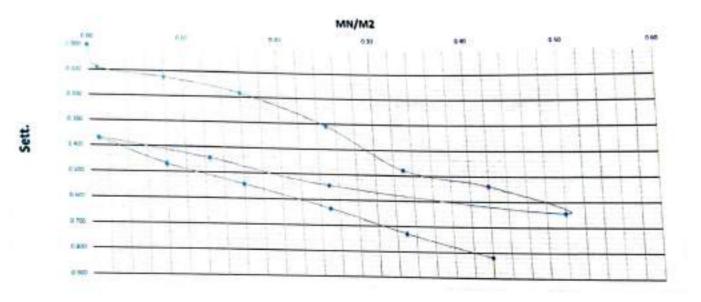
The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.


The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excervator or a roller usually serve as counterweight for the hydraulic jack.

Diameter = 300mm

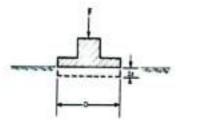
Londia	4 L	ed Los	I Stress	Dial 1	Dial 2	Dial 3	Sett. 1	Sett. 1	Sett. 3	Arg. Sett.
Stage N	. 8	u KN	MNM	1	-	-	-	-	-	-
0.000	0.	0 0.00	0.00	13.90	14.74	8 I)	0.000	0.000	(-3)	0.000
1.000	2.	0.70	7 0.01	13.82	14.64		0.080	0.100	5	0.090
2.000	18.	8 5.652	0.08	13.79	14.60		0.110	0.140		0.125
0.080	37.	7 11.30	4 0.16	13.72	14.55	_	0.180	0.190		0.185
4.000	58.5	17.66	0.25	13.67	14.35	_	0.230	0.390		0.310
5.000	77.3	23.315	0.33	13.58	14.10		0.320	0.640		0.480
6.000	98.9	29.673	0.42	13.54	14.02		0.360	0.720		0.540
7.000	117.8	35.325	0.50	13.50	13.85		0.400	0.890		0.645
8,000	58.9	17.663	0.25	13.55	14.00		0.350	0.740		0.545
9.000	29.4	8.831	0.12	13.65	14.10		0.250	0.640		0.445
9.000	2.4	0.707	0.01	13.70	14.20		0.200	0.540		0.370
10.000	2.4	0.707	0.01	13.70	14.20		0.200	0.540		0.370
11.000	18.8	5.652	0.08	13.60	14.10		0.300	0.640		0.470
12.000	37.7	11.304	0.16	13.50	14.05	-	0.400	0.690		0.545
13.000	58.9	17.663	0.25	13.42	13.95	-	0.480	0.790		0.63
14.000	77.7	23.315	0.33	13.33	13.85		0.570	0.890	-	
15.000	98.9	29.673	0.42	13.25	13.75		0.650	0.990		0.730


	in the second second		AS	40
0.7 oz	0.35	0.35 0.44813		1925
0.3 01	0.15	0.1775	01100	6.3
0.701	0.35	0.75		
0.302	0.15	0.57001	0.17999	
D (mm)	300			
Evi	166.28			
Ev ₂	250.01			
Ares (\$4.80)	0.07065		-	

	r, = 4.75 · D · Aa / As
E,	= deformation modulus
40	= load increment
d:	- settlement increment
D	= diameter of the plate, generally 0.30 r

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}

Lab. Specialist	-
 ADDING TO PERSONNEL	


Sign :

Name : WONTHYNG ESTUR metsories Sign : ۱

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

de = antilament B = discusion of the plate

.....

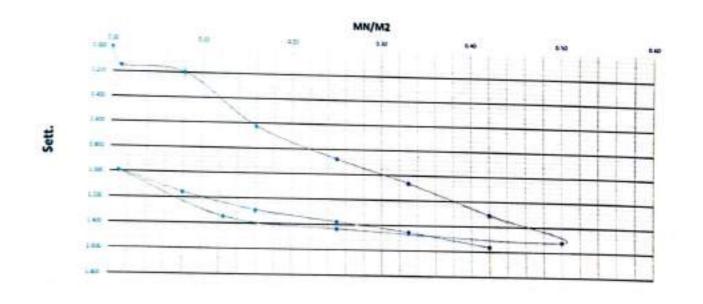
The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an azcavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

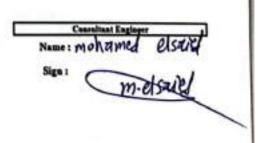
Landing	Lesi	Lood	Street	Diei 1	Diel 1	DIAI 3	Set. 1	Sett. 2	Sen.3	Avg. Sett.
Stage No.	Bur	KN .	MINIMO	-	-	-	-	-	-	-
0.000	0.0	0.000	0.00	13.83	14.54		0.000	0.000		0.000
1.000	2.4	0.707	0.01	13.72	14.35		0.110	0.198		0.150
2.000	18.8	5.652	0.08	13.80	14.17		0.030	0.370		0.200
0.080	37.7	11.304	0.16	13.30	13.82		0.530	0.720		0.62
4.000	58.9	17.663	0.25	13.08	13.53		0.750	1.010		0.880
5.000	77.7	23.315	0.33	12.90	13.34		0.930	1.200		1.065
6.000	98.9	29.673	0.42	12.70	13.05		1.130	1.490		1.310
7.000	117.8	35.325	0.50	12.58	12.75	8-1	1.250	1.790		1.520
8.000	58.9	17.663	0.25	12.60	12.90	1	1.230	1.640		1.43
9.000	29.4	1.831	0.12	12.64	13.03		1.190	1.510		1.35
9.000	2.4	0.707	0.01	12.85	13.54		0.980	1.000		0.990
10.000	2,4	0.707	0.01	12.85	13.54		0.980	1.000		0.590
11.000	18.8	5.652	0.08	12.75	13.30		1.080	1.240		1.160
12.000	37.7	11.304	0.16	12.65	13.13	1	1.180	1.410		1.295
13.000	58.9	17.663	0.25	12.58	13.63	7	1.250	1.510		1.380
14.000	77.7	23.315	0.33	12.51	12.95		1.320	1.590		1.455
15.000	98.9	29.673	0.42	12.44	12.80		1.390	1.740		1.565

			65		
0.7 ei	0.35	1.12625			
63 .	0.15	0.57187	0.55438	6.2	
8.7ej	0.35	1.47944			
830,	0.15	1.33001	61440	0.3	
D (mm)	300	1.1			
Evi	81.17				
Evi	301.15				
Ares (Sq.m)	4.67965				

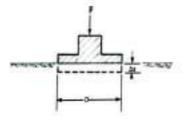

E-LE-I	3.75	T	1
		 _	J

E. = 115 . D . do / da				
s,	· deformation modulus			
40	· load increment			
40	• settlement increment			
	지금 다님에 지금 사람이 있는 것이 같아.			

P • diameter of the plate, generally 0.30 m



or one calculation for and its are usually taken from the load span between 0.3 man and 0.7 man

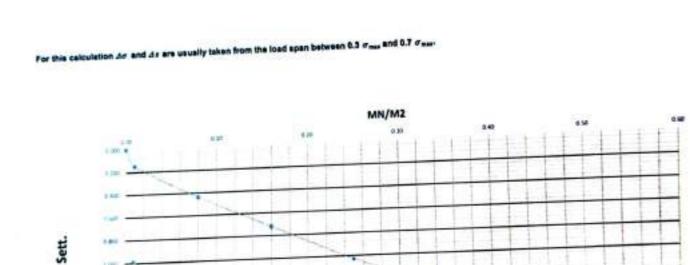

Lab. Special Name : Sign :

The load is applied to a circular rigid steel bearing plate by a bydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = load Ar = selflement B = damater of the part

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack


Lesting	Lesi	Lesi	Streat	Dial 1	Dial 2	Dial 3	Sett. 1	Sert. 1	Sett.)	Arg. Set.
Stage No.	84	RN.	MNNG	-	-	-	-	-	-	-
0.000	0.0	0.000	0.00	10.68	15.80		0.000	0.000		0.000
1.000	2.4	0.707	0.01	10.50	15.68		0.180	0.120		0.150
2.000	18.8	5.652	0.08	10.25	15.35		0.430	0.450	1	0.440
0.080	37.7	11.304	0.16	10.00	15.04		0.680	0.760		0.720
4.000	58.9	17.663	0.25	9.75	14.67		0.930	1.130		1.030
5.000	77.7	23.315	0.33	9.60	14.40		1.080	1.400		1.244
6.000	98.9	29.673	0.42	9.40	14.15		1.280	1.650		1,465
7.000	117.8	35.325	0.50	9.15	13.83	1	1.530	1.970		1.750
8.000	58.9	17.663	0.25	9.17	13.95		1.510	1.850		1.680
9.000	29.4	8.831	0.12	9.26	14.15		1.420	1.650		1.535
9.000	2.4	0,707	0.01	9.90	14.60		0.780	1.200		0.990
10.000	2.4	6.707	0.01	9.90	14.60		0.780	1.200		0.990
11.000	18.8	5,652	0.08	9.60	14.30	-	1.080	1.500		1.290
12.000	37.7	11.304	0.16	9.43	14.10		1.250	1.700		1,475
13.000	58.9	17.663	0.25	9.30	14.00		1.380	1.800		1.590
14.000	77.7	23.315	0.33	9.25	13.85		1.430	1.950		1.690
15.000	98.9	29,673	0.42	9.20	13.75		1.480	2.050		1.765

			15	40	
0.7 e1	0.35	1.21563	0.53062	0.2	
83 01	0.15	0.685	0.5,0044		
8.701	0.35	1.70667			
0.Jej	0.15	1.59063	4.11604	~	
D (mm)	300				
Evi	\$4.81				
En	385.81				
une (Sq.m)	4.87945				

ExDENI	4.55		
	1.0.0	_	

	E. = 4.73 · D · 40 / 41
1.	· deformation modulus

- for = load increment
- Ar = settlement increment
- D diameter of the plate, generally 0.30 m

...

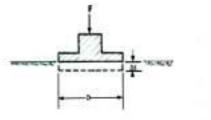
.....

٠

٠

٠

1.81 1.04 1.04


1.44

10125120035

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

Au - antDament Au - antDament D - discontar of the plat

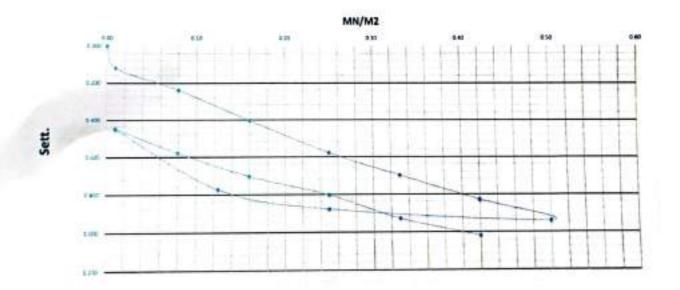
The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable and (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excersion or a roller usually serve as counterweight for the hydraulic jack

8w 0.0 2.4	ыл 0.000	MNMI	-	_		A TOTAL OF THE A DECK	- Street	1.1.0	Sett.
	0.000			-	-	-	-		-
2.4		0.00	15.11	14.35		0.000	0.000		0.000
	0.707	0.01	15.00	14.22	1	0.110	0.130		0.120
18.8	5.652	0.08	14.90	14.08		0.210	0.270	_	0.240
37.7	11.304	0.16	14.75	13.90		0.360	0.450		0.405
58.9	17.663	0.25	14.60	13.70	1	0.510	0.650		0.58
77.7	23.315	0.33	14.48	13.58	-	0.630	0.770		9.70
98.9	29.673	0.42	14.35	13.45	1	0.760	0.900		0.83
117.8	35.325	0.50	14.25	13.33		0.860	1.020		0.94
58.9	17.663	0.25	14.30	13.40	1000	0.810	0.950	- in	0.88
				13.53		0.730	0.820		0.77
				13.88	1	0.430	0.470		0.45
					-	0.430	0.479		0.45
						0.560	0.600		0.58
				-	-	0.660	0.750	14	0.70
					1	0.760	0.850		0.80
					-	0.910	0.950		0.93
					-		1.030		1.03
	29.4 2.4 2.4 18.8 37.7 58.9 77.7 98.9	2.4 0.707 2.4 0.707 18.8 5.452 37.7 11.304 58.9 17.643 77.7 23.315	2.4 0.707 0.01 2.4 0.707 0.01 2.4 0.707 0.01 18.8 5.652 0.08 37.7 11.304 0.16 58.9 17.663 0.25 77.7 23.315 0.33	2.4 0.707 0.01 14.68 2.4 0.707 0.01 14.68 18.8 5.652 0.08 14.55 37.7 11.304 0.16 14.45 58.9 17.663 0.25 14.35 77.7 23.315 0.33 14.20	2.4 0.707 0.01 14.68 13.88 2.4 0.707 0.01 14.68 13.88 2.4 0.707 0.01 14.68 13.88 18.8 5.652 0.08 14.55 13.75 37.7 11.304 0.16 14.45 13.60 58.9 17.663 0.25 14.35 13.50 77.7 23.315 0.33 14.20 13.40	2.4 0.707 0.01 14.68 13.88 2.4 0.707 0.01 14.68 13.88 2.4 0.707 0.01 14.68 13.88 18.8 5.652 0.08 14.55 13.75 37.7 11.304 0.16 14.45 13.60 58.9 17.663 0.25 14.35 13.50 77.7 23.315 0.33 14.20 13.40	23.4 8.831 0.12 14.38 13.88 0.430 2.4 0.707 0.01 14.68 13.88 0.430 2.4 0.707 0.01 14.68 13.88 0.430 18.8 5.652 0.08 14.55 13.75 0.560 37.7 11.304 0.16 14.45 13.60 0.660 58.9 17.663 0.25 14.35 13.50 0.760 77.7 23.315 0.33 14.20 13.40 0.919	29.4 8.831 6.12 14.38 13.33 6.14 6.15 2.4 0.707 0.01 14.68 13.88 0.430 0.470 2.4 0.707 0.01 14.68 13.88 0.430 0.470 2.4 0.707 0.01 14.68 13.88 0.430 0.470 18.8 5.652 0.08 14.55 13.75 0.560 0.600 37.7 11.304 0.16 14.45 13.60 0.660 0.750 58.9 17.663 0.25 14.35 13.50 0.760 0.850 77.7 23.315 0.33 14.20 13.40 0.910 0.950	29.4 8.831 0.12 14.38 13.33 0.00 2.4 0.707 0.01 14.68 13.88 0.430 0.470 2.4 0.707 0.01 14.68 13.88 0.430 0.470 2.4 0.707 0.01 14.68 13.88 0.430 0.470 18.8 5.652 0.08 14.55 13.75 0.560 0.600 37.7 11.304 0.16 14.45 13.60 0.660 0.750 58.9 17.663 0.25 14.35 13.50 0.760 0.850 77.7 23.315 0.33 14.20 13.40 0.919 0.950

			AS	44	
0.7 ei	0.35	0.73375		6.1	
83 .,	8.15	8.38437		~	
0.7ez	0.35	0.95			
8.30,	0.15	0.71001		-	
D (mm)	300	1			
Er.	128.80	1			
Evy	187.51				
Area (Sq.m)	4,87963				

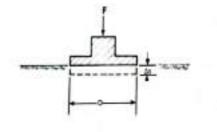
E-SE-I	1.44	


10.00	- A75 - D - da / As
5.	= deformation modulus
40	- load increment
40	- autiliament increment
D	- diameter of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 5.5 $\sigma_{\rm max}$ and 9.7 $\sigma_{\rm max}$

I.

Name :

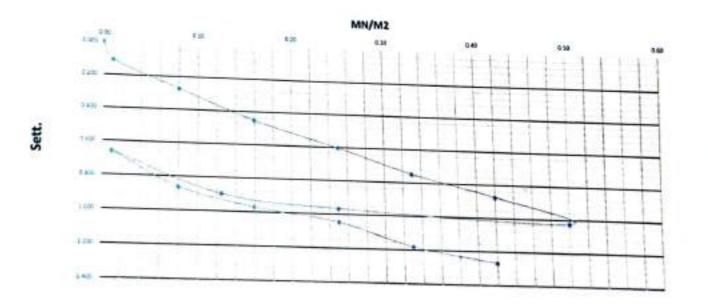

Sign :

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = land Ar = artificment D = discover of the piets

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excervator or a roller usually serve as counterweight for the hydraulic jack

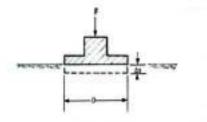

Leeding	300m	-	Street	Dial I	Dial 2	Dial 3	Set. 1	Sett. 1	Sett . 3	Avg. Sell.
Stage No.	14	KN	MNM2	-	-	-	-	-	-	-
0.000	0.0	0.000	0.00	15.00	15.35		0.000	0.000		0.000
1.000	2.4	0.707	0.01	14.93	15.20	8.22	0.070	0.150		0.110
2.000	18.8	5.652	0.08	14.80	15.00		0.200	0.350		0.275
0.080	37.7	11.304	0.16	14.70	14.74		0.300	0.610		0.455
4.000	58.9	17.663	0.25	14.64	14.50		0.360	0.850		0.605
5.000	77.7	23.315	0.33	14.55	14.30	1	0.450	1.050		0.750
6.000	98.9	29.673	0.42	14.50	14.10		0.500	1.250		0.875
7.000	117.8	35.325	0.50	14.40	13.90		0.600	1.450	1	1.025
8.000	58.9	17.663	0.25	14.43	13.98	No.	0.570	1.370		0.970
9.000	29.4	8.831	0.12	14.45	14.10		0.550	1.250		0.900
9,000	2.4	0,707	0.01	14.65	14.38		0.350	0.970		0.660
10.000	2.4	0,707	0.01	14.65	14.38		0.350	0.970		0.660
11.000	18.8	5.652	0.08	14.52	14.10	-	0.480	1.250	-	0.865
	37.7	11.304	0.16	14.40	14.00		0.600	1.350		0.975
12.000		17.663	0.25	14.30	13.95	-	0.700	1.400	1	1.050
13.000	58.9			14.18	13.80		0.820	1.550		1.185
14.000	77.7	23.315	0.33			-	0.890	1.650		1.270
15.000	98.9	29.673	0.42	14.11	13.70					

			45	54	
9.7 e1	0.35	0.74375	A 31136	0.2	
0.3 01	0.15	0.4325	051125		
0.701	0.35	1,20389	0.13387		
0.301	9.15	1.07002	0.13581		
D(mm)	300				
Evi	144.58				
Evy	336.15				
Ares (Sq.m)	8.07045				

E+2/E+1	100	

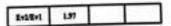
1	r. = 0.75 · D · do / As
£,	= deformation modulus
40	load increment
4.	= settlement increment
P	= diameter of the plate, generally 0.30 m

الممسوحة ضوئيا بـ CamScanner



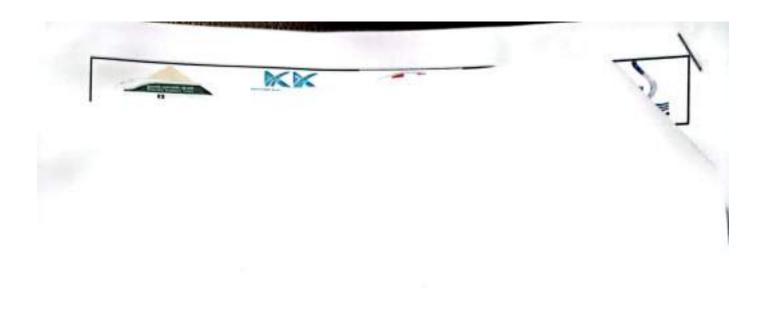
For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

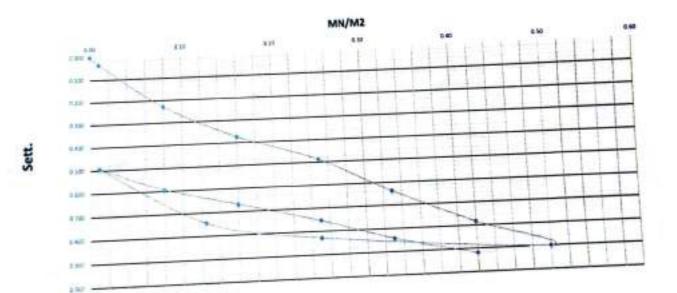

F = kad Ar = settlement D = diameter of the pie

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excervator or a roller usually serve as counterweight for the hydraulic jack


Lesting	300m	Lesi	Stream	Dial 1	Dial 2	Dial 3	Sett. 1	Set. 1	Sec.3	Arg. Sett.
Stage No.		10	MNMI	-	-	-	-	-	-	-
0.000	0.0	0.000	0.00	12.42	15.49		0.000	0.000		0.000
1,000	2.4	0.707	0.01	12.39	15.45	2.5	0.030	0.040		0.035
2.000	18.8	5.652	0.08	12.20	15.25	2	0.220	0.240		0.230
0.080	37.7	11.304	0.16	12.08	15.08		0.340	0.410	1	0.375
4.000	58.9	17.663	0.25	11.98	14.95		0.440	0.540		0.490
5.000	77.7	23.315	0.33	11.85	14.78	1	0.570	0.710		0.640
6.000	98.9	29.673	0.42	11.72	14.62		0.700	0.870		0.785
7,000	117.8	35.325	0.50	11.61	14.50	125	0.810	0.990		0.900
8,000	58.9	17.663	0.25	11.65	14.60		0.770	0.890		0.830
		8.831	0.12	11.70	14.72		0.720	0.770		8.745
9.000	29.4	0,707	0.01	11.90	15.02		0.520	0.470		0.49
9.000	2.4			11.90	15.02		0.520	0.470		0.495
10.000	2.4	0.707	0.01				0.620	0.570		0.59
11.000	18.8	5.652	0.68	11.80	14.92	-	0.670	0.670	-	0.670
12.000	37.7	11.304	0.16	11.75	14.82	-	10000	0.790	-	0.75
13.000	58.9	17.663	0.25	11,70	14.70	-	0.720		-	
14.000	77.7	23.315	0.33	11.60	14.62		0.820	0.870	-	0.84
15.000	98.9	29.673	0.42	11.52	14.55		0.900	0.940		0.92

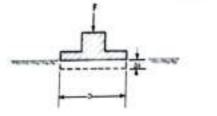
			45	he
6.7 e1	0.35	0.68438	0.3175	
0.3 0,	0.15	0.35688	e.darid	-
0.701	0.35	0.86167	0.16666	
0.301	0.15	0.69501	0.10000	
D(an)	300			
Evi	137.48	1		
Evy	270.02	1		
Ares (Sq.m)				



	- 8.75 - D - Ao / Ai
£.	· deformation modulus
40	= load increment
40	• settlement increment
1	a diameter of the plate, general

ally 0.30 m

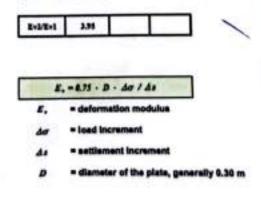
For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}

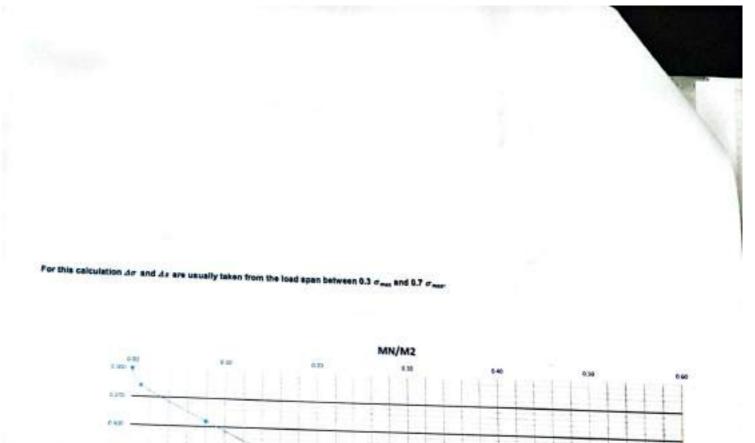


الممسوحة ضوئيا بـ CamScanner

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = land Ar = satisfierent D = duration of the play

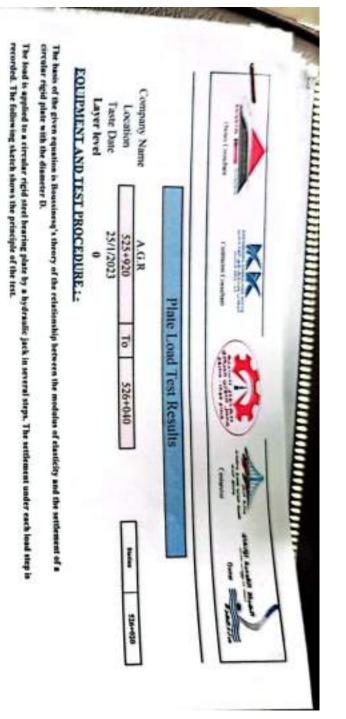

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used


The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excervator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

Leading	1 1.00	d Land	Stress	Dial 1	Dial 2	Diel 3	Sett. 1	Sett. 2	Sett.3	Avg. Sett.
Sings No.		KN KN	MNM	-	-	-	-	-	-	-
0.000	0.0	0.000	0.00	15.64	15.00	8 8	0.000	0.000	1. 10	0.000
1.000	2.4	0.707	0.01	15.55	14.85		0.090	0.150		0.120
2.000	18.8	5.652	0.08	15.41	14.50		0.230	0.500		0.365
0.080	37.7	11.30	0.16	15.31	14.11		0.330	0.890		0.610
4.000	58.9	17.663	0.25	15.18	13.83		0.460	1.170		0.815
5.000	77.7	23.315	0.33	15.08	13.50	1	0.560	1.500		1.030
6.000	98.9	29.673	0.42	15.00	13.28		0.640	1.720		1.180
7.000	117.8	35.325	0.50	14.92	13.02	-	0.720	1.980		1.350
8.000	58.9	17.663	0.25	14.95	13.15	-	0.690	1.850		1.270
9.000	29.4	8.831	0.12	15.04	13.29	-	0.600	1.710		1.155
9.000	2.4	0.707	0.01	15.36	13.68		0.280	1.320		0.800
10.000	2.4	0.707	0.01	15.36	13.68		0.280	1.320		0.800
11.000	18.8	5.652	0.08	15.18	13.45		0.460	1.550		1.005
12.000	37.7	11.304	0.16	15.10	13.34		0.540	1.660		1.100
13.000	58.9	17.663	0.25	15.00	13.20		0.640	1.800		1.220
14.000	77.7	23.315	6.33	14.90	13.14		0.740	1.860		1.300
15.000	98.9	29.673	0.42	14.82	13.00		0.820	2.000		1.410

			A5	44
0.7 e	0.35	1.03125		
0.3 ej	0.15	0.57938	9,45188	9.2
0.7ez	0.35	1.32444		
0.301	0.15	1.31003	0.11442	
D (mm)	300			
Ev ₁	99.59			
Ev,	393.28			
Arm (5q.m)				



Sett.

÷

The d te is generally 0.30 m. For very coarse grained material also p 15 ter D = 0.60 m and D = 0.762 m are

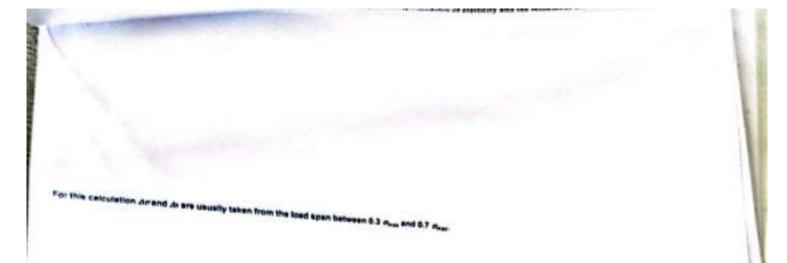
te load is ap d in 6 load inc sents of equal size. Under each load step the settlement must come to a noticesble end (< 0.02 ad is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded by serve as counterweight for the hydraulic jack

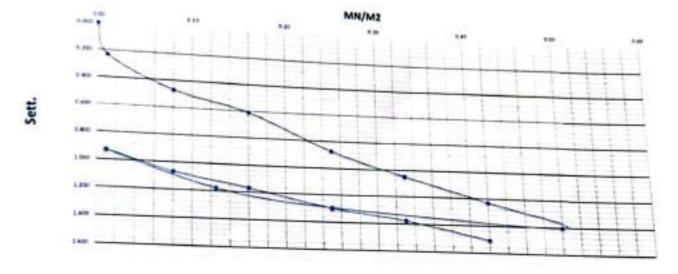
15.000	14.000	13.000	12.000	=	10	2		-	-				_					-
8	00	000	000	11.000	10.000	9,000	000.0	8.000	7,000	000.	5.000	4.000	080.0	1.000	0001	000.0	Super Sta	Louding
98.9	77.7	58.9	37.7	18.8	z	2.4	29.4	6.85	117.8	98.9	77.7	58.9	37.7	18.8	z	0.0		-
19.673	23.315	17.663	11.304	5.652	0.707	0.707	8.831	17.663	35.325	19.673	23.315	17.663	11.304	5.652	0.707	0.000	5	ĩ
0.42	0.33	0.25	0.16	0.08	10.0	10.0	0.12	0.25	0.50	0.42	613	0.25	0.16	80.0	0.01	00.0	INVIE	Su
13.69	13.81	13.90	14.03	14.15	14.31	14.31	14.15	14.00	13.92	14.01	14.11	14.23	14,48	14.53	14.71	14.91	1	Ē
14.31	14.45	14.52	14.65	14.73	14.85	14.85	14.51	14.43	14.29	14.55	14.81	15.04	15.32	15.55	15.85	16.11	1	Dial2
	-																1	Diali
1.220	1.100	1.010	0.880	0,760	0.600	0.600	0.760	0.910	0.990	0,900	0.800	0.680	0.430	0380	0.200	0.000	1	Ĩ
1.800	1.660	1.590	1,460	1.380	1.260	1.260	1.600	1.680	1.820	1.560	1.300	1.070	0,790	0.560	0.260	0.000	1	Ē
						1			F	T							1	Sett. 3
1.510	1.380	1.300	1.170	1.070	0.930	0.930	1.180	1,295	1.405	1.230	1.050	0.875	0.610	0.470	0.130	0000	:	Sett

Area (Sq.m)	Ev3	En,	D (mm)	0.341	8,761	0.3 *,	8,7 *,	
0.07643	326,27	92,90	¥00	8.15	25	0.15	815	
	10000			1.11000	1.40537	2.582.0	1.07688	-
	F		T	-	0.19887			5
	F	F	t		5	1		

E+2/E+1
Ŧ
Π
П

		1
£.	-	
Ξ.	8	
5	а.	
s	- 2	
5	8	
5		12
-	8	E
	5	1
		н
		E
		L
		-


ł


-

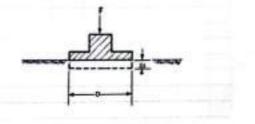
- settlement increment

- diameter of the plate, generally 0.30 m

	1
 detormation modulus 	E-875-D-40/4

	1 1 1 1 1
Lab. So	er indial .

Name :


Sign :

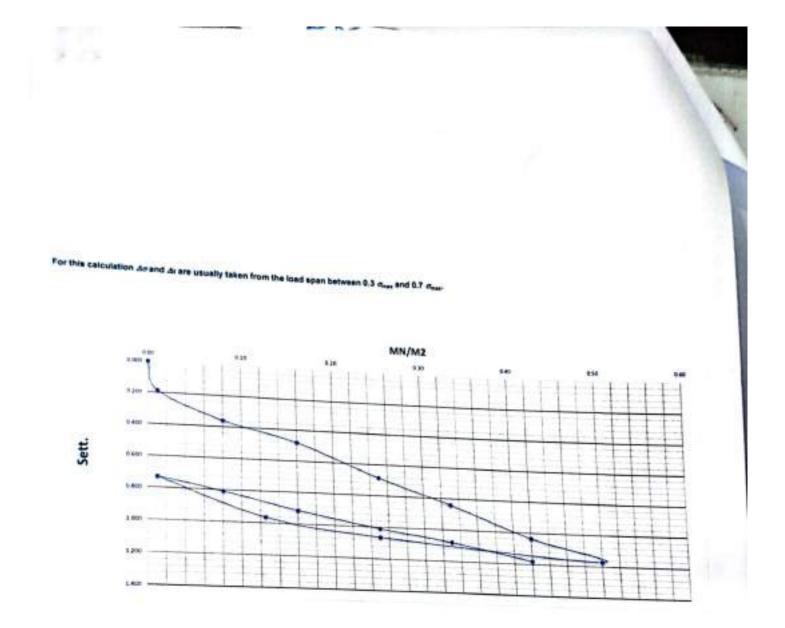
Lassa Lassa Name : Sign :

Contractor					
	р	late Load Test R	eguits		
		inte Librar Test is	course		
Company Name	A.G.R	late Lood Test N	course.		
Company Name Location		To 526+0		Sutar	\$25+960
	A.G.R			-	\$25+960

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = load Sr = arthermet D = Gameter of the pictu

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used


The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Londay	1	Land	-	Dial I	Dial 1	Dial 3	Set.1	SetL 3	Sett.3	Avg.
Suppr No.	-	1.5	MN-MJ				-			-
0.009	0.0	0.000	0.00	15.01	18.35		0.000	0.000		0.000
1.000	2.4	0.707	0.01	14.83	18.16	3	0.150	0.190		0.185
2.000	18.8	5.652	0.08	14.68	17.96		0.330	0,390		0.360
0.080	37.7	11.304	0.16	14.59	17.81		8.420	0.540		0.480
4.000	58.9	17.663	0.25	14.41	17.58	1	0.600	0.770		0.685
5,000	77.7	23.315	0.33	14.30	17.38	2	0.710	0.970		0.840
6.000	98.9	29.673	0.42	14.18	17.11		0.830	1.240		1.035
7,000	117.8	35.325	0.50	14.11	16.91		0.900	1.440		1.170
8.000	58.9	17.663	0.25	14.18	17.05	(10)	0.830	1,300		1.065
9.000	29,4	8.831	0.12	14.25	17.18	LEA-	0.760	1.170		0.965
9,000	2.4	0.707	0.01	14.45	17.45	-	0.560	0.900		0.730
10.000	24	0.707	0.01	14.45	17.45	-	0.560	0.900		0,730
11.000	18.8	5.652	0.08	14.39	17.35		0.620	1.000		0.810
12,000	37.7	11,304	0.16	14.28	17.25		0.730	1.100		0.91
13,000	58.9	17.663	0.25	14.19	17.15	-	0.820	1,200		1.01
14.000	77.7	23.315	0.33	14.14	17.06		0.870	1.290		1.08
15.000	98.9	29.673	0.42	14.08	16.92	-	0.930	1,430	-	1.18

_	_		45	3.0
0.7 di	0.35	0.91688		
0.3 +	0.15	0.465	A.431.00	
0.742	0.35	1.10222		0.2
0.301	0.15	0.89001	1	-
D(mm)	300			
Er.	99.59	1		
Er;	212.05			
Area (Sq.m)	0.07045		012	

E+24+1 1.13

E = 0.75 - 11 - Aa/ Ar	
Ε,	- deformation modulus
40	Ioad increment
4.	= settlement increment
D	 diameter of the plate, generally 0.30 m

_	Lab. Specialist	
Name :		
Sign :		

Consultant Engineer : Hassa Name 1 Fo Sign :