

للطرق والكباري المنطقة الخامسة – (غرب الدلتا)

السيد المهندس / رئيس قطاع التنفيذ والمناطق

تحية طيبة.. وبعد،،

بالإحالة إلى مشروع القطار السريع (العين السخنه- العاصمه الإدارية – برج العرب مرسى مطروح) نتشرف بأن نرفق لسيادتكم طيه المقايسات المعدلة للقطاعات الأتية: اولاً : القطاع السابع (فوكه / مطروح) :

الإتجاه	التكلفة	الشر كة	الطول	ä	المساف	م
	(مليون)		(کم)	إلى	من	
الاتجاهين	11.235	شركة المصطفى للمقاولات	0.38	524+880	524+500	1

برجاء من سيادتكم التفضل بالاحاطه والتوجيه بالازم

وتفضلوا بقبول فائق الأحترام والتقدير،،

رنيس الإدارة المركزية

المنطقة الخامسة غربهم دائنا c.c2 عميد مهندس/ يدس/ ٢٠٠٠ ٢٠٠٠ ٢٠٠٠ ٢٠٠٠ ٢٠٠٠ ٣ هاني محمد محمود طه ٣

ALMOSTAFA CONTRACTING COMPANY	ENGINEERING CONSULTING OFFICE المقتب الاستشاري الهندسي 1.د. خالد منديل	المطار الكميونين المطار الكمولين الكمينية Electric Express Train SYSTIA State	المينة العامة للطـرق والكبـاري	معین معمر الاریا مراد النقل معرف
صطفى عبدالمحسن)	- شكة المصطفى للمقاولات (أحمد م	مشروع القطار الكهربائي السريع 18/12/202 للقطاع السايع (فوكه - مطروح)	ينود الاعمال بعد التفاوض بتاريخ 3	المقابسة المعدلة ل

الاجمالي	الفنة	الكمية	الوحدة	إيبان الأعمال	اليند
การการสีวิณณณตรงการสารการสารการการการการการ การการการการการการการการการการการการการก	ne mand ann an ann an an an an an an an an an a	And a second	No. of Concession, Name of Con	اعمال الازالة و التطهير	1
15,525.16	5.00	3,105.032	2,	ابتشتر المسطح اعمل تقبير المرقم من الاشجار والمزرر علت والمخلات في مناطق الثلثا ذات الطبيعة الرزاعية الكثية والتخلص طبا بالمقات السومية تعبيدا	1.
			STREET, STREET, STORAGE, STREET, STREE	لاعمال الرقع السنامي لكامل حدود المشروع طبقا للشروط والعواصفات و تعليمات المهندس المشرف. اعمال الحقور	2
	1	1		ار مصلي المصبي إ بالمكر اعمال هاي بالمعالة الميكاليكية في تربة صغرية ومعمل على البنة الاتن	1.10.010.00
	ACCESS OF A DESCRIPTION			1- تحميل و نقل ناتح فعل المدانة لا نقل عن 500 مثر 2-ارتكة العبول الجانية باستعدام المحات المكانيكية-	
				3- توريد اترية مطابقة للمواصفات و تشغيلها باستغدام الات التسوية سمك لا يزيد عن 25 سم لاستثمال المنسوب التصميص لتشكيل الجسر والاكتاف (نسبة	
				أتصل كالفرزيا لا تل من 10 %) و رئيها بالمياه الإصرانية للرصيل الى نسبة الرطوية المطلوبة والناك العود بالبراسات للرصول الى قصى كلافة هافة (1954 هـ الكلافة العاقة النصوى). ويقر النفلة طبقا للتناسب التمسيمية والطاعات العرضية الموذهبة والرسومات الناصيلية المخدة والبك بحميع متشلالة	
				اطبقا لإصبول الصناعة والمواصفات الهينة العامة للطرق والكبارى وتعليمك المهلتين المشرف	
				بالمتر المكعب اعمال حفر بالمعدات الميكانيكية في تربة صخرية	and en second
615,951.89	71.60	8,602.68	3,	ذات إجياد (200-100) كجم/سم2	
434,000.00	86.80	5,000.00	3,	اذات إجهاد (300-200) كجم/سم2	2.
5,389,062.21	100.70	53,516.01	3,	ذات اجیاد (400-300) کجر/سر2	
		R		اعمال الردم	3
			1967 1977 (1979) 1979 (1969) 197	الملعن المكعب اعمل توريد وتشغيل الزية صالحة للردم و مطابقة للمواصفات والتشغيل باستخدام الات التسوية بسعك لا يزيد عن 50 سم حتى منسوب -2 متر و	
				يست لا بزيد عن 25 سر لاستثمال المنسوب لتشعيس لتشكيل الجمر والاكتاف (نسبة تعمل كالبلورايا لا نقل عن 15 %) و رشها بالسياه الاصراية الوصول الى نسبة الرطوية المالوية رائمك الجيد بالهر اسائنا للوصول الى قضم كلافة جاة (65 % من الثالثة الجاة القصوم) ويتم الفقة طبقا الماليب التمسيمية	
309,092.55	101.40	3,048.25	34	ا والقطاعات العرضية الموذيبية والرسومات التفسيلية المعتدة والبند بجميع مشتملاتة طبقا لاصول المسلامة ومواصفات الهيئة العاسة للطرق والكبارى وتعليمات السيفتين المشرف.	
			-	.في هانة طلب جهاز الإضراف زيادة نسبة الدمك عن 95 % يحسب زيادة 1 جلبة على زيادة اسبة الدمك لكل 1 % - مسافة الظل 2 هر ريم اهتساب علاوة 1,5 جلبه لكل 1 هر بلاريادة أن التقصان	3.
				-السعر يشمل قيمة المادة المحجرية	
1,373,998.69	450.75	3,048.25	43	علارة مسانة النل 302.5 كم	
39,627.25	13.00	3,048.25	43	علاوة تحصيل رسوم الكارنة والموازين طبقا للانحة الشركة الوطنية	
				طيقك الاساس	4
				اياتش التكتب الصل تزريد وفرش طبقة تأسيس (prepared Subgrade) من الاصمار الصلية المتترجة ناتج تكبير التسارات والمطابقة للمراصفات إراقهس هجم المبينات 100 مع والا تزرية نسبة المار من متلك 200 من 12 % و التدري الوارد بالاغتراضا المقدريع لا تقل نسبة تعمل كاليفورتيا	
	-			عن 25 % و الانزيدنسية الفائد بمهار لوس النظرس عن 30 % والايزيد الامتصاص عن 15% و الايقل معامل المرونة (Ev2) من تجربة لرح التحميل عن 80 ميجايسكال ويترفردها على طبقتين ينستخدام الات لتسوية الحديثة على أن لايزيدسك الطبقة بعد تمام الناك عن 25 سرو رشها بالسياة الاصولية	
266,330.88	146.40	1,819.20	2.	المرصول الى تسبة الرطوية المطلوبة والتمك الجيد للهراسات للوصول الى اقصم كثافة جافة قصوي (لاتقل عن 95 %) من الكثافة المعطية والفنة تشمل اجراء	
200,330.00	140.40	1,019.20	32	التمارب المعلية والعقية ويتم التليذ طبقا لاصول الصناعة والرسومات التلصيلية المعتمدة والبند بجميع مشتمالاته طبقا للمواصفات القنية للمشروع وتقرير الاستشاري وتعليمات المهدس المشرف	
				۔مسافة النقل لا نقل عن 20 كم - يتم احتساب علامة 1.3 جنبه لقل 1 كم بالزيادة او القصان	4.
292,891.20	161.00	1,819.20		اقيمة مادة محجرية بمشتملاتها	
148,992.48	81.90	1,819.20		علارة سنافة النقل 83 كم	
45,480.00	25.00	1,819.20		علاوة تحصيل رسوم الكارثة والموازين طبقا للانحة الشركة الوطنية	POCTO COL
				بالمثل المكتب اعمل توريد وفرش ملبقة اساس من الاحجار الصلية المتدرجة ناتح تصير الكمارات والمطابقة للتواصفات وأهمس حجر للحبيبات ما بين 31.5 امر الى 40 مر والا يزيد نسبة المار من منتقل 200 عن 5% والتدرج الوارد بالاشتراطات الخاصة بالمذروع لا تقل نسبة تحمل كاليقررنيا عن 50 % والا يقل	
				المعامل المرونة (Ev2) من تجرية لرح الشعميل عن 120 ميجابسكان والايزية نسبة الفاقد بمهان لوس المجلوس عن 30 % والايزية الاستسامي عن 15 % اويتم فردها على طبقتين استخدام الات النسوية الحديثة على ان لا يزيد سنت الطبقة بعد تسام الناس عن 20 سم و رشها بالسبة الاصولية للرصول الى نسبة	
336,339.90	151.30	2,223.00	3	اكر شرية المطرية رائدك لجيد بلهر اسات للرصول الى اقسى كلافة جانة تصري (لا بل عن 100%) من الكلافة المعلية و الفة تشمل اجراء التجارب المعلية والحقلية ويترتفيذ طبقا لاصول المناعة والرسومات التفصيلية المتحدة رائبلد بجميع مشتلاته طبقا للمواصفات التبة للمفروع ونقرير الاستشاري	
			at	وتعليدات المهندين المشرقين .	
				-مسافة انتقال لا نقل عن 20 قم يتر احتساب علاوة 1,3 هنيه لقل 1 كم بلايادة او النقصان	4-
000.007					
389,025	175.00	2,223.00		الیمة مادة محمر به بمشملاتها محمد المار محمد محمد محمد محمد محمد محمد محمد محم	
615,548.70 55,575.00	276.90	2,223.00		علاوة مسافة الفل 233 كم علارة تحصيل رسور الكارثة والموازين طبقًا للائمة الشركة الرطنية	
55,515.00	23.00	2,223.00		عدر: عصل ريز العارية والوارين عليا للالعة الترك الرضية. البلاطات الغربيانية	5
The second strend st				بالمتر المسطح اعمال توريد وصب هر سانة عادية سك 15 سم لعماية الاكتاف والمبول الجانبية تتكون من 0.8 م3 سن دولوميت متترج + 0.4 م3 رمل	5
070 000 00	10000	1017.00		حرش والاضتاقات طلقا لتطبيك الاستشاري (فير + سيكا) على أن يكون السن نظيف ومفسول والومل غالي من الشواب والطلقة والأملاح والعواد الغربية مع أرضع فوم بالتراصل ست 2 سم طلقا لتطبيك الاستشاري والبند يتممل تجهيز واستحال طاسبه التربية الطبيعية أسقل البلاطة للرصول إلى المناسب التمسيميه	
876,069.00	457.00	1,917.00	42	اطُّي أن تُحقق الدرسانة المهاد لا يل عن 250 كم / سرَّدُ وتنطيب السطّ وطن النار اصل بالنتر مين المرمل والتنابذ طفا لأصرل الاصناعة والرسومات التلصيفة المحتدة، الند يصبو مشتلاته طبقاً لمراسطات البينة العامة للطرق والكبران وتطبيات المؤرف , يتر اضافة علاوة قدرها 5 جنبه بعد اول	5-
		Concerne of the second s		التصوير المحدر بيد يجمع مسمرة عز مدان بيد المنا عبو المان عن و مدري و تعبدت معينان عشرت ، وم علما حرو مربد ي جو بله وي 10 متر راسي عن ان تصاف لكل مسلاح (لا يق عن 5 متر راسي)	
NAME OF A DESCRIPTION OF A			AND THE REPORT OF A DURING CARACITY	البلستر المكتب اعمل توريد وصب خرستة عادية للامات المعايات والمبول الجانبية تلكون من 0.0 م 3 من دولوميت متدرج + 0.4 رط حرش والاصافات ال الدورات مدرمة من در المربع من 20 مار از مكرن الب تطاه محمد المراح في حراف الدور الطاق والدلاحي المراد المربع مح	NORTH REPORT
21 092 40	2 665 20	12.00	2.	استا تعليمات الاستاري (فير + سركة) على أن يكون المن تعليه ومعمول بيلامل على من الثرائب والمللة والأملاح والمواد الغربية مع وضع فوم (التقاصل) بست 2 سر (طبقا لتطبيك الاستثناري) والبند ينشل أصل العلو والتيات وكل مالارم ليم المنان العرسة الجيد لا بقل عن 250	-
31,982.40	2,665.20	12.00	م3	(رانتصای بست 2 س (مان ناصدان ۷/ستاری) را نت بخد آماد نامد (رشتان یک مایر دلیر است می اجذو نکر ستاه بیگ ۶ بل عن 200 اعدار هر رف اور سک ملیفر من قرم را تعند ملتا با بحر از جنانه و ترجی که انتصابهٔ و است بین است می نام منت اینیه است انتشاری و انتشاری و تعدید است است است می داد و این 5 حضر می را 10 مکر را می می می معمد یک سنت کر بینا من 5 مکر را	5-
				13 8 3	
11,235,492.30			27 AUAUUU - AUUUUU		
		10 10 1 10 10 10 10 10 10 10 10 10 10 10			

SAND AS مدير عام المشروعات م / محمد حسني فياض مدير المنسب المالك م / بيم هيم الحنادي 2 ؛ ? يعتمد رنيس الأدارة المركزية منطقة غرب الدلتا الاسكندرية - مرس مطروح 0 عمید مهندس / عمید مهندس / عمید محمود 16

ASIC .

C

للطرق والخبارى محضر استلام موقع مشروع: أعمال الجسر الترابي والاعمال الصناعية لمشروع القطار الكهرياني السريع (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح (مرحلة الحفر وتشكيل الجسور والتأسيس والأساس والخرسانة) لتنفيذ المسافة من الكم 500+524 الى الكم 0.38+524 بطول 0.38 كم تَنْفَيدُ: شركة المصطفى للمقاولات "أحمد مصطفى عبدالمحسن" اشراف : المنطقة الخامسة - منطقة غرب الدلتا طبقاً للعقد رقم (2024/2023/336) بتاريخ : 7/9/2023 إنه في يوم الخميس الموافق 7 /2/2023 اجتمع كل من :-مدير عام المشروعات - الهينة العامة للطرق والكباري 1- السيد المهندس / محمد حسني فياض مهندس العملية - الهينة العامة للطرق والكباري 2- السيد المهندس /إبراهيم عبد الله الحناوي مدير مشروع - شركة المصطفى للمقاولات 3- السيد المهندس / مصطفى محمد ثابت وذلك للمرور على مسار العملية المذكورة عاليه لاستلام الموقع :-وقد تبين أن الموقع خالياً من العوانق الظاهرية ويسمح بالبدء في التنفيذ وبناء عليه يعتبر تاريخ 2023/9/27 هو تاريخ استلام الموقع وبدء الأعمال بالعملية. واقفل المحضر على ذلك ووقع الحضور التوقيعات -tike -3 -et-1 رنيس الادارة المركزية منطقة غرب الدلتا الاسكندرية - مرسي مطروح عميد , مهندس / @ "هالي محمد محمود طه" "١

Compressive Strength For Stone Semple

Testing date	13-54-2023
Company Name	AL MUSTAFA
Location	524+500 To 524+800

Sample- No	Station	Waged (gm)	Violania (Gm3)	Demisty (gm/cm3)	Average Deritsty mencer3)	Accent (ISN)	Strangtil (Kg/Gm2)	Average Strongth (Kg/Gm2)
1		999	421.88	2.37		249	450.69	
2	524+500 To 524+560	915	421.88	2.17	2.31	132	238.92	463.4
3		1007	421.88	Z.39		387	700.47	
4		1042	421.88	2.47		395	466.495	318.5
5	524+560 To 524+620	948	421.88	2.25	2.22	299	353.119	
6		823.5	421.88	1,95		115	135.815	
7		714	.343.00	2.08	(m. 1)	117	243.36	1
8	524+620 To 524+680	726.8	343.00	2.12	2.17	165	345.28	251,8
9		853	367.50	2.32		86	166.84	
10		841	421.88	1.99	1000	75	135.75	
11	524+580 To 524+740	866.6	421.88	2.05	1.97	86	155.66	152.0
12		789	421.88	1.87		.91	164.71	
13	And the second second	850	421.88	2.48	1.1	80	144.8	
14	524+740To 524+800	802	343.00	2.55	2.53	60	124.8	131.5
15		879	421.88	2.55		69	124.89	

Consultant Engineer Nome: Hassan

Sign :

From El An El Bohne City To El Alamein - MATROUH		From El An El Sokhna City To El Alamein - BATROUH Secti-n - 7 From FCKA 10 MARSA MATROUH	الهمة القهيد للكلي المدوالماده القراده
--	--	---	--

Compressive Strength of stone sample

Touring Date	25-2-2023	Station	\$38+549 To 526+759
Location .	K.P (524+500)	Material	Rack
Computer Name	المصطفى	Macruel	Hat

Dersaming i

AL Nuby Central Lab

Sample No,	Station	wieght (gm)	deristy (gm:um3)	Average Density	load (ICN)	Strength (Kg/cm2)	Average Strength (Kg/cm2)
1		910	2.65		384	1967	
3	524+500 Te 524+550	898	2.62	2.50	409	\$50.7	641.3
3		765	2.23		132	279.6	
4		866.5	2.53		602	1252.2	
5	524+550 To 534+600	828	2.41	2.54	398	427.8	1107.9
6		921	2.69		596	1243.8	
7		980.9	2.86		510	1060.5	857.7
*	\$24+600 To \$24+850	947.8	2.76	2.63	586	3238.9	
9		776	2.26		141	193.3	
10		943.4	2.75		699	1453.9	
11.	524+650 To 524+700	938	2.13	2.73	513.6	3068.3	1248.4
12		981	2.71		588	1228.0	
13		850.4	2.48		634	1818.7	
14	524+700 To 524+750	889.4	2.59	2.58	645	1341.6	1218.2
15		912	2.66		478	994.2	

last Erg

Faculty of Engineering

Engineering Center for Community Development Properties and strength of Material Lab. Structural Engineering Dept

جامعة الإسكندرية كلية الهندسة المركز الهندسي للخدمة العامة معمل خواص ومقاومة المواد قسم الهندسة الإنشانية

اختيار الضغط على عبنات حجر

عينة رقم (2)

(من المحطة 540+524 الى المحطة 580+ 524)

نتائج الأختيار:-

A.		أيعاد العينة (سم)		مساحة المقطع	فرّن العينة	حمل الكسر	اجها <i>د.</i> الكسر	ملاحظات
	طول	عرض	ارتقاع	(سم 2)	(جم)	(kN)	(كجم/سم2)	
1	7.0	7.0	6.8	49.0	850	265	551.3	
2	7,0	6.8	7.0	47.6	772	105	224.9	+
3	7.0	6.9	7.0	48.3	805	283	597.3	

ملحوظة هامة:

م تحديد عدد العينات (3) بمعرقة العميل ، مع العلم أن هذا العدد غير مطابق للمواصفات القياسية لهذا الاختبار
 م توريد العينات بمعرفة العميل وكذلك المعلومات الخاصة بها .

المشرف على الاختيار 10 . 5 د. اسماعيل أحمد محمد محر و س

تحريرا في : 2023/2/9 رقم التقرير . 6

جمهورية مصر العربية ، الأسكندرية ، ص. ب. 1544 – تايتون 6/7/ 5925550 (03) – فاكس 5921853 (03)

Faculty of Engineering

Engineering Center for Community Development Properties and strength of Material Lab. Structural Engineering Dept

جامعة الإسكندرية كلية الهندسة المركز الهندسي للخدمة العامة معمل خواص ومقاومة المواد قسم الهندسة الإتشانية

اختيار الضغط على عينات حجر

عينة رقم (3)

(من المحطة 524+580 الى المحطة 620 + 524)

نتائج الأختبار:-

فم		أبعاد العيثة (سم)		مساحة المقطع	ودن العينة	حمل الكسر	اجهاد الكسر	ملاحظات
	ظول	عرض	ارتفاع	(سم 2)	(جم)	(kN)	(كجم/سم2)	
1	7.0	7.0	7.1	49.0	873	293	609.5	
2	7.0	7.0	7.0	49.0	870	209	434.8	
3	7.0	7.0	7.1	49.0	845	257	534.6	

. ملحوظة هامة:

- تم تحديد عدد العيدات (3) بمعرفة العميل ، مع العلم أن هذا العدد غير مطابق للمواصفات القياسية لهذا الاختيار
 - تم توريد العيدات بمعرفة العميل وكذلك المعلومات الخاصة بها .

المشرف على الأختبار مدير المعمل 1 452 . 5 در عبد اللطيف السيد ابو د اسماعيل أحمد محمد محر وس تحريرا في : 2023/2/9 ر قم التقرير

جمهورية مصر العربية ، الاسكندرية ، ص. ب. 1544 = تليقون 7/6/ 592550 (03) - فاكس 5921853 (03)

Faculty of Engineering

Engineering Center for Community Development Properties and strength of Material Lab. Structural Engineering Dept

جامعة الإسكندرية كلية الهندسة المركز الهندسي للخدمة العامة معمل خواص ومقاومة المواد قسم الهندسة الإتشانية

اختبار الضغط على عينات حجر

عينة رقم (4)

(من المحطة 620 +524 الى المحطة 660 + 524)

نتائج الأختيار:-

قم		أبعاد العبنة (سم)		مساحة المقطع	وذن العينة	حصل المحسر	إجهاد الكسر	ملاحظات
	طول	عرض	ارتقاع	(22)	(جم)	(kN)	(كجم/سم2)	
1	7.0	7.0	7.0	49.0	786	153	318.3	
2	7.0	7.0	6.9	49.0	816	296	- 615.8	
3	7.0	7.0	7.1	49.0	855	249	518.0	

ملحوظة هامة:

- تم تحديد عدد العيدات (3) بمعرفة العميل ، مع العلم أن هذا العدد غير مطابق للمواصفات القياسية لهذا الاختبار
 - تم توريد العيدات بمعرفة العميل وكذلك المعلومات الخاصة بها .

المشرف على الاختبار مدير المعما 010 د. عبد اللطيف السيد أبو . د. اسماعيل احمد محمد محر و تحريرا في : 2023/2/9 ر قم التقرير

جمهورية مصر العربية ، الاسكندرية ، ص. ب. 11544 – تلينون 6/7/ 5925550 (03) – فاكس 5921853 (03)

Faculty of Engineering

Engineering Center for Community Development Properties and strength of Material Lab. Structural Engineering Dept

جامعة الإسكندرية كلية الهندسة المركز الهندسي للخدمة العامة معمل خواص ومقاومة المواد قسم الهندسة الإنشائية

اختبار الضغط على عينات حجر

عينة رقم (5)

(من المحطة 660 +524 الى المحطة 700 + 524)

نتائج الأختيار:-

قم		أيعاد العمينة (سم)		مساحة المغطع	وژن العيلة	حمل الكسر	اجهاد الکسر	ملاحظات
	طول	عرض	ارتقاع	(محمد 2)	(جم)	(kN)	(كجم/سم2)	
1	7.0	7.0	6.9	49.0	877	244	507.6	degle -
2	7.0	7.0	7.0	49.0	868	226	470.2	- dia
3	7.1	7.0	6.9	49.7	825	319	654.3	

- ملحوظة هامة:

تم تحديد عدد العينات (3) بمعرفة العميل ، مع العلم أن هذا العدد غير مطابق للمو اصفات القواسية لهذا الاختيار
 تم توريد العينات بمعرفة العميل وكذلك المعلومات الخاصة بها .

المشرف على الاختبار 2. 105 د. اسماعيل أحمد محمد تحريرا في : 2023/2/9 رقم التقرير

مدير المعمل

Faculty of Engineering

5.18

Engineering Center for Community Development Properties and strength of Material Lab. Structural Engineering Dept

جامعة الإسكندرية كلية الهندسة المركز الهندسي للخدمة العامة معمل خواص ومقاومة المواد قسم الهندسة الإنشانية

اختيار الضغط على عينات حجر

عينة رقم (1)

(من المحطة 500+524 الى المحطة 540 +524)

نتائج الأختيار:-

ملاحظات	إجهاد الكسر	جمل الكسر	فدْن العينة	مساحة المقطع		أبعاد العيلة (سم)		قم
	(كجم/سم2)	(kN)	(جم)	(سم 2)	ارتفاع	عرض	طول	
	419.7	196	793	47.60	7.0	6.8	7.0	1
	439.1	196	767	45.50	7.0	6.5	7.0	2
	289.0	135	765	47.61	7.0	6.9	6.9	3

- ملحوظة هامة:

تم تحديد عدد العينات (3) بمعرفة العميل ، مع العلم أن هذا العدد غير مطابق للمواصفات القياسية لهذا الاختبار
 تم توريد العينات بمعرفة العميل وكذلك المعلومات الخاصة بها .

المشرف على الاختبار مدير المعمل 2 1 0/09 د. اسماعيل أحمد لحمد د. عبد اللطيف السيد أبو محروير تحريرا في : 2023/2/9 رقم التقرير:-C.04/ 909 Republic V

جمهورية مصر العربية ، الاسكندرية ، س. ب. 1544 - تليفون 6/7/ 5925550 (03) - فاكس 5921853 (03)

MATERS INSPECT REDUCT	ΟŇ	الهيئة القومية للإنقاق	Maria Januaria Januaria	IL ADDINE	Laure addition	
Contractor		MOSTAFA COMPAN	v	Designe	r Company	

Company	AL-IVIOSTAFA CON	PANT					1.11	n.n.			
issued by	Name	Sign		Date	2			Time	2	1	
Contractor	MOSTAFA THABET	Kostala Th	abo	26-0	2-202	3	-	1			
Received by				1	11	0	DD	MM	YY	HH	MM
ER			MIR	8.JP 524	EW	0.7	26	nr	2023		

CODE 1	51 to 521 Station Reference	D1 to 53 Deput Reference	Kp XXX Note For Kilometer point only Start Km is used
CODE - Z		Work Activity	
CODE-3		Sub Element of Activity	

Desci	ription of N	laterials		REPLACEMENT FILL MATERIAL RESULTS					
Locat	lon to be U	lsed	From 524+900 524+880 524+880 524+820 524+820 524+820 524+800 524+800 524+800	TO 524+920 524+920 524+920 524+920 524+920 524+920 524+920 524+920 524+920	FILL FILL FILL FILL FILL FILL	(-3.00 m) (-2.50 m) (-2.00 m) (-1.75 m) (-1.50 m) (-1.25 m) (-0.75 m) (-0.75 m) (-0.50 m)			
MAR	Approval N	la					Date		
Supp	lier Name								
Test	Requiremen	nt			Spe	cification	Clause		
Refer	ence Photo	o s	Yes attach	ed / No	Oth	er			
item	Descripti	on		Unit		Quantity	Arrival Date	Note	
1		Sieve and	alysis		M3	5000	26-02-2023		
2		Classifica	ation		M3	5000	26-02-2023		
3	P	roctor &	O.M.C		M3	5000	26-02-2023		
4		L.L & P.L	& PI		M3	5000	26-02-2023		
5		C.B.	8		M3	10000	26-02-2023		
	ments by:					Comments by			
	UMA BADR	LAB) and	rom fill mater the results fo ns and accept	unded meet ed.	the				
-	-	Lai		the system is		STATUS	Inclusion	I diament	
Orgai	nisation	Name			lgn		Date	A-AWC-R	
Contr	ractor	Hosta	he That	Her 1	Lest	als This het			
)C *	Abda	Albh SAN	17 1	Ab	low			
GARB	3=+								
	oyers esentative								

File: MtR - Material Inspection Request Rev E

Contractor Company	AL-MOSTAFA CON	IPANY		Desi	gner C	ompa	ny	K.K			
the second has	Name	Sign		Date				Time			-
Issued by Contractor	Mostafa Thabet	Hstoly TA	iter	28-0	2-202	3					
Received by				64	C2	63	DG	MM	w	HH	MM
ER	_		STR	R.P 524	EW	0.T	25	02	7023		

CODE-1	\$1 to \$21	D1 to 53	Kp XXX Note
-	Station Reference	Depot Reference	For Kilometer point only Start Km is used
CODE - 2		Work Activity	
CODE-3		Sub Element of Activity	

		NB: Package 1 Only (Par	ckage 2 via Aconex)	
	THE FOL	LOWING TEST RESULTS A	RE ATTACHED FOR REVIEW	
Descripti	on of Test Materials		Soil (A-1-b)	
Location	ofTest		K.P (524)	-
Item	Specification	Test Requirement	Test Result Attachment	Remarks
1	ASTM D 75	Aggregate sampling	According to specification	
2	ASTM C 136	Sieve Analysis	According to specification	
3	ASTM D 1440	Passing sieve #200	13.2	
4	ASTM D 4318	Atterberg limit	N.P	
5	ASTM D 2974	Moisture content	6.3	
6	ASTM D 1557	Modified proctor	2.16	_
7	ASTM D 1883	C.B.R	53.0	
		1		

Comments by:	Comments by:

	A	PPROVAL STATUS		
Organisation	Name	Sign	Date	.A-AWC-R
Contractor	Mostah Thabet		* T I.	A
Designer	Hassan	2000		A
GARB *		-		
Employers Representative	1			

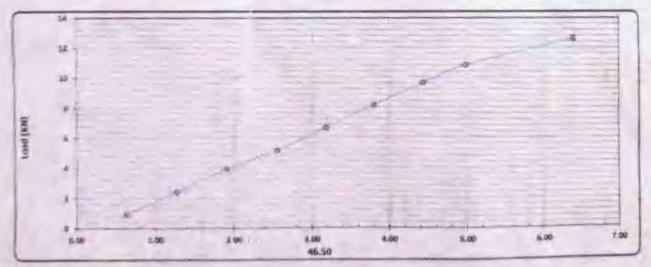
File: MAN Test Result Form Rev E

AL Huby Central Lati

California Bearing Ratio TEST

Susting Date	1/3/202023	1			
Location 1	K.P (524+800)	Code			
Company Name	AL Mustafa	MO (2)	FROM STA	All a species	525+000

-: Test Results

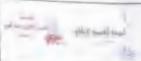

Compaction % for Mold	
Mintal No.	4.
Muld Vol. (cm ³)	2158
Meld WT. (gm)	6290
Moin WT. + Wes. WT. (gan)	-
We WT. (gps)	4921
Wet Density (g/cm ¹)	7.280
(key Density (g/rm^2)	2.154
Precise Density 1.9/2711-1	2.140
Composition %-	49.7

Tarn Na.	18
Tara W.L. (get)	43.7
Tare WT. +Wet WT. (gm)	150
Tare WT. + Dry WT. (gm)	144.1
3398	2.9
Ary WI; igni	104.4
Maintare Content %	5.9

Swettrag	
Midd /vin.	1
Dage	1/3/2528/23
Section Heright (mem)	5,00
Final Height (nort)	5.15
IRDepenant	
Sample Meight (mm) /	130.00
twelling Matter 14	0.1%

Loading Reading :

46.50	3.64	1.27	1.91	2.54	3.18	3,89	4.45	5,00	5.40
Load Reading (mm)	4.83	9.88	6.13	0.11	9.32	0,17	-0.32	11.34	8,42
Louis (KN)	0.0	2.4	3.9	5.1	6.6	8.1	9.6	10.8	12.6



Calculations :-

Patternos	Load	Standard Louit	CHR	Muld - Copportune	Comparitor	(BR
(mm)	(8.0)	(Ib)	1463	1.161	7165	18. Special #1
2.50	10 FP	13.4	10.25		Aug Con	37.5%
5.00	1000	78.0	- CLARE	100		51.0%

Consultant Engineer Lab. Re Lab. Speciality Nam Sumi? Name . iqu: isteri. 1503 0 -in-

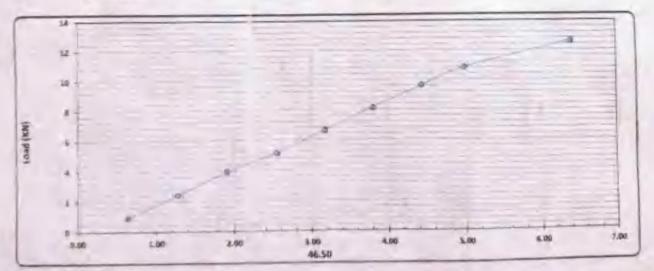
California Bearing Ratio TEST

Testing Date 1	1/3/202023				
Lacation :	K.P (524+800)	Code			
Company Name	AL Mustafa	MO (2)	EROW ST 5.1	(1+-m)	125+668

·: Test Results

Compaction % for Mold	
Mald No.	T
Model Vol. (cm ²)	1158
Meld WT. (gm)	-
Sealed WT, - Wet WT. (gas)	1851
Wet WT. (gas)	-4921
Wei Density (g/cm ³)	1.250
Dry Drawity (g/crn ³)	3.854
Pressor Density (g/cm ³).	3.160
Competition %	98.7

They Ma.	38
Tare WT. (gm)	43,7
Twee WT, - Wai WT, (gm)	150
Tare WT. +Dry WT. (gm)	1461
1348	63
Dry WILigm)	205.4
Muntare Content %	5.9


Swiffing	
Wested Sain	
Certe	10/2/0923
Initial Philippe (many)	1.10
Waak Mright (rees)	5.15
Lifference	
Sixenade Halghe (otor)	136.00
meeting Rates in	0.1%

Consultant Engineer

Nanie

Loading Reading :

45,50	8.64	1.27	1.91	2.54	3.18	3.89	4,45	5,00	8.40
Load Reading (mm)	1.03	0.66	0.13	141	9,22	0.27	9.32	6.86	8.43
Lord (KN)	1.8	2,4	3,9	5.1	6.6	8.1	9.6	19.8	12.4

Calculations :-

Pentaration 1	Logi	Star-turd Load -	126	Muld - Compaction	Computer	LER
	(Mar)	(16)	1.449	121	1963	
(mm)	(mai)		18.27			37,5%
2.50	10	13,4	1000	100	48.	0.07
5.00	to At	38.0	10.875			

1912

תוק ערב

Lab. De

Same.

No.1

Lab. Speciation

Name :

Sign 1.

	Electric Express Train - HSR Fran El Aln El Sokhas City To El Mamoin - MATHOUH Dection - 7 Fran FOKA To MARSA MATROUH	marine set set instant
Oproving Lab AL Nuby Central La	Firm Blating 604+050 To Station 243+177	

PARTICLE SIZE DISTRIBUTION OF SOIL

TESTING DATE:	26-2-2023	Code			
LOCATION	K.P (524+800)		2006	524+500	825+000
NAME COMPANY	AL Mustafa	MOLD			

1-VIBUAL INSERCTION ME

2-Gradient test

-gradation of bulk mate	riais			SAMPLE W	EIGHT (g)	2524	6,00	gm	1	table classify
steve size	2	1.5	1	4/3	2/1	8/3	#4	PASS		soli classify
Mass retained (g)	0.0	2215.0	2141.0	1907,0	2104.0	2201.0	2141.0	-		A-1-b
Currolative Related (g)	20	ITALIN .	4357.0	5344.0	8448.0	10649.0	12790,0		PRO	2.16
Cumulative Retained N.	28	A.B	(7.3	25.1	33.5	42.2	50.7		WC	6.30
Constance Passing %	105.1	91.2	82.7	74.8	11.10	17.8	40.5		CBR	5374

5-soft material gradation	<u>n</u>		F	WT.OF sample	600.00	gm
SHEVE \$126	10	40	300			
Comutatione Relations (g)	29.60	160,00	3/46.70			-
Comulative Persined %	6.12	12 05	73.34			
Simulative Passing %	34.68	HE.00	26,68			

C-General gradient

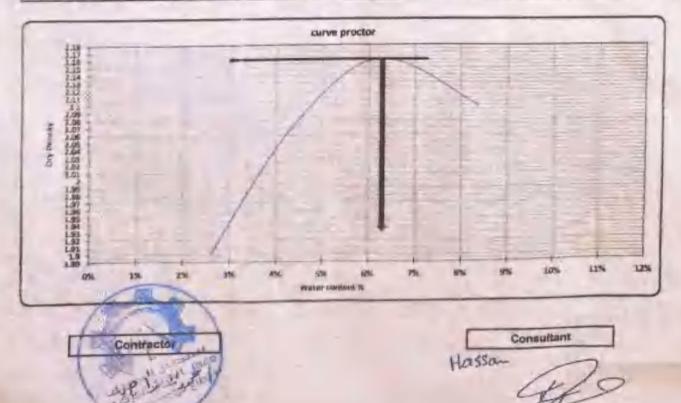
2	1.5	1	3/4	1/2	3/6	#4	# 10	# 40	# 200
50.0	37.5	25.0	19.0	12.5	9.5	4.75	2.00	0.425	0,076
100.0	91.2	112.7	74.8	18.5	67.đ	496.2	- HL.P	30.6	137
				-		_	-		-
						-	-		
		50.0 37.5	50,0 37.5 25.9	50.0 37.5 25.0 19.0	50.0 37.5 25.0 19.0 12.5	50.0 37.5 25.9 19.0 12.5 9.5	50.0 37.5 25.9 19.0 12.5 9.5 4.75	50.0 37.5 25.9 19.0 12.5 9.5 4.75 2.00	50,0 37,5 25.0 19.0 12.5 9.5 4.75 2.00 0.425

ATTEREMENT	WORD LINT LA.I	PLANTIC LINEY (TILL)	CLARKE HUGH BILL
LINTS	N.P	N.P	N.P

Contractor.

Consultant

the


	Electric Express Train - HSR From El Ain El Sokhna City To El Alemein - MATROUH Section - 7 From FOKA TO MAREA MATROUH	-	minited
barlon a stress and	From Blation 5544000 To Baalian 55844177		1844

PROCTOR TEST

TESTING DATE:	26-2-2023	Citte			
LOCATION	K.P (524+800)	Gode	2000	524+500	
NAME COMPANY	AL Mustafa	MO (2)	2000	324+300	525+000

Weight of empty mold :		6032.0			M	AX Dry De	nsity		2,35	
Moid Volume:		2183.0			H	ater contes		63		
trial ne 1			-	1		3.	1			
WI. Of Mold+ wet mil	101	10145.0		30575.0		19865.0		1621		
WT. WETSON.	410	41(08.0		38.0	4828.0		47	84.0		
W.L. Dedsity	4.5	153	2	158	2	196	2.	275		
Tare No.	20	18	73	1	10	-	π	20		
Tare wi.	60.9	7.7	12.5	42.6	43.3	46.7	46,3	60.3		
WL Of wersel & tare	150.0	358.0	1.90.0	150.0	158.0	150.0	150.0	1.50.0		

WL OF werson & ture	150.9	358.0	1.90.0	150.0	158.0	150.0	150.0	150.0	
Wit, Of dry will de tarm	146.7	1441	145.5	145.6	143.7	1460	141.9	143.2	
W.C. Of water	3.3	9,0	4.5	4.4	6.3	6,0	4.1	6.8	
WIL OF day soil	123.0	267,4	103.6	103.0	108.4	97,3	95.6	82.9	
We star content %	2.7%	2.6%	4.4%	4.3%	6.3%	6.2%	2,5%	8.2%	
AV.H ater content %	2.6	1%	43	159	63	1%	8,3	176	
Dry Density	1.9	10.3	2,0	164	21	61	2.1	00	

the

Contractor Company	AL-MOSTAFA CON	IPANY	_	Desi	gner C	ompa	ny	к.к			
Issued by	Name	Sign		Date				Time	2		
Contractor			the Truber 2			26-03-2023				1	
Received by				C.1."	02	13	DD	MM	YY	HH	MM
ER			MIR	8.P 324	¢W.	0.7	36	113	2023		

CODE-L	51 to 521	D1 to 53	Kp XXX Note
and the second se	Station Reference	Depot Reference	For Kilometer point only Start Km is used
CODE-2		Work Activity	
CODE - 3		Sub Element of Activity	

Descr	ription of M	laterials		REP	LACEN	VENT	FILL M	ATERIA	L RESI	ULTS	
Locat	ion to be U	ised	From 524+900 524+880 524+920 524+920 524+920	70 524+92 524+92 525+00 525+00 525+00	O FILL	L (-0.25 FERMA L (-3.00 L (-2.50 L (-2.00	m) m)				
MAR	Approval N	lo						Dat	e		
Suppl	ier Name										
Test F	Requirement	nt			Sp	ecificat	ion	Clau	ise		
Refer	ence Photo	5	Yes attack	ed / No	Ot	ther	-				
Item	Descripti	on		Unit		1	Quantity	Arrival	Date	Not	
1	Sieve analysis Classification			M3		5000	26-03	3-2023			
2		Classification			M3		5000	26-03	3-2023		
3				M3		5000	25-03	3-2023			
4		LL& P.L	& PI		M3		5000	26-03	3-2023		
5		C.B.F	8		M3	_	10000		3-2023		
	nents by:		om fill mate				ments by:	:			
	UMA BADR	LAB) and	the results f is and accep	ounded mi ted.			JS				
Organ	nisation	Name			Sign				ate		A-AWC-R
Contr	actor	hosta	Ilah 3	et	Mos	stade	Thatte	T			
qa/q	¢*	Abd	allah 3	ANS	Itt	dest	d_				
GARB	**										
Emplo	overs										

÷

Contractor Company	AL-MOSTAFA CON	PANY		Desi	gner C	ompa	nγ	K.K			
benund bu	Name	Sign		Date				Time			
reijad bir		Mostacha 7	28-03-2023								
Received by				11	12	[3	DD	MM	Ϋ¥.	H H	MM
ER			STR	1LP 520	E.W	0.7	28	04	1023		

CDIDE 1	\$1 to \$21	D1 to 53	Kp XXX Note
	Station Reference	Depot Reference	For Kilometer point only Start Km is used
CODE - 2		Work Activity	
CUDE - 3		Sub Dement of Activity	

	NB: Package 1 Only (Pac	ckage 2 via Aconex)					
THE FOLLOWING TEST RESULTS ARE ATTACHED FOR REVIEW							
of Test Materials	Soil (A-1-a)						
Test	K.P (524)						
Specification	Test Requirement	Test Result Attachment	Remarks				
ASTM D 75	Aggregate sampling	According to specification					
ASTM C 136	Sleve Analysis	According to specification					
ASTM D 1440	Passing sieve #200	12.8					
ASTM D 4318	Atterberg limit	N.P					
ASTM D 2974	Moisture content	6.4					
ASTM D 1557	Modified proctor	2.16					
ASTM D 1883	C.B.R	56.0					
	THE FOU of Test Materials Test Specification ASTM D 75 ASTM C 136 ASTM D 1440 ASTM D 4318 ASTM D 4318 ASTM D 2974 ASTM D 1557	THE FOLLOWING TEST RESULTS Aof Test MaterialsTestSpecificationTest RequirementASTM D 75Aggregate samplingASTM C 136Sieve AnalysisASTM D 1440Passing sieve #200ASTM D 4318Atterberg limitASTM D 2974Moisture contentASTM D 1557Modified proctor	of Test MaterialsSoil (A-1-a)TestK.P (524)SpecificationTest RequirementASTM D 75Aggregate samplingASTM C 136Sieve AnalysisASTM D 1440Passing sieve #200ASTM D 4318Atterberg limitASTM D 2974Moisture contentASTM D 1557Modified proctor2.16Sieve				

Comments by:	Comments by:	

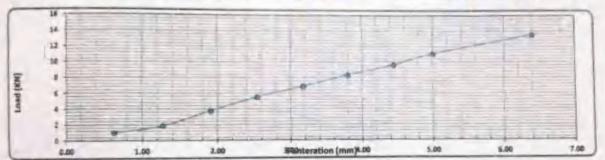
		APPROVAL STATUS		
Organisation	Name	Sign	Date	A-AWC-R
Contractor	Mostafur The bet			A
Designer	Hassan	and the	Sall	A
GARB *		-		
Employers Representative				

File: MAR Test Result Form Rev E.

Electric Express Train - HSR.

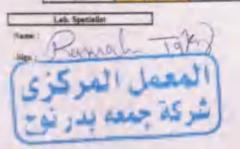
lisk

The second


California Bearing Ratio TEST

TESTING DATE	28/3/2023	1000				
location	K.P524+500	A 1000	ZONE	574+588	and the second sec	
NAME COMPANY	AL Moustafa	-120	COME	3041300	125+008	
.: Test Results	operate by	GOMAA BADE	RLAR	-		
Compaction % for M	old	Moniture Ratio	After Compact	red Mold	Swellin	-
Made No.	1		No.	1 4	Mold No.	6
Network Pail (com?)	2117.4	Tara W	T.(m)	24.45	Date .	
Water State (grad)	10444	Trea WE +9	Vet WT. (gin)	196,45	Enthei Helghi (mm	
stand in T Wat W.T. (gen)	21346		bry W.E. figura	148.85	Final Shinglet (man	
West W/T. (gm)	4982		water	7.6		the second se
Wet Density (alema	2.251	and the second se	T. (gm)	the second se	Difference	9
Dry Density (g/cm"	2.121	Mohtnee		124.3	No mple Holghs (mo	and the second se
Proctor Density 10/cm	2 2 864		Compension in	6.1	Swelling Hatho %	
Composition %	75					

Londing Reading ;


KK

pentration	D.64	1.27	1.91	2.54	3.18	3.80	4.45	5.00	6.49
Lond Reading (kg)	97.00	187.00	379.08	1011-001	497.00	845,00	978,60	1000	1176.00
Land (KN)	1.0	1.8	3.7	1.1	6.8	8.3	9.6	11.0	13.5

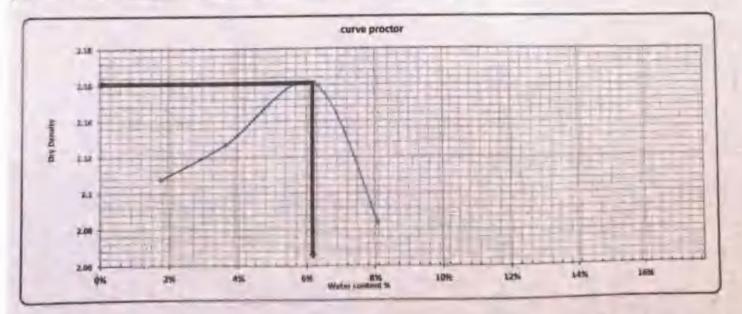
Calculations :-

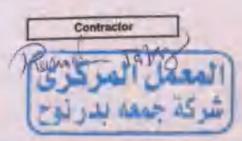
Penteratios	Load	Standard Load	CBR	Mold - Compaction	Campacilini	CBR	
(mm)	(Ka)	(Ib)	(%)	(%)	(%)	% 100 Auri 10	
2.50	1.C	13.4	81,815		100	41.7%	
5.40	11.81	20.0	55,8%	98	100	56.0%	

Consultant Engineer

Name :

10 Sign 1


Electric Express Train - HSR	
From E. Any El Boleton City To Its Alaminin - MATHOLIH	Long Ball
Baction - I From FORA TO MAREA MATHOUR	Contract of the second
Present Stanfours Mildelinits Till Stanions Milderyry	-


PROCTOR TEST

TESTING DATE	27/3/2023	pris'			1
location	K.P524+800		ZONE	524+500	\$254.000
NAME COMPANY	AL Moustafa	I			
	operate by	GOMAA BADE	RLAB		
Weight of empty last	Weight of empty tanks : #236.6		MAX Ney Dema	ity	6.409
Totale Values	2104.9		Water content	-	1.16

trial no :	1.	2	3	-4	
Wt. Of Mald+ wet soll	11008.0	21256.9	1176.0	TAING	
WT. WIT SOIL	4524.8	4658.0	4840.0	4758.0	
Wt. Density	2.149	1.209	2.299	2.257	

Tare No.	1	8	1	1	1	2	14	14	-	1	
Tare HL.	25.34	3534	26.92	26.92	33.84	22.84	27	27	-		
Wit. Of wat sell & tare	146.35	146.35	151.66	151.64	141.34	141.34	121.63	122.85			
W1. Of dry sell & terri		TAN	333.76	152.76	133,25	183.25	114.57	114.57			I
Wr. Of water	2.3	2.3	4.9	4,9	7.1	7.1	7.3	7.3			
WL Of dry sid	116.9	118.9	126,8	126.8	118.4	110.4	87.6	87.6			
Water content %	2.0%	2,0%	3.9%	3.9%	6.4%	6,4%	8.3%	83%			1
AV, Prater chatest %	2.1	1%	3.	9%.	6.	4%	8.	19/4			
Dry Density	2.1	ICH	2	127	2.	161	2	184			

Consultant

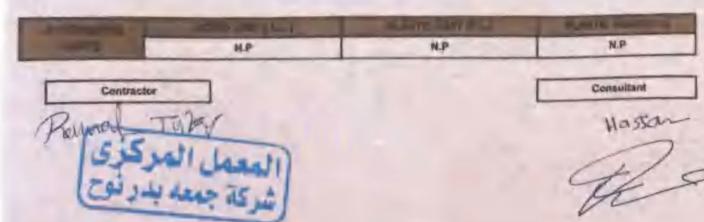
المدلة اللهمية (إرغاد

He

	Electric Express Train - HSR From El Aix El Sokhria City To El Alemain - MATROUH Section - 7 From FORA To MAREA MATROUH	الهيئة كقسية الانتاج
And the state of t	From Station State098 To Station 365-177	

PARTICLE SIZE DISTRIBUTION OF SOIL

ESTING DATE 26/3/2023		upda.				
location K.P524+800		-	ZONE	524+500	525+000	
NAME COMPANY	AL Moustafa	1000			323-909	
1-visual inspection test	operate by	GOMAA BADER LAB			-	


2-Gradient lest

A-gradation of bulk mat	erials_			SAMPLE WEIGHT [g] 33045.00 gm			table classify			
sieve size	2	1,5	1	4/3	2/1	8/3	#4	PASS		soil classify
Mans retained (g)	120.0	1880.0	3300.0	2000.0	5500.0	2520.0	4450.0			A-1-8
Cumulative Retained (g)	126.0	2160.0	şatika,q	7600.0	13180.0	18810.0	20270.0		PRO	2.161
Cumulative Retained %	0.7	0.4	16.9	21.8	38.9	67.8	673		WC	5.4
Cumulative Passing %	39.2	92.0	83,1	ti A	\$50. T	12.1	24.7		CBR	55.0%
8-soft moterial gradatio	n	1		WT.OF	sample	604	0.00	gim		
sizvo size	10	40	200							

sievo size	10	40	200	
Cumulative Retained (g)	09.00	170.00	355.00	
Cumulative Retained %	13,80	34.00	87.00	
Cumulative Passing %	M0.20	00.00	33.00	

C-General gradient

siove size(in)	2	1.5	1.	3/4	1/2	3/8	#4	\$10	# 40	# 200
sieve size(mm)	50.0	37.5	25.0	19.0	12.5	9.5	4.75	2.00	0.425	0.075
Cumulative Passing %	99.3	3.60	83.1	77,0	助.4	52.2	38.7	713	26.5	17.8
										_
	_							-		-
					_		and the second sec	1		-

Contractor Company	AL-MOSTAFA CON	IPANY		Designer Company			K.K				
towned ber	Name	Sign		Date				Time	3		
Issued by Contractor	MOSTAFA THABET	Mostale Timber		11-04-2023							
Received by				11	17	B	DD	MM	YY	HH	MM
ER			MIR	5.P 534	E.W.	D.T	32	104	2033		

x00F-1	S1 to S21 Station Reference	D1 to 53 Depot Reference	Kp XXX Note For Kilometer point only Start Km is used
CODE - Z		Work Activity	
CODE - 3		Sub Element of Activity	

Description o	f Materials		PREPAR	RED S	UBGRADE N	ATERIAL RES	SULTS
Location to b	e Used	From 524+780 524+500	70 525+000 525+000		B 1 (+0.25) B 2 (+0.50)		
MAR Approva	al No					Date	
Supplier Nam	e						
Test Requirer	ment			Spe	cification	Clause	
Reference Ph	otos	Yes attach	ed / No	Oth	er		
Item Descri	ption	-	Unit	-	Quantity	Arrival Date	Note
1	Sieve and	alysis	1	13	5000	11-04-2023	
2	Classification M3 5000 11-04-2023						
3	Proctor &	O.M.C	M3		5000	11-04-2023	
4	LL&P.L	& PI	1	M3	5000	11-04-2023	
5	5 C.B.R		1	EN/	10000	11-04-2023	
Comments by	V:				Comments by:		
		is and accept					
	1			Concession of the local division of the loca	STATUS	-	-
Organisation	Name	1	Si	gn	1	Date	A-AWC-R
Contractor		In Tholas	a u	etto	the The 20	r	_
QA/QC *	Alabal	What SAM	15 1	Ab	the Theize		
GARB**							
Employers Representativ							

* Designer ** Alignment / Bridges: Culvert Only

TEST RESULTS	SUBMISSION oF TEST RESULTS	البهيئة القومية للإنفاق	and the second se	REMOSTREA	And a start a
--------------	-------------------------------	-------------------------	---	-----------	---

Contractor Company	AL-MOSTAFA COM	PANY		Desi	gner C	ompa	ny	K.K			
1	Name	B		Date 11-04-2023			Time				
Issued by Contractor	Mostafa Thabet										
Received by			1	-11	C2	13	DD	MM	AA.	H H	MM
ER			MAR	K.P 524	EW	0.7	11	194	2023		

COLE-1	51 to 521	D1 to 53	Kp XXX Note
	Station Reference	Depot Reference	For Kilometer point only Start Km is used
CODE - 2		Work Activity	
CDDE-3		Sub Element of Activity	

		NB: Package 1 Only (Pac	kage 2 via Aconex)						
	THE FOL	LOWING TEST RESULTS A	RE ATTACHED FOR REVIEW						
Descriptio	on of Test Materials		Soil (A-1-a)						
Location	ofTest		K.P (524)						
Item	Specification	Test Requirement	Test Result Attachment	Remarks					
1	ASTM D 75	Aggregate sampling	According to specification						
2	ASTM C 136	Sieve Analysis	According to specification						
3	ASTM D 1440	Passing sieve #200	8.30						
4	ASTM D 4318	Atterberg limit	N.P						
5	ASTM D 2974	Moisture content	6.50						
6	ASTM D 1557	Modified proctor	2.175						
7	ASTM D 1883	C.B.R	89.90						

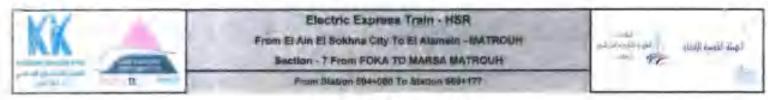
Comments by:	Comments by:

		APPROVAL STATUS		
Organisation	Name	Sign	Date	A-AWC-R
Contractor	Mostaly Traket			A
Designer	Yousses Ray to	1/ apet		A
GARB *		100		
Employers Representative				

File: MAR Test Result Form Rev E

KK _	Electric Express Train - HSR. From El Ale El Sokhia City To El Alamain - MATROUH Saction - 7 From FOKA To MARSA MATROUH	المانة التجديد ليانتان - معر الكان المارك
Opreating Lab AL Nuby Centra	From Stancer 194-009 To Similar State 177	

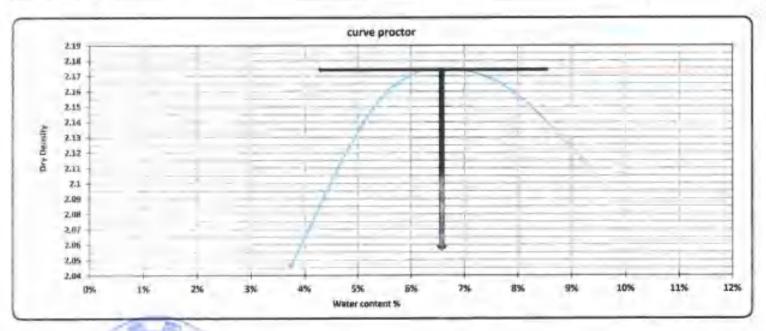
AL Nuby Central Lab


PARTICLE SIZE DISTRIBUTION OF SOIL

TESTING DATE:	11-4-2023	Code			
LOCATION	K.P (524+800)	MO (P-1)	Zone	524+500	525+000
NAME COMPANY	Al Mustafa	INIQ (P+1)			
Lorisonal inspection test					

2-Gradient test

SAMPLE WEIGHT (g) 17415.00 **Table classify** A-gradation of bulk materials gm A-1-a #4 PASS Soil Classify 4/3 2/1 8/3 steve size 2 1.5 1 1098.0 4079.0 2,175 981.0 PRO 1836.0 2489.0 812.0 Mass retained (g) 122.0 6,50 7128.0 11207.0 WC Cumilitative Retained [g] 122.0 1958.0 4457.0 5069.0 6030.0 84.3 CBR 40.9 Cumulative Retained % 0.7 11.2 25.6 29.1 34.6 Los Angles 30.96 65.6 59.1 35.7 Cumulative Passing % 19.5 74.4 70.9 85.4 WT.OF sample 500.00 gm B-soft material gradation sieve size 10 40 200 383.00 258.00 Contulative Relatived (g) 133.00 Consistive Related % 76.60 51.60 26.60 23.40 Cumulative Passing % 73.40 48.40 C-General gradient # 40 # 200 2 1.5 ¥ 3/4 1/2 3/8 #4 # 10 sieve size(in) 0.425 0.075 50.0 37.5 25.0 19.0 12.5 9.5 4.75 2.00 sieve size(mm) 35.7 26.2 17.3 8.3 Cumulative Passing % 99.3 38.8 74.4 70.9 65.4 59.1


LIQUID LIMPT (LLL)	PLASTIC LIMIT (P.L.)	PLASTIC NDEX (P.4
N.P	N.P	N.P
- Internet		Consultant
At-she		Yewssef Raga
1 1 1 1		Leveral Lever
2 mil		
/		
	and the second se	

PROCTOR TEST

TESTING DATE:	11-4-2023		Co	ode					
LOCATION	K_P (524+80	K.P (524+800)		(P-1)	ZO	ne	524+	+500	525+000
NAME COMPANY	Al Mustafa		- mo	11.11	1.000		_		
Weight of empty mold :		6037.0			М	AX Dry Dea	lity		2.175
Stold Volume:		2113.6			v	Pater content	76		6.5
			1	_			-		
1738 Bert				1	-			•	
WI. Of Mold+ wet sail	105	23.0	3.08	154.0	-105	61.0	10	899	
WT. WET SOIL	14	86.0	48	17.6	49.	25.0	48	62.0	-
Wr. Density	2,	123	1	280	2	331	2.3	34)1	
Tare No.	75	16	22	44		iś	26	19	
					-		-		
Tare wt	35	33.9	54.1	46.4	46.8	31,9	55	44.4	
Wt. Of wet soil & tare	150,0	158.0	159.0	150.0	158.0	150.0	150.0	150.0	
WL Of dry soil & pare	140,5	145.9	145.0	344.5	142.7	141.8	14L7	148.7	
	1								

Dry Density	2.6	46	2.1	60	2.1	67	2.0	1998	
AV.Water content %	3.7	P%s	5.1	5%	7.5	1%	5,	8%.	
Water vonient %	3.8%	3.7%	5,5%	5.6%	7.6%	7.5%	9.6%	9,7%	
Wi. Of dry sail	91.5	112.0	90.9	98.Y	95.9	109.9	86.7	96.3	
WL Of water	3.5	4.1	5.0	5.5	7.3	8.2	8.3	9.3	
VI, Of dry soil & pare	140,5	145.9	145.0	144.5	142.7	141.8	141.7	140.7	

Consultant Youssef aff al

Electric Express Train - HSR From El Am El Sobhes City To El Alamsia - MATROUH Section - 7 From POKA To MARSA MATROUH	الله الله الماريخ الله الماريخ
Press Station 504+000 To Station 568+177	· ·

	Los Anglos	abrasion A	ASHTO-T96		
NAME COMPANY	Al Mustafa	MO (P-1)			
LOCATION	K.P (524+800+)	MO (P-1)	zone	524+500	525+00
TESTING DATE:	11-4-2023	code			

Results:-

Weight of sample before test (gm)	Weight of sample after test (gm)	Abrasion ratio (%)
5000	3452	30.96

Consultant Engineer Lab. Engineer aprille Name ; U 0% Name : Youssef Ragab Sign Sign : ستنجب و تعمل التور لمركز יוש מוצו - ממעיב

Lab. Specialist

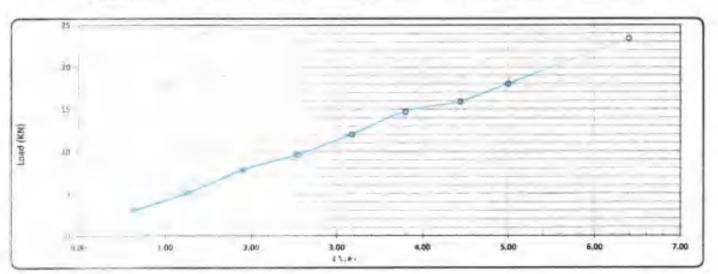
Name :

Sign :

California Bearing Ratio TEST

Leaning 1/1-	13-4-2023	Code			
Location	K.P (524+800)	MO (P-1)	FROM STA I	\$24+590	525+000
Campiese Trans	Al Mustafa	MD (19-1)			

-: Test Results


Compaction % for Mold	
Media (me	3
Harrise trees (error ³)	2025
Main Win, agent	3034
Mold WT Stat WT. (gar)	9725
1980 (1997)	a691
Sachtman (gram)	2.317
Dev Denser (g/rm^2)	2.179
Process Secular 11/09031	2.175
1	100.0

Ture No.	15
Tare WT. (gm)	31,9
Tare WT. +Wet WT. (gm)	150
Tare WT. +Dry WT. (gm)	142.0
Water WT. (gw)	7.2
Dry WL (gm)	3,10.5
Muistare Content %	6.5

Swelling	
Maid No.	3
Data	13-4-2023
Instial Beight (sem)	0,00
Final theight (mm)	0.00
Difference	0
Sample Height (mm)	(20.00
Swelling Ratio %	0.0%

Loading Resting

46.50	0.04	1.27	1.91	2.54	3.18	3.80	4.45	5.00	6.40
Land Reading (mm)	8,16	4,17	6.26	0.32	0.46	6,49	8.53	0.60	0.78
Lond (KN)	3.0	5.1	7.8	9.6	12.0	34.7	15.9	18.0	23.4

Catculations :

Personalitier	i.eed	Standard Loni	CBR	Mold - Compaction	Comparties	CBR
Course	iknj	(16)	(%)	1961	(%)	٥٨ محد تسبية ٢٨
1:541	9.60	13.4	71.9%			70.5%
4.06	18.00	29.6	89.9%	100	98	88,1%

Lair, Spanning,

Name

No.

Commitant Engineer Name: Yoursef Rafeb

Sign :

Contractor Company	AL-MOSTAFA COMPANY Designer Company				ny	к.к					
in second law	Name	Sign		Date	1			Time	2		
Issued by Contractor	MOSTAFA THABET	مطفى تما بت	20	10-0	9-2023	3					
Received by				E1_	a	3	DD	MM	YY	HH	MM
ER ER			IR	8.8 524	E/0	2.7	10	99	202		

CO06-1	S1 to S21 Station Reference	D1 to 53 Depot Reference	Kp XXX Note For Kilometer point only Start Km is used
CODE-2		Work Activity	
CODE 3		Sub-Element of Activity	

Descr	iption of M	aterials		SU	B-BAL	LAST MATE	RIAL RESULT	S
Locati	ion to be U	sed	524+500 5	10 25+000 25+000		ALLAST 1 (+0.7 ALLAST 2 (+0.9		
MAR	Approval N	0					Date	
Suppl	ier Name							
Test R	Requiremen	nt.			Speci	fication	Clause	
Refer	ence Photo	s	Yes attached	/ No	Othe	r		
Item	Descriptio	n		Unit		Quantity	Arrival Date	Note
1		Sieve and	alvsis		EN	5000	10-09-2023	
2		Classifica		1	VI3	5000	10-09-2023	
3		roctor &		1	KI3	5000	10 09 2023	1
4		LL& P.L	& PI	1	M3	5000	10-09-2023	1
5		C.B.F	1	1	EN/	10000	10-09-2023	1
Comm	nents by:				1	Comments by:		
			he results found is and accepted.					
					OVAL S	TATUS		
Organ	isation	Name	_	and the second se	gn		Date	A-AWC-R
Contra	actor	Cu	issan	20	C. I	- veteros		
QA/Q	c*	Ho	issan		4	- Jeteras	1	
GARB	**							
Emplo	overs sentative							

** Alignment / Bridges: Culvert Only

and the second second	الهينة تللم	The second	AL HOLE THE O	- And	SYSTEM BE
AL-MOSTAFA	COMPANY		Designer	Company	к.к
	TS	AL-MOSTAFA COMPANY	AL-MOSTAFA COMPANY	AL-MOSTAFA COMPANY	AL-MOSTAFA COMPANY Designer Company

Contractor Company	AL-MOSTAFA COMPANY			AL-MOSTAFA COMPANY Designer Company							к.к			
Issued by	Name	Sign					1			Time				
Contractor	Mostafa Thabet	0	" to it is	12-0	9-202	3								
Received by	1	1	Las	đ	62	a	00	MM	44	+++++++++++++++++++++++++++++++++++++++	6,45			
ER	[MAR	10.0 520	E.W.	0.7	12	45	2033					
CODE-1	S1 to S21 Station Reference	-	D1 to S Depot Refer	-		F	or Kilom		XX Note t only Sta	rt Km	s use			
CODE - Z			Work Activ			_		_		-				
CODE-3		-	Sub Element of	PILLIVIL	*			_						
	and the second se	distant and the second second	e 1 Only (Package ST RESULTS ARE A				EVIEW	-	_	-	-			

CODE-1	\$1 to \$21	D1 to 53	Kp XXX Note
	Station Reference	Depot Reference	For Kilometer point only Start Km is used
CODE - Z		Work Activity	
CODE-3		Sub Element of Activity	

	THE FOL	LOWING TEST RESULTS A	RE ATTACHED FOR REVIEW				
Descriptio	iption of Test Materials Soil (A-1-a)						
Location o	of Test	5	K.P (524)				
Item	Specification	Test Requirement	Test Result Attachment	Remarks			
1	ASTM D 75	Aggregate sampling	According to specification				
2	ASTM C 136	Sieve Analysis	According to specification				
3	ASTM D 1440	Passing sieve #200	4.65				
4	ASTM D 4318	Atterberg limit	N.P				
5	ASTM D 2974	Moisture content	7.10				
6	ASTM D 1557	Madified proctor	2.23				
7	ASTM D 1883	C.B.R	93.4				

Comments by:	Comments by:	

Organisation	Name	Sign	Date	A-AWC-R
Contractor	Cultiekas	Cult vienes		A
Designer	Hassan	1072/ 2003		A
GARB *		1		
Employers Representative				

Electric Express Train - HSR

From El Ain El Sokhna City To El Alamain - MATROUH

Section - 7 From FOKA To MARSA MATROUH

From Station 504+000 To Station 588+177

Opreating tap

AI Tawkol Central Lab PARTICLE SIZE DISTRIBUTION OF SOIL

TESTING DATE:	10-09-2023	bode	ZONE	524+500	525+000
LOCATION	K.P (524+750)	and the state of the	Material SUB BALL		ALLAST
NAME COMPANY	Al Mostafa	THOSI SUB BALLAST (1)	QUANTITY	500	DO M

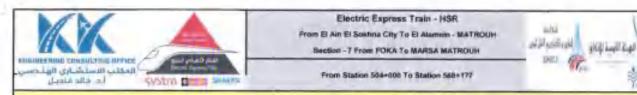
visual inspection test

Gradient test

predation of bulk mat	erials		1.1.1	SAMPLE W	EIGHT (gm)	4140	6.000	gm	1.1	table classify
slovo síze	2 -	1.5 *	Ť.	3/4 *	1/2 *	3/8 *	#4	PASS		soil classify
Mass retained (g)	0.0	1254.0	4775.0	4523.0	6850.0	6960.0	5070.0	12054.0	CLASS	A-1-a
umulative Retained (g)	0.0	1264.0	6029.0	10552.0	11462.0	24362.0	29432.0		PRO	2.230
Cumulative Retained %	0.0	3.0	14.5	25.4	41.9	58.7	70,9		WC	7.1
Sumulative Passing %	100.0	97.0	66.5	74,6	58.1	413	29,00		CBR	93.40
			-						LA	25.4
								- 1	3.G	2.520

toft material gradatic	n	1		WT.OF sample	500.00	gm
sleve size	#10	#40	#200			-
imutative Retained (g)	150.00	320.00	420.00			
umulative Retained %	30.00	84.00	84.00			
umulative Passing %	70.00	35.00	16.00			

Seneral gradient


Contract of the local division of the local											
sieve size(in)	2 "	1,5 *	17	3/4 *	1/2 "	3/8 -	#4	#10	# 40	# 200	
sleve size(mm)	50.0	37.5	25.0	19.0	12.5	9.5	4.75	2.00	0.425	0.075	1
umulative Passing %	100.0	36 A	85.5	74.50	50.1	41.2	29.9	29.3	10.5	4.95	1
-			_						_	1	
			_				-				

ATTERBERG	LIQUID LIMIT (LL)	PLASTIC LIMIT (P.L.)	PLASTIC INDEX (PL)
LIMTS	N.L	N.P	N.PI

Consultant Hassan 1/501

14 الهيئة التومية الإنقاق - 17

Absorbtion & Aggregate specific gravity AASHTO-T85

TESTING DATE:	10/09/2023	code	Station	524+500	525+000
LOCATION	K.P (524+750)	musterin Ada Lenin	Material	SUB B	LLAST
NAME COMPANY	Al Mostafa	(mos) SUB BALLAST (1)	QUANTITY	500	0 M

	Re	sults:-
Weight of dry sample after heating (A)	2490	gm
Weight of saturated sample in water (C)	1553	gm
Weight of saturated surface dry sample (B)	2540	gm
Weight of sample	2500	gm

Bulk specific gravity = A / (B-C)	2,523	
Bulk specific gravity (S.S.D) = B / (B-C)	2.573	
Apparent specific gravity = A /(A-C)	2.657	
Absorbation = (B-A)/A	2.008	%

Los Anglos Abrasion AASHTO-T96

Results:-

Weight of sample before test (gm)	Weight of sample after test (gm)	Abrasion ratio (%)
5000	3730	25.40

Lab. Engineer

Lab. Specialist Name : Sign :

Name : AHMED HALEEM Sign : (TING) Spilling

Consultant Engineer

Sign :

Hassa Name : 2017

Wt. Of dry sail

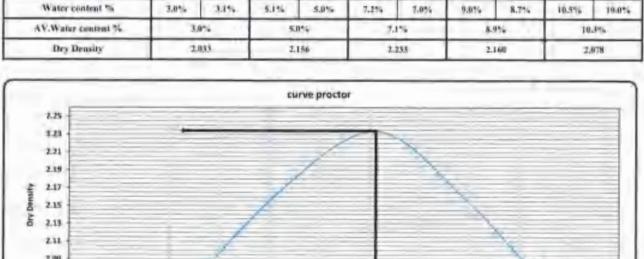
93.9

44.0

89,1

Electric Express Train - HSR

From El Ain El Soknas City To El Alamein - MATROUH


Section - 7 From FOKA TO MARSA MATROUH

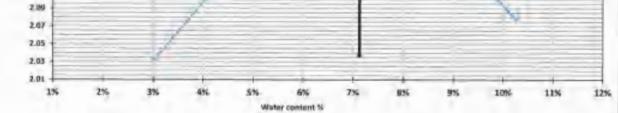
From Station 504+000 To Station 566+177

MODIFIED PROCTOR TEST ASTM D-1557

TESTING DATE:	11-09-20	23	(C)	ode	ZC	INE	524	+500	525	+000
LOCATION	K.P (524+	P (524+750)		BALLASTIN	Mat	erial		SUB B	ALLAST	-
NAME COMPANY	Al Mosta	ta	pune) sug	BALLAD (TI)	QUA	NTITY	1	500	IO M	_
Weight of empty mi	dal 5	5620.0		1 [ML	AX Dry Den	aity		2.2.0	-
Maid Volume:		2124.0			н	ster contout	26		7.1%	
triat no c		1		2		3	1	4		5
Wt. Of Muld+ set s	eil i	9070.8	304	130.11	107	10,00	10	615	-10	463
WT. WET SOIL		4450.0	48	10.0	540	62.0	49	15.0	-45	65.0
Wt, Density		2.095	2.	265	L	192	1.	152	2.	299
Tare No.	10	n	1	z	1	+	-	6.	1	
Tare wi	53.3	53.1	56.4	53.2	55.2	51.6	53.2	56.1	55,3	\$3.2
WI, Of wet soil & t	are ista	1.50,0	150.0	150.0	150.0	190.0	1595.0	150.0	150.0	1904
Wr. Of dry soil & n	ure 347,2	147,1	145.5	145,4	143.65	143.79	142,0	142,5	141,0	141.3
WL OF water	2.8	2.9	4.5	4.6	6.3	6.5	8.0	7.5	0.0	8.8

92.2.

88.5


90.1

88.8

85.4

85.7

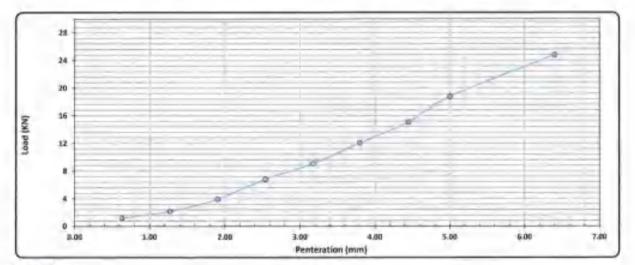
\$\$.0.

Consultant 2.72

California Bearing Ratio TEST

Testing Date :	12/9/2023	Code	FROM STA :	5241500	525+000
Location :	K.P (524+750)		: Material	SUB B	ALLAST
Company Name	Al Mostata	(mos) SUB BALLAST(1) -	Layer Thickness	54	DOIM

-: Test Results


Compaction % for Mold	
Neild No.	- 1
Madd Val.(cm ²)	2129
Maid WT. (pm)	5314
Meld WT Wee WT. (gm)	10355
Wat WT. (gm)	SITE
Wet Density (g/cm ²)	2.394
Dry Dunity (g/cm ²)	2.238
Process Density (g/cm ³)	2,231
Comportion %	10.5

Musiture Ratio After Compac	ted Mold
Tare No.	15
Tare WT. (pro)	.8
Tara WT +Wet WT. (gm)	150
Tare WT -Drs WT (gm)	143,8
Water WT. (grs).	6.2
Dry WT. (gai)	83.5
Multilare Content %	7.8

Swelling	
Mold No.	1
Date	12/9/2023
fatial fieight (man)	1.00
Final Height (mm)	6.00
Difference	0.00
Sample Height (1914)	120
Swelling Ratio %	8.00%

Loading Reading :

Peateration (mu)	9.64	1.27	1.91	1.54	3.18	3.80	4.45	5,00	6.40
Load Reading (Kg)	138	240	435	753	UNIS	1340	1675	2581	2758
Lond (KN)	1.1	2.2	3.5	6.8	9.0	12.1	15.J	18.8	24.8

Calculations :-

Pentersitian	Load.	Standard Load	CBR	Mold - Compaction	Compaction	CBB.
(mm)	(Kn)	(06)	1763	151	(75)	190 عند (سية 190
2.50	6.80	13.4	51.9%		104	50.7%
5.00	18.77	20.0	13.7%	102.3	100	33.4%

Consultant Engineer Nume: Hasta 2013 51 Sign

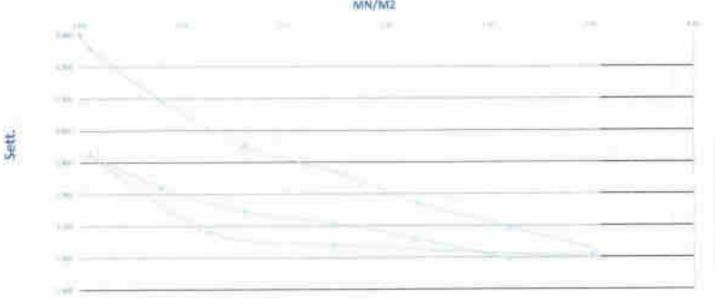
Contractive Foreyattant	6	and the part	Contaction	silanije i sanij Dongr	n +
PI	ate Load	l Test Resul	ts		
Al Mustafa					
524+820	To	524+920		Statist	523+901
21/3/2023					
-1.5					
	Pl At Mustafa 524+820 21/3/2023	Plate Load Al Mustafa 524+820 To 21/3/2023	Plate Load Test Resul	Contractive Foregations Plate Load Test Results Al Mustafa 524+820 To 524+920 21/3/2023	Contractive Foregation Contractive Foregation Contractive Foregation Contractive Foregation Plate Load Test Results At Mustafa 524+820 To 524+920 21/3/2023

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter fit.

The load is applied to a circular rigid sized bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the rest.

The diameter D of the plate is generally 0.30 m. For very coarse grained main/fail else plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load slep the settlement must come to a noticeable and (< 0.02 mm/minute). After the maximum load is reached the unicading procedure can begin, After that, the place is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic teck

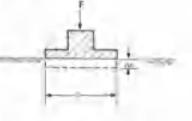

Lánding	Lmi	Inst	Span	Did i-	Dial 2	Digital	Sets 1	Sect. 3	501,3	ATE-
Nage No.	Her	KN	MN/MZ	1000	nser	yrns-	anny	inst	1005	000
0.000	0.0	0.000	0.00	14.92	13.45		0.006	0.000		0.000
0.000	2,4	0,707	10.01	14,80	13.40		0.120	0.050		11.085
2.000	18.81	5.652	11.08	14.40	13.15		0.520	0.300		0,410
0.086	37.7	11.304	0.16	14.02	12.95		0.900	0.500		0.700
4.000	58.9	17.663	0.25	08.61	12.85		1.120	0.600		0.86
5,000	17.7	23,315	0.33	13.55	12.70		1.370	0.750		1.06
4.000	48.9	29.673	0.42	13.35	12.60		1.570	0.850		1.21
7.000	117.8	35,325	0.50	13.10	12.50		1.829	0.950	1.1	1.38
8,000	58.9	17.663	0.25	13.15	12.58		1.770	0.870		1.32
9,000	29.4	8.831	0.12	13.25	12.65		1.670	0.800		1.23
9,000	7.4	0.707.	0.01	13,85	13.02		1.070	0,430		0.75
10.000	2.4	0.707	0.01	13.85	13.02		1.070	0.430		0.75
11,000	18.8	5.652	0.08	13,60	12.85		1.320	0.600		0.96
12.000	37.7	11.304	0.16	13.40	12.75		1.520	0.700		1.11
13,000	58.9	17.663	0.25	13,30	12.70	1.00	1.620	0.750		1.18
14.000	77.7	23.315	0.33	13.15	12.65		1.770	0.800		1.28
15.000	98,9	29,673	0.42	13.00	12.55		1.920	0.900		1.41

	-		Δ5	Δm	
8.7 m	0,35	1.05688			
0.3 10	0.15	11.66375	0.39313	8.2	
0.701	0.35	1.31278	a tente		
11.301	0.15	1.17002	0.14776	0.3	
10 (mm)	300				
Est	114.47		-		
F#1	115.22	100			
Steel Squal	9.87005				

Selfer1	2.75	

	F 0.75 . D . do / ds
-E1	+ deformation modulus
.40	= fould increment
di.	= addisment increment.
0	= diameter of the plate, generally 0.30 m

For this calculation dar and dir are obusity taken from the loss epen between 2.3 or en and 0.7 of new

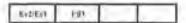


MN/M2

The basis of the given equation is Bourninesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = hand.
 at = authermonit
 D = plannature of the paint

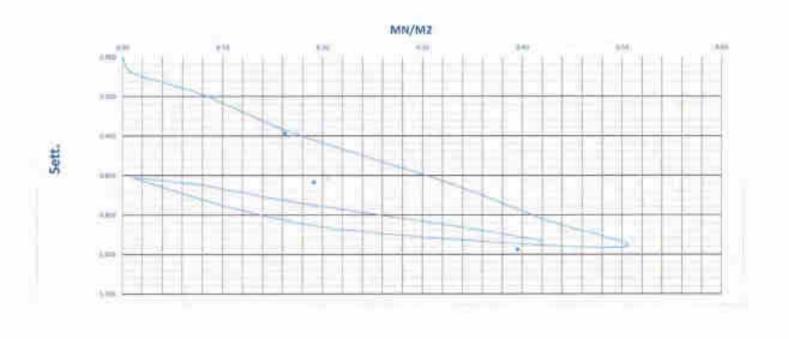

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

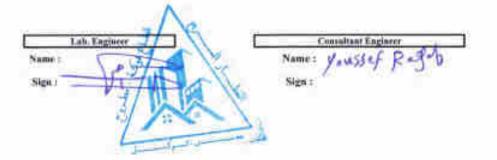
Diame	ler =	300mn
The provide of the second seco		

Loading	Lord	daint.	Stra	Dial 3	Dail 2	teat (Sill 1	500.1	Sitt: 5	Arg
Stage No.	Bar	6.9	MMM2	nin.			- 80	min	mm	- (100
0.000	0.0	0.000	0.00	20,00	20,00		0.400	0.000		0.000
1.000	21	0.707	0.01	19.94	19.90		0.060	0.100		0,050
2.000	17.1	5.652	0.08	19.62	19.80		0.180	0.209		0,190
0.080	34.2	11.304	0.16	19.55	19.72		0.450	0.280		0,365
4.006	53.3	17.663	0.25	19,36	19.61	-	0.640	0.398		0.515
5.000	70.5	23.315	0,33	19,19	19.52	1	0.810	0.480		0,645
6.000	89.8	29,673	0,42	18.96	(9,40		1,040	0.500		0,820
7.000	105.8	35,325	0,50	18.76	19,31		1.240	0.690		0,965
8:000	53.4	17.663	0.25	18.84	19,38		1.160	0.620		0.890
9,000	26.7	11.831	19.12	18.94	19.49		1.060	0.519		0.785
9,000	2,1	0,707	0.61	19.18	19.60		0.820	0.400		0.610
10.800	21	0.707	6.61	19.18	19.60		0,820	0.400		0.619
11.000	17.1	5.652	0.08	19:14	19.56	-	0.860	0.440		0.650
12.009	34.2	11.304	0.16	19.05	19.50		0.950	1.500		0.725
13,000	43,3	17.663	0,25	18.95	19,46		1,050	0.540		0.745
14,000	70.5	23.315	0.33	18.88	19.41	-	1.120	0.590	-	0.855
15,040	89.8	29.673	0.42	18.78	19.36	1	1.220	0.640		11.430

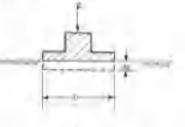
	_		15	An	
$-11.7~\bar{m}_{\rm F}$	6.35	0.69313	11.35		
11.3 0	1,15	0.34313	11.35	0.2	
8.7ø	0.35	8.87167	0.18166	0.2	
6.302	0.15	94.0	1.18166	1.4	
D (mm)	300			-	
kı,	128.57			1	
Eng	247.71				
Ares Sigmi	LITINS		-	-	


	$F_1=0.77=D=dar/dx$
<i>P.</i> ,	= deformation modulus
Đ,	= load increment

D: = settlement increment


b = diamater of line,plate, generally 0.30 m

For this calculation for and its are seconly taken from the load span lethresis 0.2 mus and 0.7 more

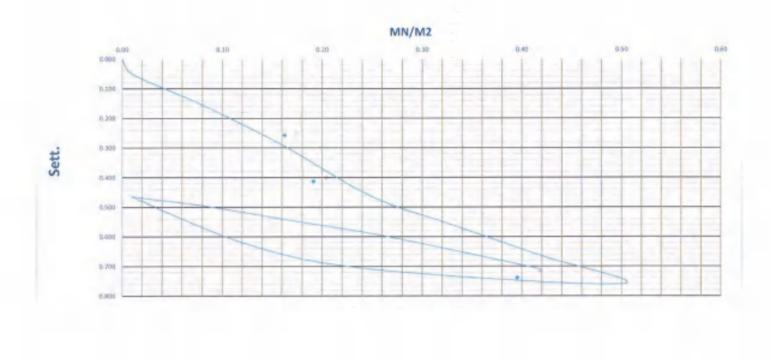


The hard is applied to a circular rigid steel bearing place by a hydroulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

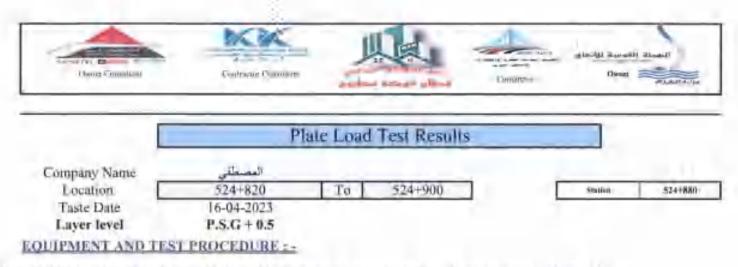
F + land da + gantiernañe H = Gannelai în ma patie

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.50 m and D = 0.762 m are used

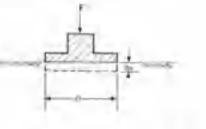
The load is applied in 8 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reacted the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a rolter usually serve as counterweight for the hydraulic jack


Diameter = 300mm

Looke	List	Lind	Series-	Dial I	Dial 2	Dial 3	Set.1	-Set 1	44.3	Avg. Sen.
Slep-Sa.	Bar	RN .	MNIME	man	- 885	INT	- 1888	- 1880 -	0.0	- 1000
0.000	0.0	0.000	0:00	20.00	20.00		1.004	0.000		0.000
1,000	21	0,707	0.01	19.94	19.96		0.060	0.040		0.050
2,000	17.1	5,652	0.08	19,81	19.88		0.190	0.120		0,155
0.080	34.2	11.304	0.10	19.61	19.81	_	0.396	0,190		0,290
4.000	\$3.3	17.663	0.25	19.35	19.72		0.650	0.280		0,465
5.000	70.5	23.345	0.33	19.20	19.68		0.800	0.320		0.560
6.000	89.8	29,673	0.42	19.05	19.62		0.950	0.380		0.665
7.000	106.8	35,325	0.50	18,90	19,58		1.100	0.420		0,760
8.008	53,4	17.663	0.25	18.95	19.63		1.050	0.370		0,710
9.090	.26.7	8.831	0.12	19.06	19.69		0.940	0.310		0.625
9.000	2.1	0.707	0.01	19.28	19.79		0.720	0.210		0.465
10.000	2.1	0.707	0.01	19,28	19.79		0.726	0.210		0,465
11.000	17.1	5.652	0.08	19.24	19.77		0.760	0.230		0.495
12.000	34.2	11.304	0.16	19.16	19.76	-	0.840	0.240		0.540
13,000	53.3	17,663	0,25	19,10	19.72		0.906	0.280		0.590
14,000	70.5	23,315	0.33	19.05	19,65		0.950	0.340		0,645
15.000	89.N	29,673	0.42	18.98	19.60	-	1.020	0.400		0,710


	_	_ ¥	AS	A#	
41.7 ci	6.35	0,58187	0.30875		
0.5 m	9.15	0.27313	11.311675	0.2	
1.702	0.35	0.65944	0.13444	9.2	
0.301	11.15	0.525	1.1.1444		
D (min)	300		-		
Ex.	145.75		100		
Eu.	334.71.				
leien (Sig.in)	1.000.5		-		

	_	_	_
Ev2(Ev1	7.10		

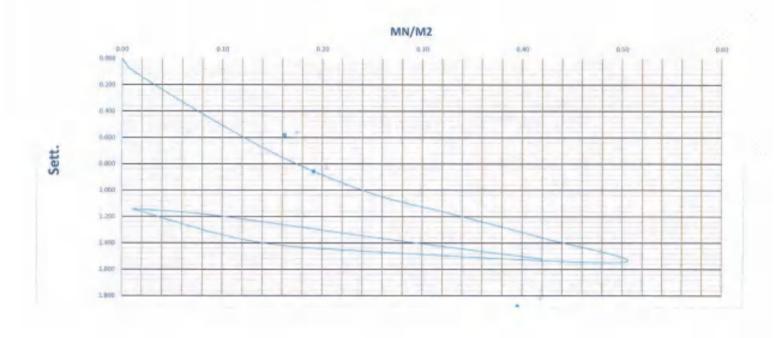

-	K 0.75 D Ad AL
È,	= tlaformation modulus
0.	= load increment
Di	= sattlement increment
D	- diamains of the plane, generally 0.32 m

The load is applied to a circular rigid steel hearing plate by a hydraulic jack in several steps. The solthement under each load step is recorded. The following electric shows the principle of the test.

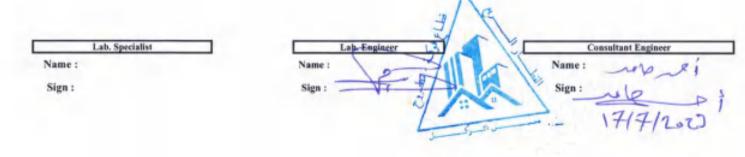
The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.782 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 immiminute). After the miximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter =	300mm
L'HARDELET -	JUDINI

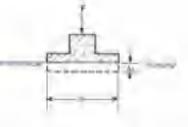

Leader	Land	Area	Siteria	(fiai)	Deal 2	itul 7	Set	Set 2	Seri. 3	4+9
Singe No.	Bar	6.9	AIN/H2	-	no	am		0111	mo	Sett.
0.000	0.0	0.000	0.00	26.00	20.00		0.000	8.000		0.000
1.000	2.1	0.707	0.01	19,95	19,87		0,050	0.130		0.090
2.000	17,1	3.652	0.08	19,55	19,61		0,450	0,390		0.420
0.080	34.3	11.304	11.16	19.10	19.40		0.900	0,600		1.751
4,000	53.3	17.663	11.25	18.85	19.10	1.2	L150	1.900		1.025
5,000	70.5	23.315	0.33	18.66	18.98		1.340	1.020		1.180
6.000	89.8	29,673	0.42	18.46	18.82		1,540	1.180		1.360
7.000	196.8	35.325	0.50	18.25	18.66		L.750	1.340		1.545
8.000	53.4	17.663	0,25	18.33	18.74		1.676	1.260		1.463
9.000	26.7	8.831	0.12	18.42	18.82		1.580	1.180		1.38
9.000	2.1	0.707	0.01	18,69	19.03		1.310	0.970		1.140
10.000	7.1	0.707	10.01	18,69	19.03		1.310	n,970		1.140
11.000	17.1	5.652	0.08	18.64	19.04		1.368	1.000		1.18
12.000	34.2	11.304	1.16	18.55	18.93	-	1.450	1.070		1.200
13.000	53,3	17,663	0.25	18.44	18.85		1.560	1.150		1.355
14.000	70.5	23.315	0.33	18.36	18,77		1.640	1.230		1.435
15.000	89.8	29.673	0.42	18.26	18.70		1.740	1.300	-	1.520

	-	. 6.	45	48	
0.7 σ ₀	0,35	1,19813	9.48937		
11.3 m	B.15	8.79875	9.4843/	0.2	
4.703	0.15	1,45389	0.23388	0.2	
R.30,	0.15	1.22	0.23368		
D (mis)	300				
D ₁	91,95	-			
EN:	192.40			100	
iner Squar	1.07065				


Reality	1.01-		
---------	-------	--	--

	E. 6.75 D As / As
E_1^*	= deformation modulus
0.	+ load increment
D_{π}	= settlament increment

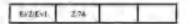
p. - diameter of the plate, generally 0:30 m



ŝ

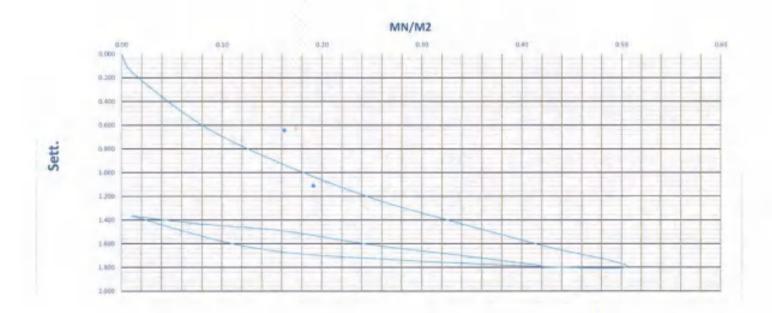
The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recurded. The following sketch shows the principle of the test.

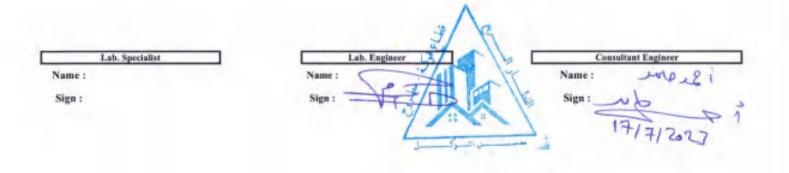
F = label dr.a.settlimient D = dramster of the plane


The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

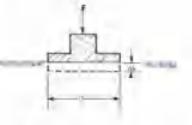
The load is applied in 5 load increments of equal size, Under each load step the sottlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an exceptor or a roller usually serve as counterweight for the hydraulic jack

Diameter =	300mm
Diameter =	- 30


distant.	~~~~		_	_		_			_	
landing	Loud	Load	Street	(Hel)	Diei 1	(Nai 2	Set.	Sen/2	Ser Ch	Aug. Sett.
Suge No.	Ber	KN	MOV/M2			-9189	1941	-999	-948	
0,000	0.0	0,000	00.0	20.00	20.00		0,000	0.000		0,000
1.000	2.1	0.767	0.01	19.75	19.95		0.250	0.050		0.15
2.000	17.1	5.652	80.0	14.15	19,65		0.850	0.350		0.60
0.060	34,2	11.304	0.16	18.75	19.40		1.250	0.600		0.925
4.000	53.3	17.663	6,25	18.42	19.15		1.580	0.856		1.215
5.000	70.5	23.315	0.33	18.15	19.03		1.850	0.978		140
6.000	8.98	29,673	0.42	17.92	18-85		2.090	1.150		1.61
7.000	106.8	35.325	0.50	17.68	18.71		2.320	1.290		1.805
8.000	53.4	17.663	0.25	17.75	18.80		2.250	1,200		1.725
9.000	26.7	H.831	6,12	17,85	18.90		2.150	1.100		1.625
9.000	.2.1	0.707	6.01	18.15	19.12		1.850	0.880		1.365
10.000	2.1	0.707	0.01	18.15	19.12		1.850	0.820		1.365
11:000	17.1	5.652	0,08	18.07	19.06		1.930	10.940		1,435
12.000	34.2	11.304	0.16	18,02	19.00	-	1.980	1.000		1.49
13.000	53.3	17.663	0.25	17.87	18.91	-	3.130	1.090		1.61
14.000	70.5	23.315	0.33	17.77	18.85		2.230	1.150		1.69
15.000	89.8	29,673	0.42	17.65	18.78		1.350	1.220		1.785


-			Δ5	Ast.	
0.7 vi	0.35	1.44875	-		
8.3 m	0.15	1,55438	0.56437	8.2	
B.7et	0.35	17000	0.2661	0.2	
Ø.3a1	4.15	1.395911	9.4901		
D (100m)	300				
Eu.	79,73				
Ex;	118.34				
heres / Signed	0.07665				

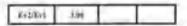
	E 11.75 - D Ad 7 A.
μ.,	* deformation madulu
σ.	= load increment
Ø.+	- settlement accement
	and the second sec


p = diameter of the state, generally 0.30 m

Owner Compositions	Contraction Chandlert	1		Centary	alaasii aasaa Olear	Alimanti -
0	PI	ate Load	Test Resul	15		
Company Name	المصطفى					
Location	524+820	To	524+900		Staint	524+860
Taste Date	16-04-2023					
Layer level	P.S.G + 0.5					
DUIPMENT AND TE	ST PROCEDURE :-					

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

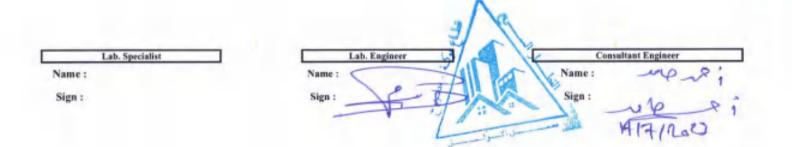
2 = 1000 14 = Additionent 17 = Manufact of the plate


The diameter *D* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *D* = 0.60 m and *D* = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unbading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

Diameter -	300mm

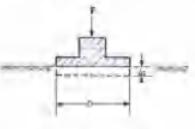
Linking	-lined	losi.	Reveal	0411	APINE 2	Dui 3	Seit.1	5mi.2	Seet. J	Arg.
Stage No.	Bar	KN	608/042	The	1007	Inel	e	itest.	100	1940
0.000	0.0	0.000	0,00	20,00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.88	19,90	1.000	0.120	0.100		0.110
2.000	17.1	5.652	8.08	19.40	19.65		0.600	0.350		0.475
0.080	34.2	11.304	0.16	19,15	19.30	-	0,850	0.700		0.775
4.000	53.3	17.663	0,25	18.82	14,12		1,180	0,280		1.030
5.000	70,5	23.315	0.33	18.70	18.90		1,300	1.100		1.200
6,000	89.8	29.673	0.42	18.42	18:70		1.580	1.300		1.440
7.096	106.8	35.325	0.50	18.30	18.69		1.700	1.400		1.550
8,000	53.4	17.663	0,25	18.40	18,70		1,600	1,300		1,450
-9,000	26.7	8.831	0,12	18.60	18,80	2	1,400	1.200		1.300
9.000	2.1	0.707	0.01	18.70	19.00	1.5	1.300	1.000		1.150
10.000	21	11.707	0.01	18.70	19.00		1.300	1.000		1.150
11.000	17.1	5.652	0,08	18,65	18.95		1.350	1.050		1.200
12,000	34,2	11.304	0,16	18.60	18,90		1.400	1.100		1,250
13.000	513	17.663	8.25	18.45	18.80	-	1.550	1.200		1.375
14.009	78.5	23.315	6.33	18.40	18.75		1.690	1.250		1.425
15.000	89.8	29.673	8,42	18.32	18.02		1.689	1.380		1:530


			35	30	
0.7 aj	0.35	1.34375	0.60625	6.2	
6.5 0,	0.15	1.7375	WANNUS	-9.2	
6.74z	11.35	1.44833	8.19833	9.2	
-8.1ez	0,15	1.25001	0.19033	11.4	
D (mm)	309				
Ety	74.21	1			
Ev1	226.90				
tres (Speci	0.07065				

	$E_{\rm T}=0.71 D {\rm Arr} = {\rm Ar}$
Γ.	= daformation modulus
n.	- inad increment
D.	= sattlement increment
	The second se

21 - manutar of the plate, generally 0.30 m

MN/M2 0.10 0.30 0.50 0.20 0.40 0.60 0.00 0.005 0.201 0.401 0.601 Sett. 0.800 + 1,000 1.200 1.400 1.600 1,800



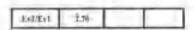
For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

1

Deare Fromilitar	Tostmatis Consultant	1		Lonucu	ngtanga kangar Otom	Najari Mala Mata
	P)	ate Load	Test Results	14		-
Company Name	AL MOSTAFA	1.00		_	A.	_
Location	524+500	To	524+580		Station	524+528
Taste Date	9-09-2023					
Layer level	P.S.G +0.50					
DUITMENT AND TES	T PROCEDURE :-					

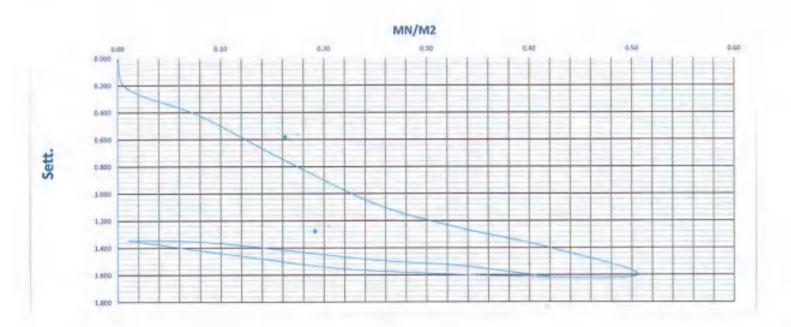
The had is applied to a circular rigid steel hearing plate by a hydraulic jack in several vieps. The settlement under each load step is recorded. The following skotch shows the principle of the test.

.F = load -to * summers -tr = thereafter of the passi


The diameter *D* of the plate is generally 0.10 m. For very coarse grained material also plates with diameter *D* = 0.60 m and *D* = 0.762 m are used

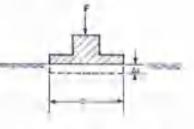
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable and (< 0.02 mm/minule). After the maximum load is reacted the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an exceeder of a roller usually serve as counterweight for the hydraulic jack.

Diameter = 300	mm
----------------	----


JUCKL	Stronger	-			_	-		-	-	
Tenting	Int	Loral	Street	Dia 1	Dial 1	3063	Selli)	560,2	Sell.,3	Vergi Seat
Stage No.	Bite	KN	MS/NZ	Run.	mus	GHD	inter	pro	imm	1940
0,000	0.0	0.000	0.00	20,00	20.00	-	0.000	0,000		0.000
1.000	2.1	0;707	6.01	19.50	19.75		0.200	9.250		0.325
2.000	17.1	5,652	0.08	19.60	19.55		0.400	16.450		0.425
0,050	34,2	11.304	0.10	19,25	19.26		0.750	6.740		11.745
4,000	53,3	17:663	0.25	18.50	19.05		1.200	0.950		1.075
5,000	70,5	23.315	0.33	18.55	18.95		1,450	1.050		1,250
6,000	89,8	29.673	0.42	18,40	18,80	_	1.600	1.200		1,400
7.000	106.8	35.325	0.50	18,05	18.72		1.950	1.280		1.615
8,000	53,4	17.663	0.25	18.10	18,76		1.900	1.240		1.570
9,000	26.7	8,831	0.12	18.18	18.89		1.820	1.119		1.465
9,000	2,1	0,707	0,01	18.31	19.00		1.690	1.000		1.345
26.000	2.1	0,707	0.01	18.31	19.00		1.690	1.000		1.345
11.000	17.1	5,652	0.88	18.30	18,99		1.700	1.610		1.355
12.000	34.2	11.304	0.16	18.22	18.95		1.780	1.050		1.415
13,000	53.3	17.663	0.25	18.16	18,86		1.840	1.140		1.490
14,000	70.5	23,315	11.33	18.14	DR.RT		1.860	1.200		1.530
15.000	89.8	29.673	0.42	18.06	18.71		1.940	1.290		1.615

		- 6	45	30	
0.7 m.	11.35	1.21168	h chine		
0.3 m	0.15	0.705	0.50688	0.7	
0.7#2	0.35	1.54889	n reter		
0.3mj	0.15	1,365	0.18389	0,2	
D (mm)	300				
Eyr	88.78				
En:	244.71				
weil Sumi	0.17905				

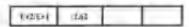
	E, = 1.15 - D + Aa / As
E.	= deformation modulus
Ds:	= load increment
D.	= sattlement increment


ii = diameter of the plate, generally 0.30 m.

A Discon Discontinue	Contractor Consultant			Consection in the local diversion of the loca	og hange av each	Nipell ZJaur.77,
	Pl	ate Load	Test Results			
Company Name	AL MOSTAFA.					
Location	524÷500	To	524+580		Stalind	524+540
Taste Date	9-09-2023					
Layer level	P.S.G +0.50					
DUIPMENT AND TE						

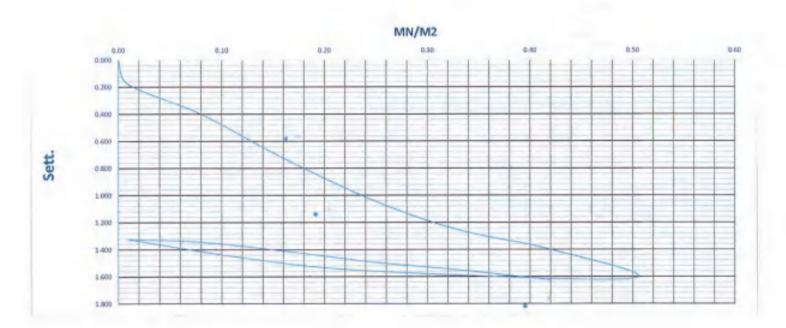
The load is applied to a circular rigid steel hearing plate by a hydraulic jack in several steps. The settlement onder each load step is recorded. The following sketch shows the principle of the test.

-# = lead. _D = settlement D = simmpar of my plain.


The diameter *D* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *D* = 0.60 m and *D* = 0.762 m are asset

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable and (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

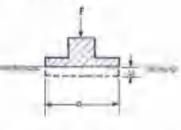

Linding	Linet	had	Ster	finit I.	Hatz.	-Dial A	5HL 1	Sec. 2	Sei1. 3	Aig. 5(0).
Stage No.	diar.	8.Ś	MININE	-1009	- 1000	ani.	ited.	int		.000
0.000	0.0	0.000	0.00	20,00	20.00	1.1	0.000	10.000		0.000
1.000	2.1	0.707	19.0	19.85	19.79	100	0.150	0.210		0.180
2,000	17.1	5,652	0.08	19.63	19.57		0.370	0.430		0.499
9,980	34.2	11.304	0.16	19.27	19.28		0.730	0.720		0.725
4.000	53.3	17,663	0.25	18.85	19.06		1,150	0.940		1.045
5.000	70.5	23.315	0.33	18.50	18.99		1.500	1.010		1.255
6.000	89.8	29,673	0.42	18.35	18.85		1.650	1,150		1.490
7.000	106.8	35.325	0.50	18.07	18.70		1.930	1.300		1,615
8.000	53.4	17.663	0.25	18.12	18.76		1.880	1.240		1.560
9.000	26.7	8.831	0.12	18.17	18.90		1.830	1.100		1.465
9.000	2.1	0,707.	0.01	18.33	19.02		1.670	0.980		1.125
141.000	2.1	0.707	D.01	18.33	19.02	-	1.670	0.980		1.325
11.000	17.1	5.652	0.08	18.32	18.99		1.680	1.010		1.345
12.000	34.2	11.304	0.16	18.25	18.93		1.750	1.070		1.410
13.000	53.3	17.663	0.25	18.17	18.84	T	1.830	1.160		1,495
14.000	70.5	23.315	11.33	18.10	18.80	-	1.900	1.200		1.550
15.000	89.8	29.673	11.42	18.05	18.70		1.950	1.300		1.625

	5.000	1.15	15	M	
0.7 m	1.35	1.21188			
0.3 01	0.15	9,68439	0.5275	0.1	
8.7d;	8.35	1.56667	0.20165	-6.2	
11.3o;	8.15	1.365	0.200765		
D (mm)	380				
Kar	8531				
the .	223.14				
Atsu (Squar)	0.07065				

-	1	- 0.75 - D dat + da
	Ë,	= deformation modulos
1	25	= had increment
1	Dx.	- sattlement increment
	0	- diameter of the phile, general

y 0.30 m

	Lab. Specialist	
Name :		


Sign :

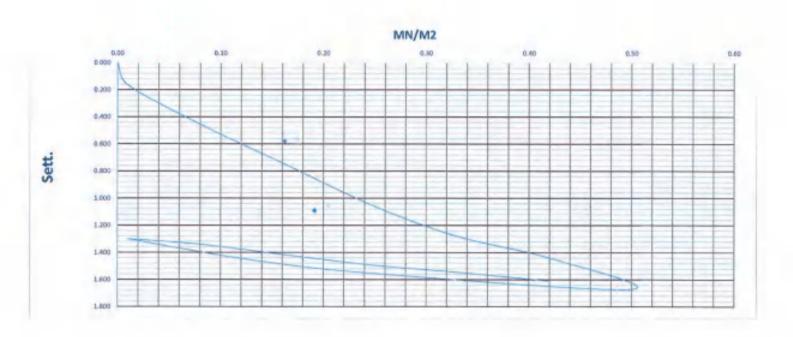
Consultant Engineer Name : Abdosta Sign :

Dominician Criminiana	1		Comarythe	Denzi	Alad Al
PI	ate Load	Test Results	_		
AL MOSTAFA			1000		
524+500	To	5244580		Station	524+564
9-09-2023			_		
P.S.G +0.50					
	Commean Commitant Pl AL MOSTAFA 524+500 9-09-2023	Plate Load T AL MOSTAFA 524+500 To 9-09-2023	Plate Load Test Results AL MOSTAFA 524+500 To 524+580 9-09-2023 To 524+580	Plate Load Test Results AL MOSTAFA 524+500 To 524+580 To 524+580 To	Doministic Disease Disease Plate Load Test Results AL MOSTAPA. Station 524+500 To 524+580 Station 9-09-2023 Station Station Station

The tond is applied to a circular rigid steel bearing plate by a hydraulle juck in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

P = Kod or = authemeni 17 = countrie of the utite.

The diameter *D* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *D* = 0.60 m and *D* = 0.762 m are used

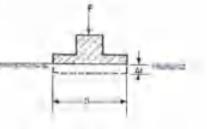

The load is applied in 6 load increments of equal size. Under each load step the activement must come to a milicivable and (< 0.02 mm/minutir). After the maximum load is reached the unloading procedure can begin. After that, the plate is related in 5 steps. A loaded truck, an excevator or a milior usually serve as counterweight for the hydraulic jack

Diameter = 3	00	mm
--------------	----	----

i ording.	Least	Lund	Stress	Ded 1	Dal 2	Dial 3	nett 1	549,2	Seg. 3	Atts: Sett:
Stage No.	Har	8.9	MN/M2	mmi	umi	mii	otes	inni	-	HERE .
0.000	9,0	000.0	0.00	20.00	20.00		0.000	0.000		0.000
1,000	2,1	0.707	0.01	19.87	19,80		0.130	0.200		0.165
2,000	17.4	5.652	0.08	19.50	19.59		0.500	0.410		0.455
0.080	34.2	11.304	0.16	19.20	19.32		0.800	0.680		0.740
4,000	53.3	17.663	0.25	18.80	19,08		1.200	0.920		1.960
5.000	70.5	23.315	0.33	18.51	18.93		1.490	1.070		1.280
6.000	89.5	29.673	0.42	18.25	18.87		1.750	1.130		1.440
7,000	105.8	35.325	0.50	18.04	18.62		1.960	1.389		1.670
8,000	53.4	17.663	0.25	18.12	18,77		1.890	1,230		1.555
9,000	26.7	8,831	0.12	18.17	18.93		1,830	1.070		1,450
-9.000	2.1	0.787	0.01	18.35	19.05		1.650	0.950		1.300
10.000	2.1	0.707	0.01	18.35	19.05		1.650	0.950		1.300
11.000	17.1	5,652	0.08	18.33	18.99		1,679	1.010		1.340
12.000	34.1	11.304	0.16	18.22	18.95		1.780	1.050		1.415
13,000	53.3	17.663	0.25	18,18	18.83		1,820	1.170		1,495
14.000	70.5	23.315	0.33	18.13	18.78		1.870	1.220		1.545
15,000	89.H	29.673	B.42	18.08	18.70	-	1.920	1.300		1.510

		- A	AS	3.4
0.7 pr	0.35	1.23875		
0.3 m	0.15	0.78438	9.20431	
0.7a	0.35	1.55944	0.17944	1.
0.34	11.15	1.38	10.1 (.Y968	Mol.
D (mm)	300		1	inger 4
Evi	\$4,21		410	
E.	294,78			1 (V)
Area (Siling	9.97965		4	~985.
-			*	
E12/EVT	.7.94	1		1 (8)

	F = 0.71 - D - da / A+
A.,	· deformation modulus
Ds	= load locrement.
D,	= saitforwert introment
p	= diameter of the plate, generally 0.30 m


Lab, Specialist Lab. Engineer **Consultant Engineer** Name : Name : Name : Abdosen Sign : Sign : Sign :

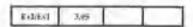
العمل الريكزى وقع (١)

.

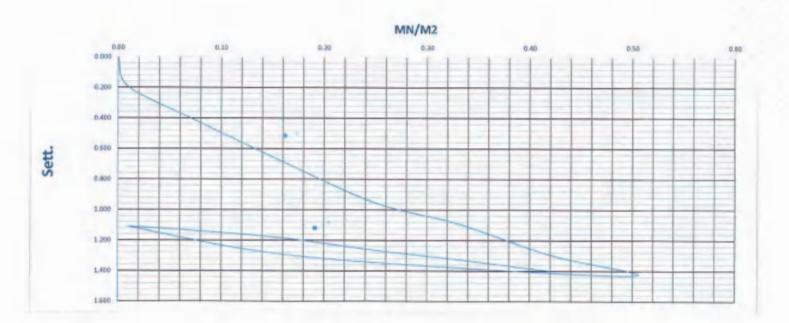
Ormer Consultant	Contractor Consultant	H	E Een	lendur (Jassie)	-
	Ph	ite Load '	Test Results	-	
Company Name	AL MOSTAFA				
Location	524+580	To	524+660	Station	524+585
Taste Dale	9-09-2023				
Layer level	P.S.G +0.50				
UIPMENT AND TE	ST PROCEDURE :-				

The lond is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

7 = kraij -5c = kontinenter gr = planestic of the plate

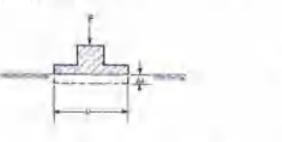

The diameter *P* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *D* = 0.80 m and *D* = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an exceptor or a roller usually serve as counterweight for the hydraulic jack


Diameter =	300mm

Luning	Last	last	Sime-	rital I	Infat 2	Dial N	Sitt. I	Sec.2	Sett 3	AVE
Singl The	Bar	65	MIN/012		rite	ittin	imi	in .	mo	Seit,
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	10.0	19.85	19,76		0.150	11.2.40		6.195
2.000	17.1	5,652	0.09	19.62	19.52		0.380	0.486		6,430
0.080	34.2	11.304	0.16	19.34	19.29	1	0.660	0.718		0.685
4,000	59.3	17.663	0.25	19.00	19,09	-	1.000	1.916		0.958
5,000	70.5	23,315	0.33	18.89	18.93		1.110	1.070		1.090
6,000	89,8	29,673	0.42	18.55	18.86		1.450	1.140		1.295
7.000	106.8	35,325	0.50	18.44	18.70	100	1.560	1.300		1.434
8.000	53.4	17.663	0.15	18.49	18.82		1.510	1.180		1.345
9.000	26.7	83831	0.12	18.56	18.92		1.440	1.080		1.260
9,000	2.1	0.707	0.01	18.69	19,09		1.310	B.910		LH
10,000	2.1	1.707	0.01	19.69	19,09		1.310	D.910		1.111
11.000	17.1	5.4.52	0.05	18.47	19.05		1.330	8.950	100	1.140
12,000	34.2	11,304	0.16	19.62	19.01		1.380	0.990		1.185
13,000	\$3.3	17.663	0.25	18.55	18.92	1	1.450	1.050		1:265
14.000	70,5	23.315	0.33	18.51	18.84		1,490	1.160	1	1:325
15,000	89.8	29.673	0.42	19.48	18.72	-	1.520	1.280		1.400

		3	AS	Δm		
11.7 di	0.35	1.17688		11		
0.3 m	0.15	0.65313	0.52375	-0.2		
0.7mj	0.35	1.34167		0.2		
fl.3n1	0.15	1.17	0.17.165			
D(mm)	300					
En	NS.WI					
Etz	262.14		-	1		
Area (Seatt	ANNIE.			-		


	E. = 0.73 + D = Ao. 1 As
E.	= deformation modulus
Ds-	# load incriment
De-	= sottiement increment
10	= diameter of the piate, generally 0.30 m

Owner Darouthan	Contractor Dissolitati	ALL AND		Contaiclay	(Joshija Agenta) Dana	ALANT ST
	Pl	ate Load	Fest Results			
Company Name	AL MOSTAFA					
Location	524+580	To	524+660		Statler	524+60
Taste Date	9-09-2023					
Layer level	P.S.G +0.50					
DIPMENT AND TE	ST PROCEDURE : -					

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

Finder

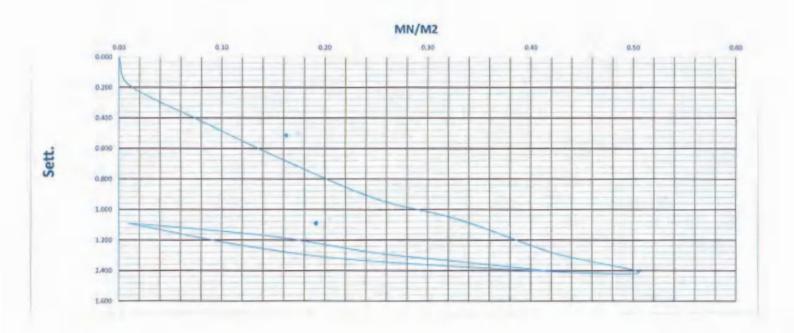
dare settlement) The character of the plate

"Ya •

The diameter *D* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *D* = 0.60 m and *D* = 0.762 m are used

The load is upplied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is resched the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excevator or a roller usually serve as counterweight for the hydraulic jack

ameter =	300mm	1					_			
bastilit	Lust	Luni	Street.	Dist1	Dist.L	(Int) I	Neifi 6	541.5	mil.7	http://www.
Singe Sin	Bac	KK.	MATM1		-000			(mail)		- part-
0.000	10.0	0.000	0.00	20.00	20.00		0.000	0.000		0.009
1.040	2.1	0.707	0.01	19,85	19,76		0,150	0,220		0.185
2.009	17.1	5.652	0.09	19.61	19.55		0,390	0.450		0,420
0.080	34.2	11,304	0.16	19:33	19.32		0.670	0.680		0.675
4.009	53.3	17.063	11.25	19.02	19.12		0,980	0.880		0,930
5.000	70.5	23.315	0.33	18,92	18,95		1,050	1.050		1,065
6.000	89.8	29.673	0.42	18:57	15.67		1,430	1.130		1,280
7.000	196.8	35.325	0.50	18,45	18.74		1.550	1.290		1.420
8,000	53.4	17.663	0.25	18.49	18,83		1.510	1.170		1.340
9.000	26.7	H.831	0.12	18,57	18,95		L,430	1.050		1.240
9.000	2.1	0.707	0.01	18,70	19.12		1,300	0.880		1,090
10.000	2.1	0.707	0.01	18.70	19.12		1.300	0.880	-	1,090
T1.000	17.1	5.652	0,08	18.67	19.07		1,330	0.030	-	1/130
12.000	34.2	11.304	0,16	18.63	19.00	1	1.370	1.900	-	1.185
13.000	53.1	17.663	0,25	18.50	18.93		1.500	1.070		1.285
34,000	70.5	23,315	0,33	18,47	18.85		1.530	1.150		1.340
15,000	6.98	29,673	0.42	18,42	18.77	-	1.580	1.230		1.465

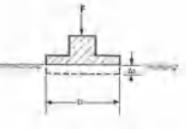

D

20.0

		- 5	45	54	
0.7 ±1.	0.35	1,1575	0.51437		
0.3 mj	0.15	0.64313	0.51457	0.2	
0.703	0.35	1,35111		6.2	
11.3m	0.15	107	0.18444		
D (mm)	500				
Eq.	87.48				
6.12	243.88				
Area I Squall	0.07614				

		 _
dezdert.	1.75	

	E. + 9.75 - 10 da / da
\tilde{I}_{1}	= deformation modulus
0s	- load increment
D_{2}	= settlement increment
11	- dismeter of the plate, generally 0,30 m

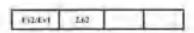

Sign :

Consultant Engineer Name : Alda Sign : 🧹

Synter Dominan	Contestant Crundinar	H		Company	ijiliigi konsti Ovar	Alerta A
L	Pk	ate Load	Fest Results			-
Company Name	AL MOSTAFA					
Location	524+580	To	5241660		Smithe	524+620
Taste Date	9-09-2023					
Layer level	P.S.G +0.50					
OUIPMENT AND TE						

The load is applied to a circular rigid steel hearing plate by a hydraulic jack in several steps. The suitlement under each load step is recorded. The following sketch shows the principle of the test-

3 = land Ar = settlement Ar = discourse of the plane


The diameter *D* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *P* = 0.00 m and *P* = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable emil (< 0.92 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plane is reloaded in 5 steps. A loaded linuck, an expanator or a rollor usually serve as counterweight for the hydraulic jack.

Diameter =	300mm
	1

Leading	Lond	Lord	Stress	niai 2	Did 2	Trial 3	Sett.1	Sett. 2	Sen.2	ATE
Stage No.	Bar	- 88	'MN/M2	onia	mini		min	pito	11111	1680g
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		6.000
1.000	2.1	0.707	0.01	19.90	19.80		0.100	0.200		0.150
2.000	17.1	5,652	0.08	19.65	19.58		0.350	0.420		0.385
0.080	34.2	11,304	0.16	19,38	19.38		0.620	0.620		0.620
4,000	53,3	17.663	0.25	19.07	19,18		0.930	0.820		0.875
5,000	70.5	23.315	0.33	18.94	18.99		1.060	1,019		1.035
6.000	89.8	29.673	0.42	18.65	18.90		1.350	1.100		1.225
7.000	106.8	35.325	0.50	18.47	18.78		1.530	1.220		1375
8,000	53,4	17.663	0.25	18.52	18.83		1.480	1.170		1.325
9,000	26.7	B.831	0.12	18.59	18.96		1.410	1.040		1,225
9,000	21	0,707	0.01	18.75	19.16		1.250	0.840		1.045
10.000	2.1	0.707	0.01	18.75	19.16		1.250	-0.840		1.045
11.000	17.1	5.652	0.08	18,70	19.10		1.300	0.900	1	1,100
12.000	34.2	11,304	11.16	18.65	19.04		1.350	0.960	_	1.155
13.000	53.3	17.663	0.25	18.55	18.93		1,450	1.070		1.260
14.000	70.5	23,315	0.33	18.48	18.85		1.520	1.150	1	1.335
15,000	8.08	29.673	0.42	18.43	18,79	-	1.570	1.210		1.390

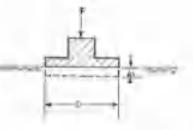
	_	S	45	40	
0.7 n,	8.35	1.09375		40	
0,3 04	6.15	0.59063	0.50313	0.2	
11.741	6.35	1.39722	0.19222	0,3	
11.301	0.15	1.15501	11.19222	11,2	
D (mm)	300				
EVI	82,44				
Ex	234.11				
Aria (S. m)	0.07065				

	R. = 11.73 H dr /.3s.
E,	= deformation modulus
D_{2}	= lisad increment
De	- kattlansent Incromont
D	= rilamster of the plain, generally 0.30 m

MN/M2 0.30 0.60 0.10 0.20 0.40 0.50 0.00 0.000 0.200 0.400 0.600 Sett. 0.800 1.000 1.200 3.400 1.600

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

Lab. Specialist Name : Sign :

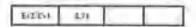


Consultant Engineer Name : che Sign :

State of the Designation	Fonteseter Consultant			Contarta	gingi amanı Omu	Man Pite
[Pla	te Load	Test Results			
Company Name	AL MOSTAFA					
Location	524+580	To	524+660		Sailna	524+640
Taste Date	9-09-2023					
Layer level	P.S.G+0.50					
DUIPMENT AND TE	ST PROCEDURE :-					

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test,

F 1044 wittle If a planning of the at


The diameter D of the plate is generally 0.30 m. For very course grained material also plates with diameter D = 0.60 m and P = 0.762 m are used


The load is applied in 6 load increments of equal size. Under each load step the petitement must come to a noticeable and (< 0.02 mm/minule). After the maximum load is reacted the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter =	300mm

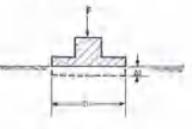
			-		-	_		-	-	
Loading	Load .	Last	Stress	Dist i	Dpi2	dias 5	Self. E	Sen. 2	Reft_3	Avg.
Stope Bri.	Bar	KN	45/542	ншь	idm		- IMD	1995		-10111
0.000	0.0	0.000	0,00	20,00	20.00		0.000	0.000		0,000
1.009	2.1	0.707	0,01	19.85	19.83		0,150	0,170		0.160
2.000	17.1	5.65Z	0,08	19.63	19.61	1	0.370	0.390		0.380
6.088	34.2	11,304	0,16	19.35	19.34	1	0.550	0.560		0.655
4.000	53.3	17.663	0,25	19.17	19,12		0,830	9.880		0.655
5.000	70.5	23,315	11,33	18.98	18.94		1.020	1.960	1.1	1.040
6.009	8.98	29.673	0.4Z	18,68	18,86		1.320	1,140		1,230
7.000	106.8	35,325	0.50	18.46	18.78		1.540	1,220		1,300
3.000	53.4	17.663	0.25	18,52	18.84		1,480	1,160		1.320
9.000	267	8-831	0.12	18.61	18.99		1_390	1.010		1.200
9.000	2.1	4.787	0.01	18.72	19,12		1.280	0.880		1.080
18.000	2.1	0.707	11.01	18.72	19.12	1	1.280	0.880		1.080
11.008	17.1	5.652	0.08	18.68	19,08		1.320	0.920		1.120
12.000	34.2	11:384	0.16	18.62	19.04		1.380	0.960		1.170
13.000	51.3	17.663	0.25	18.55	18.94	-	1.450	1,060		1.255
14.000	70.5	23.315	0.33	18.49	18.86		1.510	1.140		1.325
15.000	89.8	29.673	8.42	18.45	18.80		1.550	1.200		1.375

			35	der.
8.7 11	P.15	1.09875	II biens	
130	0.15	0.62063	0.47813	10.3
6.701	0.35	1.33611		
0.3oL	0.15	1.10	0.17611	4.2
D (cami)	300			-
Es.	94.02			-
Eg	255.5.1			-
Artis Sugar	1.01065		-	

- illumoter of the plate, generally 0.30 m

MN/M2 0.50 0.10 0.20 0.30 0.60 0.00 0.40 0.000 0.290 0.400 Sett. 0.540 0.800 1.000 1,200 1,400 1.600

Lab. Specialist Lab. Engineer Name : Name : Name : Sign : Sign : Sign :


ال الد سرى الما ١١٠

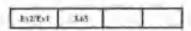
Consultant Engineer Kalanter

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}

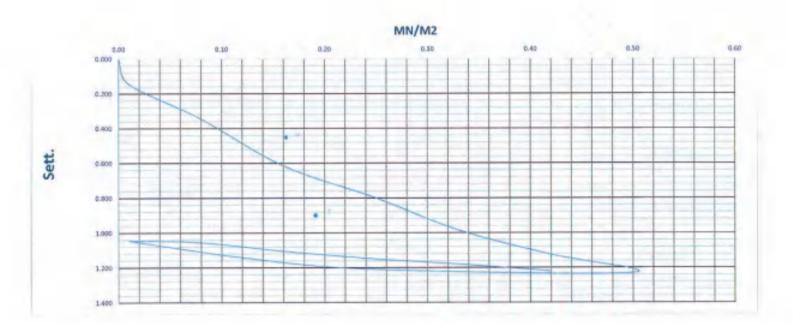
Dway Cimulant	Coursear Consulant	1		Cielard a	-attaigt scorety Descr	1.41441 7.3446.50
Γ	PI	ate Load	Test Results			
Company Name	AL MOSTAFA					
Location	524+660	To	524+740		Station	524+66
Taste Date	8-09-2023					
Layer level	P.S.G +0.50					
	T PROCEDURE :-					

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = tood is = settlement is = simmar at too plane


The diameter D of the plate is generally 0.36 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

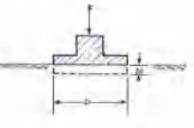
The load is applied in 6 load increments of equal size. Under each load slep the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack


Diameter = 300mm

The second second	and the second second						_			
Ending	Loni	Lost	Stress	ithi t	Dial 2	Dial 1	Spat. 1	50.3	Set 1	Bell:
Stage We.	Bar	sh-	MN/MZ	- 1006	wite	ane .	itte	UTTO		
0.080	9.0	0.000	5.60	20.00	20.00		0.000	0.000		0.000
1.000	2.1	8.707	0.01	19.86	19.85		0.140	0.150		0.145
2.000	17.1	5.652	0.08	19,71	19.60		0.290	0.400		0.345
0,080	34.2	11.304	10.16	19,47	19.30		0.530	0.700		0.615
-4.000	53.3	17.663	0.25	19,30	19.10		0.790	0.900	-	0.800
5,000	70.5	23.315	0.33	19,10	18,93	0000	0.900	1.070		0.985
6.000	89.8	29.673	0.42	18,95	19.80		1.050	1.200		1.125
7.000	106.8	35.325	0.50	18.R1	18.73		1.190	1.270		1.230
8,0910	53.4	17.663	0.25	18.83	18.75		1.170	1.250		1.210
9,000	26.7	8.831	0.12	18,90	18.81		1.100	1.190		1.145
9.008	2.1	0.707	0.01	18,91	18,93		1.020	1.070		1.045
10.000	2.1	0.707	0.01	18.98	18.93		1.020	1,070		1.045
11.000-	121	5.652	0.08	18.97	18.92	_	1.030	1.080		1.055
12.000	34.2	11.304	0.10	18.93	18.80		1.070	1,140		1.105
13.000	53.3	17.663	0.25	18,90	19.90		1.100	1.200		1.150
14.000	70.5	23.315	0.33	18.88	18.76		1.120	1.240		1.180
15.000	89.8	29.673	0.42	15.84	18,72		1.160	1.280		1.220

	_	S 3	A5	Ac	
0.7 m	0.35	1.03313	0,45188		
930	1,15	0.58125	0/45199	-0.2	
0.70	8.35	1.18889	6.12389	0.2	
11.307	1.15	1.065	11.12389		
D (mmi)	300				
E.v.	99,59				
Ev	363.23			1	
(reid Spin)	9,87885			-	

	$E_{+} = 0.75$ $B = 4 \text{ or } 7.4 \text{ or }$
Ε,	= deformation modulus.
Dar	= land increment
ρ.	= settlement increment.
D	= diameter of the plate, generally 0.30 m


	Lab. Specialist	_
Name :		
Sion :		

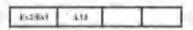
Lab. Engineer Name : Sign : المعمن المرسطري رشم، (١)

Consultant Engineer Name : hale Sign :

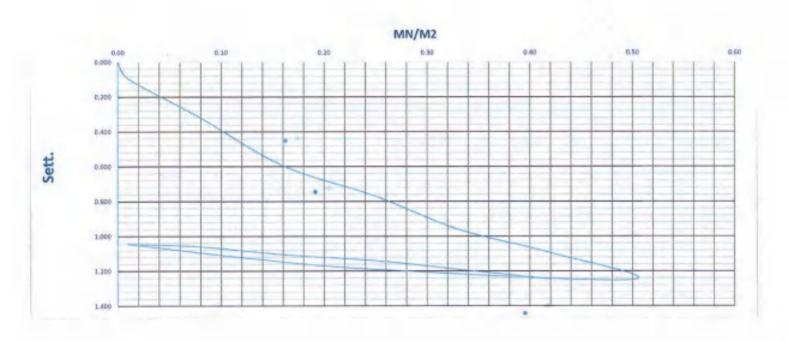
-Owner C(moultant	Contractor Secondari	H		Creards	in and a second	alperti Adattavi
	Pl	ate Load 1	Fest Results	;		
Company Name	AL MOSTAFA					
Location	524+660	To	524+740		Staffini	\$24+69
Taste Date	8-09-2023					
Layer level	P.S.G +0.50					
OUIPMENT AND TEST	TPROCEDURE : -					

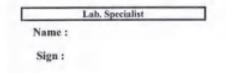
The hand is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

2 = taat is a pettoment is = discuster of the plate


The diameter *n* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *D* = 0.50 m and *D* = 0.762 m are used

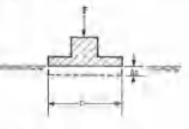
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavetor or a roller usually surve as counterweight for the hydraulic tack


Diameter = 300mm


Louis	Loui	1-1	Steves	06(1)	Diel)	Dista	San 1	See. 2		Arg. Seit
riage Wit-	Ilar	- 65	MRM2	1001		UNREY.	And .	1194	per-	-19813
0.000	0.0	9,000	0.00	20.00	20.00		0.000	0.000		0.000
1,900	2.1	0.707	0.01	19.89	(9,92	-	0.110	0.080		0.095
2.000	17.1	5,652	0.08	19.73	19.63		0.270	0.370		0.320
0.080	34.2	11.304	0.16	19,45	19.36		0.550	0,640	1	0.595
4.000	53,3	17.663	0.25	19,32	19.14		0.680	0,860		0.770
5.000	70.5	23,315	0.33	19.13	18.95		0,870	1.050		0.950
-6.000	89.8	29.673	0.42	18.97	18.84		1.030	1.160		1.095
7,000	106.8	35,325	0.50	18,80	18,70		1.200	1.300		1,250
8.000	53.4	17.663	0.25	18,85	18.77		1.150	1,230	_	1.190
9,000	26,7	8,831	0.12	18.92	18.83		1.080	1.170		1.125
9.000	2.1	0.707	0.01	18,97	18.94		1.030	1,060		1.045
10.000	2,1	0,707	0.01	18,97	18.94		1.030	1,060		1.045
11.000	17.1	5,652	0.08	18,95	18.93		1.050	1,070		1.000
12.000	34.2	11.304	0.16	18,92	18.87		1.080	1,130		1.105
13.000	53.3	17,663	0.25	18.90	18.82		1,100	1,180		1.140
14,000	70.5	23.315	0.33	18,87	18.75		1.130	1,250		1,190
15.000	89.8	29.673	0.42	18.81	18.70		1.190	1,300		1.245

			45	Åπ.	
0.7 m	0.35	0.99938	-		
12.3 m	0.15	0.35063	0,39875	-0.2	
1h.7m2	0.35	1.20222			
11.301	0.15	LIJ75	0.12722	0.2	
D (mm)	300				
Et.	112,85	-			
Ev2	353,72				
Arta E Squit	RETEKS.				

-	E = 0.72 + 11 - 307 / 2x
R,	= deformation modulus
Ds	= load increment
De	= settlement increment
p.	= diameter of the plate, generally 0.30 m

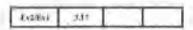


Consultant Engineer Name : Abdoden Sign :

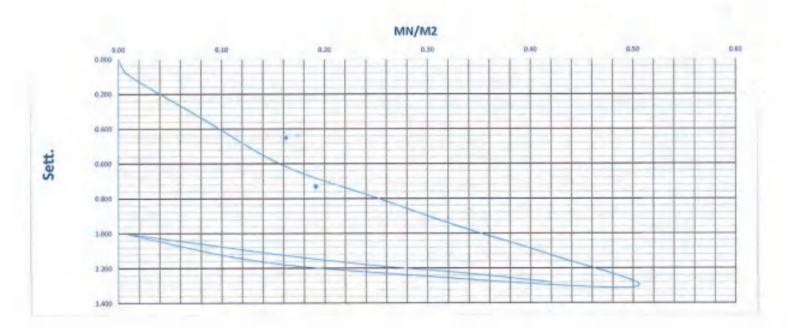
Duney Consultant	Positization OrneoLan.	1		Contactor	Stady -	Nacional Distance
E	Pl	ate Load	Test Results	1		-
Company Name	AL MOSTAFA.					
Location	524+660	To	524+740		Statist	524+72
Taste Date	8-09-2023 P.S.G +0.50					
Layer level						

The load is applied to a circular rigid steel hearing plate by a hydraulic jack in several steas. The settlement under each load step is recorded. The following sketch shows the principle of the test.

P = taes is = settlisesent D = tameviar al tire plets


The diameter *D* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *D* = 0.60 m and *D* = 0.762 m are used

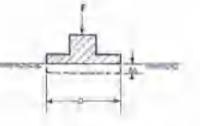
The load is applied in 6 last increments of equal size. Under each load step the settlement must come to a noticeable and (< 0.02 mm/minute). After the maximum toad is reached the unloading procedure can begin. After that, the plate is released in 5 steps. A loaded truck, an exceptor or a rollor usually serve as counterweight for the hydraulic jack


Diameter =	300mm
------------	-------

Loging	Duit	Lunf	Sires	0.01	Dial J	Dist	Sett. (Set 2	501.7	Avg.
Auge No.	Har	KN_	715/742			itter.				1000
9.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.92	19.90		0.080	0,100		0.090
2.000	17.1	5.652	80.0	19.74	19.59		0.260	0.410		1.315
-0.080-	34.2	11.304	0.16	19.50	19.28	-	0.500	0.720		0.610
4.000	53.3	17.663	0.25	19,25	19.16		0.750	0.840		0.795
5.000	70.5	23.315	0.33	19.17	[8.9]		0.830	1.090		0.960
6.008	89.8	29.673	0.42	18.94	18.81	1.1	1.060.	1.190		1.125
7,000	106.8	35.325	0.50	18.70	18.68	_	1300	1.320		1310
9,000	53.4	17.663	0.25	18,80	18.75		1.200	1.250		1.225
9,000	26.7	8.831	0.12	18,90	18,80		1.100	1.700		1,150
9.000	2.1	0.707	0.01	19,05	18.94		0.950	1.060		1.005
10.000	2.1	0.707	0.01	19.05	18.94		0,950	1.060		1.005
11.000	17.1	5.652	80.0	18,98	18.90		1,020	1.100		1.060
12.000	34.2	11.304	0.16	18,90	18,85		1,100	1.150		1,125
13.000	53.3	17.663	0.25	18,81	18.82		1.190	1,180		1.185
14.000	70.5	23.315	0.33	18,82	18.73		1,180	1.270		1,225
15.000	89.8	29,673	0.42	18:74	18.70	-	1.260	1.300		1.280

		. 7	45	Arr	
0.7 m	0.35	0.96313	0.3677		
0.3 m	0.15	0.57553	0.3875	6,2	
D,70%	0.35	1.23722	0.12222	0.2	
11,36.	0.15	1.11500	0.12222	9.2	
D (mm)	300				
En	116,13				
- Exc.	368,20	100			
Area 150.00	0.07065				

	E. = 675 - D - da / As
K_{γ}	· deformation modulus
Ds	= load increment
$\mathcal{D}_{\mathcal{S}}$	+ actilement increment
p.	= diamoint of the plate, generally 0.30 m

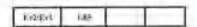

Lab. Specialist Name : Sign :

Consultant Engineer Sign : Abbola Name :

Straces, D Owner Cressilins	Contrast=Counting			Formation	(Januar Agreek) (Janu	Rhadt All
E	Pla	ne Load '	Fest Results			
Company Name	AL MOSTAFA			-	-	
Location [524+740	To	524+820		Station	52,4+7(4
Taste Date	7-09-2023					
	P.S.G +0.50					
Layer level	P.S.G +0.50					

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following shetch shows the principle of the test.

e - last de - materieret de - diamatere al the glatestade d


The diameter p of the plate is generally 0.30 m. For very coarse grained material also plates with diameter p = 0.60 m and p = 0.762 m and used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded include, an excavator or a roller usually serve as counterweight for the hydraulic pick.

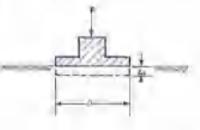
Diameter = 300

Loading	1-1	Last	Stren	mait	DuitT	Dial T	Sett.1	mil. 2	Set 1	Avg.
Stary Sur	Bar	365	BANAT	inii	imi			ineri.	100	
0,000	0,0	0.000	3.00	20.00	20.00		8.000	0.000		0,000
1.000	2.1	0.707	0.01	19.92	19.95		0.060	0,050		0.065
2,000	17.1	5.652	6.08	19.80	19.87		0.200	0.130		0.165
6,680	34.2	11.304	8.16	19.60	10,80		0.400	0.200		0.300
4.000	53.3	17.063	0.25	19.32	19.70		0.690	0.300	1	0,490
5,000	70.5	23.315	0.33	19.20	19.65		0.600	0,350		0.575
6,000	89.8	29.673	0.42	19.85	19.60		0.950	0.400		0.675
7,000	106.8	35.325	0.50	18.91	19,59		1.090	0.410		0,750
8,000	53.4	17.063	0.29	18.96	14.65		1.040	0,350		0,695
9.000	26.7	8.831	0.12	19.07	19,70	-	0.930	0.300		0.615
9.000	2.1	0.707	0.01	19.28	19.79		0.720	0,210		0.465
10.000	2.1	8.707	0.01	19.28	19,79		0.720	0,210	_	9.465
11.000	17.1	5.652	0.08	19.26	19.78	-	0.740	0,220		0.480
12.000	34.2	11.304	0.16	19.15	19.75		0.850	0,250		0.550
13.000	53.3	17.663	0.25	19.10	19.70		0.900	0,300		0,600
14.000	70.5	23.315	0.33	19.04	19,65		0,960	0,350		0,655
15.000	89.8	29.673	0.42	18.96	19.5%		1.040	0,420		0.730

	-	2 - A 1	48	30	
11.7 0	4,35	0.60937	0.32625	0.2	
6.3	û.is	0.28512	1.32025	1.4	
0.701	0,38	0.67167	0.19679	0.2	
0.301	84.6	0.495	0.17967	17-4	
D (mm)	300				
Eyy	137.03			-	
Ere	151.72			-	
Ina (Spec)	Darton's	-			

	H0.77 - 10 - do / 0+
E,	= deformation modulus
bs	= load increment
Ds-	= settlement increment
p.	= diameter of the plate, generally 0.30 m

MN/M2 0.30 0.50 0.60 0.20 0.40 0.10 0.00 0.000 0,100 0.200 Sett. 0.300 0,430 . 0.500 0.600 0.300 . 0.800


Consultant Engineer Lab. Specialist Lab. Engineer I Sign : Abdordu Name : Name : Sign : Sign :

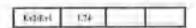
For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max} .

المعمن المرينكري وقيم (١)

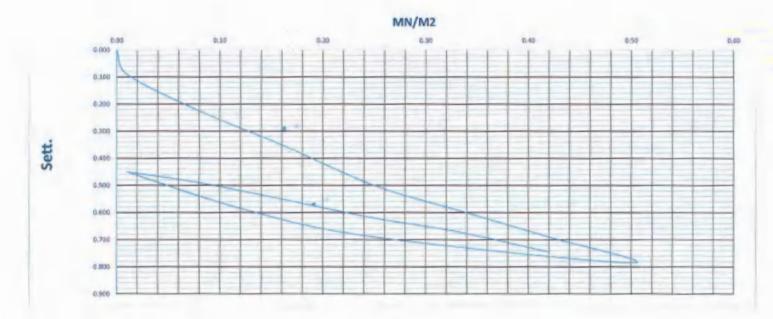
Constraint Consultrue	Contractor Comolition			Contactor	ataigi ayaatii Quna i	ALAN AN
E	pla	ne Load	Test Results			
Company Name	AL MOSTAFA					
Location	524+740	To	524+820		Similian	524+730
Taste Date	7-09-2023					
Layer level	P.S.G +0.50					
	ST PROCEDURE :-					

The load is applied to a elecular rigid steel hearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

3 = Radi A = assessment R = discreter of Sio plate


The diameter *D* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *D* = 0.60 m and *D* = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable and (< 0.02 mm/minute), After the maximum load is reached the unineding procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an exceptor or a roller usually serve as counterweight for the hydraulic tack.


Diameter =	300mm
TO THE REPORT OF THE PARTY OF T	~~~

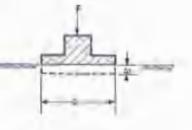
Louding	Lant.	Luif	Sire	Bid+	filal Z	Bist.Y	Sell, U	SHL7	Seri 1	Aig.
Stepl-No.	Bar	SS	MS/M2	101	100		-	inte	-1100	
0.000	0.0	0.000	18.00	20.00	20.00	-	0.000	0.000		0,000
1.900	2.1	0.707	10.0	19,90	19.92		6,100	0.080		0,090
2.000	17.1	5.652	0.09	19.70	19.85		0,300	0.150		0,225
0.080	34.2	11.304	0.16	19.52	19.78		0.480	0.220		0.350
4.000	53.3	17.66.1	0.25	19,32	19.65	-	0.680	0_320		0.500
5.000	70.5	23.315	0.33	19.16	19.64		0.820	0.360		0.590
6.000	89.8	29.673	0.42	19,02	19,60	1	0,980	0,400		-0.690
7.000	106.8	35.325	0,50	18.88	19,55		1.120	0.450		0.785
8.000	53.4	17.663	0.25	15.97	19.65		1,030	0,350		0.690
-9,000	26.7	8.831	0.12	19.10	19.72		0,900	0.280		0.590
9:000	2.1	0,707	0.01	19,30	19.80		0,780	0,200		0.450
10.000	2.1	0.707	0.01	19,30	19,80		0.700	0,200		0.450
11.000	17.1	5.652	0.68	19.25	19.77		0.750	0.230		0.490
12,000	34.2	11.304	0,16	19.16	19.74		0.840	0.260		0.550
13.000	53.3	17.663	0.25	19.06	14.70	-	0.940	0,300		0.620
14:000	70.5	23,315	0,33	19.00	19,66	-	1.000	0.340		0.670
15.000	89.8	29,673	0.42	18.92	19,59		1.080	0.416		0.745

	100		45	Arr	
0.7 01	0.35	11.60687		4.4	
0.3 4,	8,15	0.33438	0.3725	0.2	
0.701	0.35	0.68667		11.2	
0.3n ₁	ñ.15	11.53	0,15066		
D (mm)	300			-	
B.g.	105,14				
Erz	287.24				
metigan	6.07145				

1	- 1.15 · D · Ar / As
к,	· deformation modulus
<i>Ds</i>	= toad increment
174	- settlement increment
p	- diameter of the plate, generally 0.30 m

Lab. Specialist Name :

Sign :



Consultant Engineer Name : Sign : Abdester

٠

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is revarded. The following sketch shows the principle of the test.

dr = settlement dr = settlement dr = diamater of the plane

The diameter *B* of the plate is generally 0.30 m. For vary coarse grained material also plates with diameter *B* = 0.60 m and *B* = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load stop the settlement must come to a noticuable end (< 0.02 mm/minute). After the maximum load is reached like unloading procedure can begin. After that, the plate is reliaded in 5 stops. A loaded, truck, an exception or a roller usually serve as counterweight for the hydraulic jack.

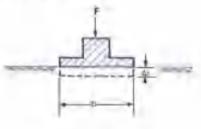
Dian	icter =	300,000	1		-						
	Londing	Lina	Lmit	Strees -	0(4)	19463	jing J	SHUT	500.2	Sett-3	Ann.
1	Storge No.	Dav	RN	MINIM		Inte			110	Team	
	0.000	0.0	0.000	0,00	20,00	20.00		0.660	0,000		0,000
	1.000	2,1	0.707	0.01	19.97	19.98		0.030	0.020		0.025
	2.000	17.1	5.652	0.08	19,03	19.88		0.170	0.120		0.145
1	0.080	34.2	13.304	0.16	19,50	19.75		0.500	0.250		0.375
	4,000	53.3	17,663	0.25	19,30	19.67		0.700	0.330	-	0,515
- [5,000	70.5	23.315	0.33	19,15	19.64		0.850	0.368		0,605
	6.000	89.8	29.673	0,42	19.00	19.58		1.900	0.420		0,710
	7.000	106.8	35.325	0,50	18.85	19.52		1.)50	0.480		0.815
1	8.000	53.A	17,663	0,25	18.90	19.60		1.100	0.400		0.750
	9.800	26.7	8.831	0.12	19.00	19.72		1.000	0.280	1000	0.640
	9.009	2.1	0.707	0.01	19.20	19,80		0.800	0.200	1.000	0.500
	10.000	2.1	41,707	0.01	19.20	19,80		0.800	0.200	-	0.500
1	11.000	17.1	5.052	80.0	19,18	19.70		0.820	0.300		0.560
I	12.000	34.2	11.304	11.16	19.10	19.65		0.960	0.350		1.625
1	13.000	53.3	17.663	11.25	19,06	19.57	-	0,940	0.430		0.685
	14.000	70.5	23.315	0.33	39.00	19.52		1.000	0.480		0.740
	15.000	89.8	29.673	0.42	18.92	19.45	-	1.080	0.550		0.815


700.

		5	48	der .	
0.7.8	6.35	0,61813	-		
1.302	9.15	4.54625	0.27188	0,2	
A.761	11.35	0.75667			
1),3a:	11.15	0.62001	Ø.13666	0.2	
D (mm)	300			-	
Fre	165.52		1.		
14	.129.28				
(in pict) con	1147065				

EST.ENT	Tar.		1.00
		-	

	8 11.75 B 110 / 11
ε,	= deformation modulus.
Ds	= land increment
DE	= settlement increment
n	= diameter of the plate, generally 0.30 m

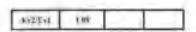

	Lab. Specialist	
Name :		
Sign :		

Consultant Engineer Sign : Abdedu

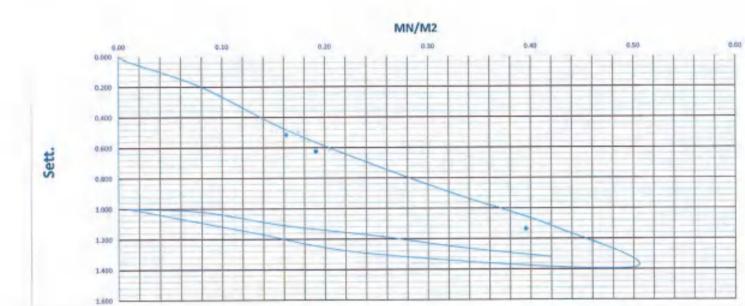
CONTERN ADDRESS OF	Cruracur Quuillaar	H		Cimareire	iatings, speeds) Over	(الجريد (الجمعة)
	Pla	ate Load	Test Results	_		-
Company Name	AL MOSTAFA					
Location	524+740	To	524+820		Shailoo	524+815
Taste Date	7-09-2023					
Layer level	P.S.G =0.50					
DUIPMENT AND TH	ST PROCEDURE : -					

The load is applied to a circular rigid steel bearing plate by a bydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

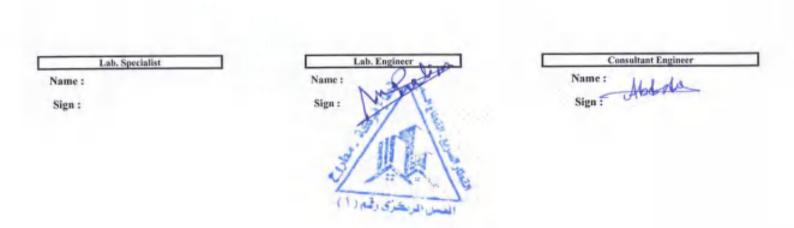
F > load Ar = militizenes) .B = stansmer of the pinne


The diameter D of the plate is generally 0.10 m. For very coarse grained material also plates with diameter P = 0.60 m and P = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable and (< 0.02 mm/minute), After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavalor or a roller usually serve as counterweight for the hydraulic jack.

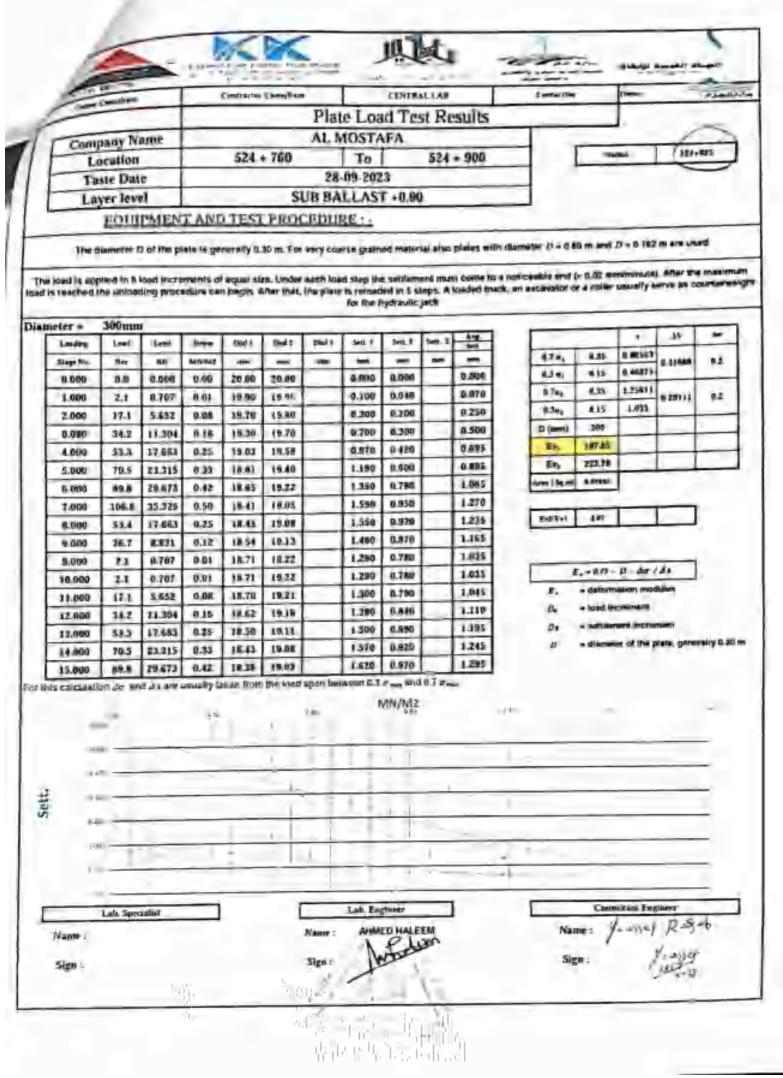

Diameter =	300	ma
------------	-----	----

Luning	Linut.	Loni	Streis	piet 7	Dial 2	Tial 2	Sen. 1	50.2	90.5	Aug
Stage We	llar	ws:	MN/M2	mis	ma	dres	stim	aliti	tien	mine
0.000	0.0	0,000	11.00	20.00	20.00	1	0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.97	19.96		0.030	0.040		11.035
2,000	17.1	5.652	11.08	19.80	19,80		0.200	0.200		1.200
0,080	34.2	11.304	6.16	10.50	19.55		0.500	0.450		11,475
4,000	53.3	17.663	0.15	19.25	19.31		0.750	0.690		0.720
5,000	70.5	23.315	0.33	19.05	19.12		0.950	0.880		10,915
6.000	89.R	29,673	0.42	18.84	18.93		1.160	1.070		LIB
7.008	106.8	35.325	4.30	18.62	18.60		1.380	1,400		1,390
8.000	53.4	17.663	0.25	18.72	18.68		1.280	1.320		1,300
9.000	26.7	8.831	@12	18.80	18.90		1.200	1.100		1.150
0.000	2.1	0.707	0.01	18,93	19.87		1.070	0.9.10		1.000
10,000	2.1	0.707	0.01	18.93	19.07		1.070	0.930		1.000
11.000	17.1	5,652	0.08	18.92	19.04		080.0	0.960		1.020
12,000	34.2	11.304	0.16	18.88	18.90		1.120	1.100		1.110
13.000	53.3	17.663	0.25	18.82	18.82		1.180	1.180		1.180
14.000	70.5	23.315	0.33	18.75	18,74		1.250	1,260		1.255
15.000	89.8	29.673	0.42	18.70	18.66		1.300	1.340		1.320


			:45	50
B.7-m	6.35	0.87038	0.43375	- 0.0
0,3 04	6.15	0.44063	0.43375	0.2
0.701	0.35	1.20944	0.22944	0.2
11.361	9.15	1.04	1.22944	9.2
D (mm)	.300-			
BV,	105,25			
EV.	196,13			
in stand	0.09105			

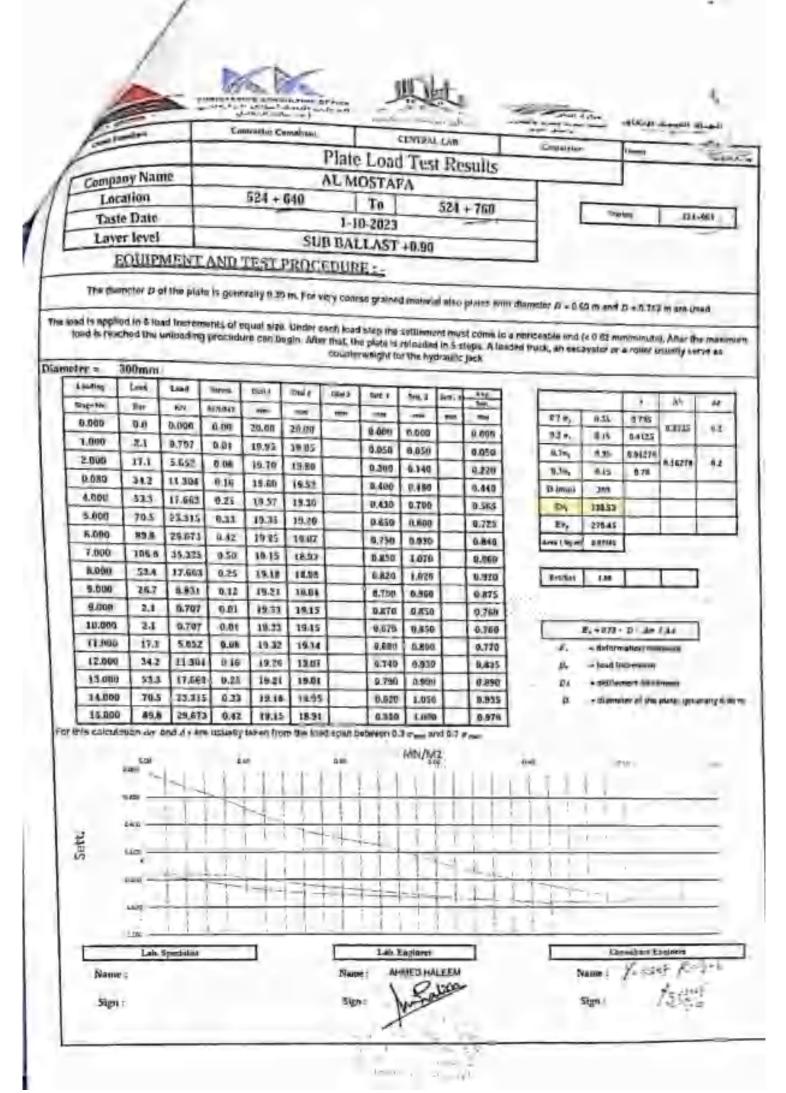
	E, # 1. 15 h 30 / 30
F.	= deformation modulus
Ds	= loed increment
DI	= settimment increment
D	# diamater of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max} .



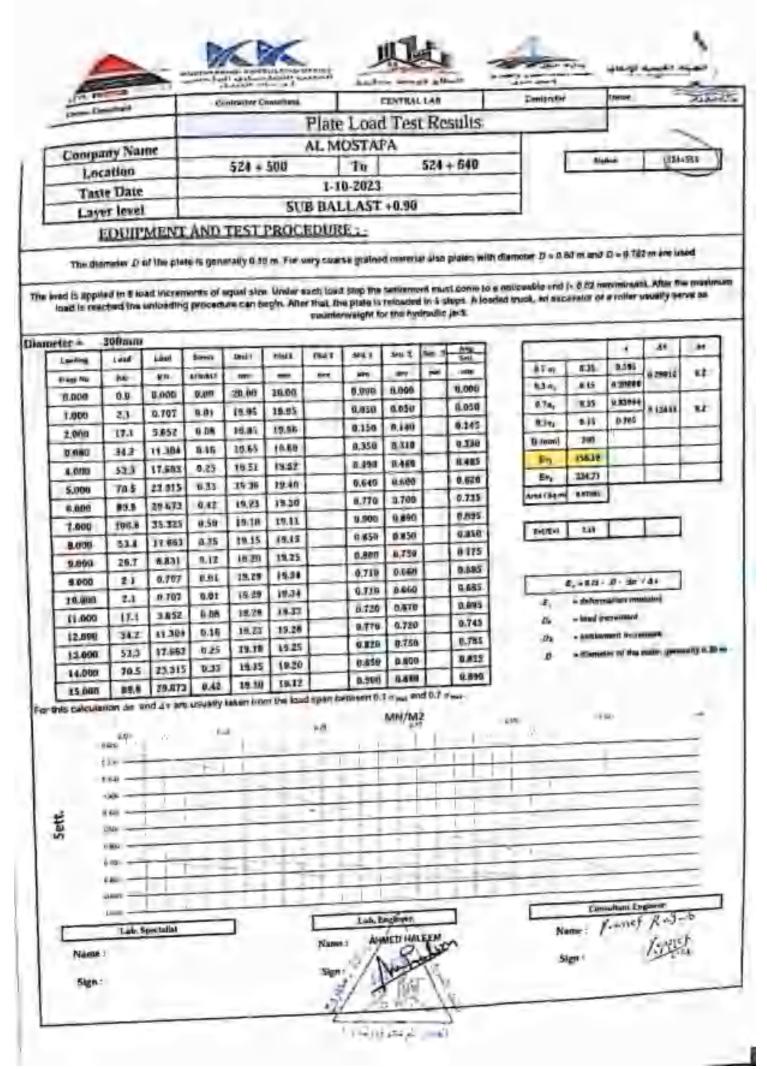
-			Vi	the same same		2	1		t,	T			a4400 3		1
Den Ces	iliant.	1	C.	artuiter Ce	-		-	ENTRA	LAR	1	Desarrier	_	Quer:		-
						Plate	Load	Tes	Re	sults			Care.		Rist
Compan	y Nan	ne				_	OSTAL	_		SHILES.	1		100		
the second se	tion		-	524 +			To		524 -	900	1 1	ties	-	1 100	
Taste	Date					28-1	09-2023	1	44.					121-	
Laye	r level				SU	-	LLAST		-		-			1	
E	GUIP	MENT	AND	TEST		_			-		-				
			-				-	-	-		_	-	-	-	_
The dia	used on The	or the pu	to is gen	enally 0.30	Im Fory	w/y com	na graine	d maieri	el also	photon with di	ameler D = 0.80	i m and I	0 = 0.762	m are usi	ed .
		nil proces	nema of durt can	oquel sus begin. Af	L Unidiar a Ipy Bhail, I	na prate	t step the is reload. for the h	10 11 5 11	805.AI	contect truck	oticeable and i an excavator o	a 0.02 min a roher	nimimula usually s	After the enve as co	- maxe
	100mm	-	-		-	_	_		_		_			_	
Name and	1-1	1-4	Seres	Star 1	Desit	Ded 3	541.1	See. 2	541.2	Arg		1		AT	1.0
000.0	0.0	6.000	0.06		-	-	int i	-	-	-	850	8.35	843625	2.55667	
1.000	21	0,707	0.01	26.00	20.00	-	0.000	0.000	-	0.000	83.01	6.15	0.47938		-
1,000	17.4	5.632	0.06	19.80	19.60	-	0.210	0.405	-	B.300	0.74	0.15	1.025	6.173	9.2
0.050	34.2	11.304	0.16	19.57	1845	-	0.410	0.600	-	0.505	D (ever)	380	1425		-
6.000	513	17.663	0.25	13.40	15.20		0.600	6.800	-	0.700	En	120.00	-		-
3 Dava	70.5	13315	0.31	19.30	18.92		0.700	1.060		0.850	Eq.	257.14	-	-	_
6.000	.87.4	28,473	8.42	19.10	16.80		0.500	1.200		1.020	Arme (No.mi	-	1		-
7.000	TOA.8	13.321	8.50	45.00	18.54		1.000	1.600	_	1.230	-	_	-		
8,000	574	17.863	0.25	18.02	78.55	-	0.980	1.450	-	1.215	1404	2.04		1.00	
0.000	24.7	8.831	8.12	14 00	160	-	0.520	1.390	-	1.155					
10.000	11	0.707	0.01	19.38	18.81	-	9,820	1.100	-	1.005	-	r 8.15 -		144	1
11 ARD	17.1	5457	6.00	19.37	38.80	-	0.810	1.200	-	1.015	8.		netion me		1
12.000	36.2	11.304	0.16	19 10	1877	-	0.900	1.230	-	1.065	0.		ti mineri		
11.000	51.5	17.663	0.25	18.05	14.56		9.950	1310	1	1.145	De.	-	nari inco	-	
14.000	10.5	23 314	9.33	19.02	18.58		11.070	1410		1,100	μ	- 846	er of the	plain, gan	maily 0
15.000	14.5	29.67			18.52		0.990		-	1.235					
n inclu	10.00		- Martin			it tigaer ba									
				-		-		WN/M			-	-	•		
	1.1			-		1		_							
	1.1		-							1.8.1	1111	1.1	-		1
						1		-			1.1.1	-			1
Soft	0.77						~					-	-		-
W1.	-								-		-		-	-	-
	-					-		_		_				_	_
		_			_		_	-	-	-		-		_	_
	-								-	_					
-	Lab.3	iperialist	-	7		-	Lab	Lingham	-	7	-	-Te	multiant &	in this man	-
Name	-					Name		MED HA	LEEM		N	Ame :	1. m	FRA	3+6
							1	1.2	lit						
Sign :						Sign	1 1	P.D.			1	ilgn :		lent	9
							1							F	48

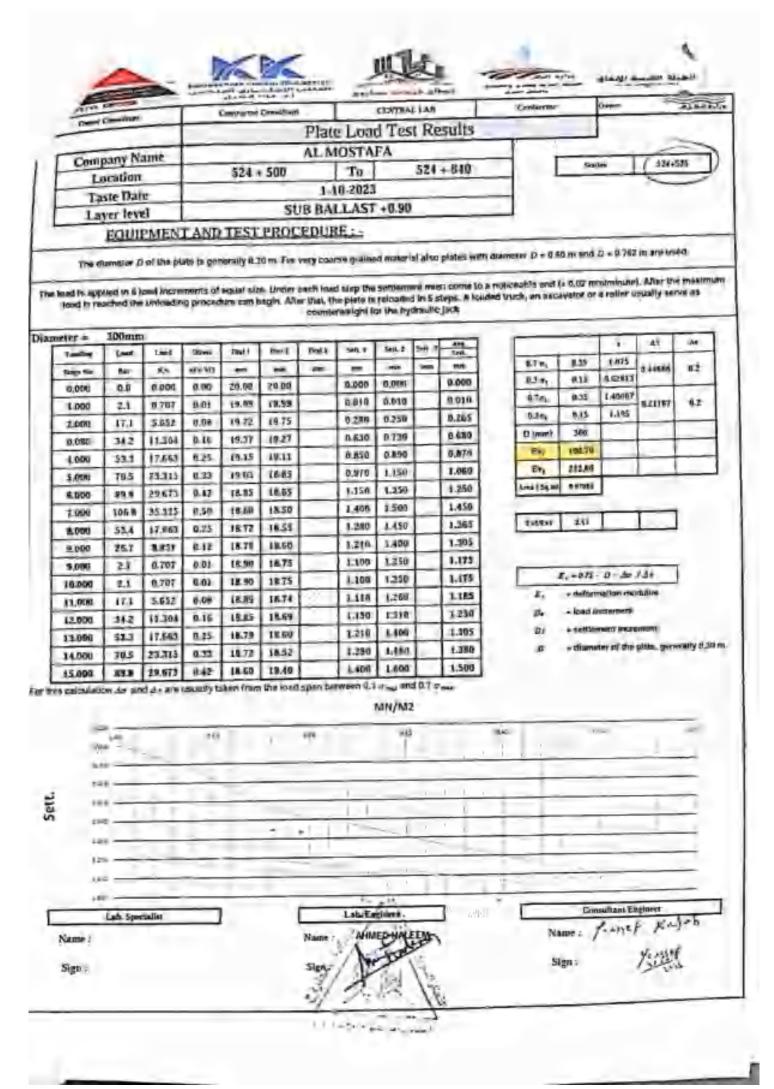
avacin i	-			Constantion	C-24			(INTRA	LLAS	1	Linevie	-	low-	-	-
	-	-	-			Plat	e Loa			esults		-	1.1		22.0
Com	any Na	ame		-	-	_	IOSTA			Longitto -	-		1		~
	cation		_	524 -	760		To		524	+ 900		ing in	nie-	1 624	-865
Ta	ste Dat	e				1-	10-2023	3	-		-	-		1 6	-
Lay	er leve	4	-		SU	BBA	LLAST	F +0.90	-		-				
1.00	EOUT	MENT	LAND	TEST	_	_	_		-						
			_			-			-			-	-	_	-
The di	anda p	of the pla	the its gev	eally 0.2	tim For	1117 008	res grain	et enviore	al dese	putei with	diameter D = 0.1	50 m and	D=0.76	E m ans w	bea
kied is appl	led in \$ k	oud more	ments of	equal siz	. Under	secti las	d stip the	sellem	ni mu	Si come in A	noticeable and	1- n m m		-	-
load is rea	acted the	unitedin	g proced	lump cuan b	ingin Alt	er mai, u	he plane is maneight f	FEIGACIAN	d in il s	Maps A load	ed truck, an exc	avision of	a roller	multy se	CV8.45
eter =	300mm	-		-	-	Lound	in state and state	or the life	Car anillo	. Juca				-	
Sauling.	Last	1-1	termi	timite.	David 1	There's	-	Ser	50.1	140	-	-	1	L	-
Sugar Sec.	1.4	15	-	-	-	-	-		-		87.	6.35	# 64582	M	- 44
6.000	0.0	0.000	0.00	20.06	20.00	-	0.000	0,000	-	9.000	83.01	0.15	D 2964R	434475	0.2
1.000	21	107107	6.81	16.66	18.97		0.040	n.om		0.015	R.Tay	8.35	0.57278		1.00
2.000	171	5852	10.00	19.78	19.88	1.11	0.220	0,129		8.170	0.5m,			9 16777	0.2
0.080	342	11,254	0.16	10.59	19.78		0.410	0.228		0.315	D (map)	276	1000		
4.005	55.5	17481	A.25	15.40	19.62	-	0.003 9	0.340		0.490	En	129-03			0
5.000	76.5	28.473	0.31	18.21	11.50	-	0.770	in smith	-	0,635	EX,	168.11	-		
7.6400	106.0	81.525	0.42	10.12	19.84	-	0.850	n Sray	-	0.721	Area Squee	A 87945			
8.000	53.4	17.443	0.25	19.00	18.41	-	0.840	0 630		0 805	Tim.		-	-	
1.000	26.7	4.821	8.17	19.14	19.40	-	6.860	0.520	-	0.765	EVERYI .	7.85	-		
\$ 000	1.1	0.707	0.01	18.54	14.61		0.600	8.390		6.525					
10.0496	2.)	10.785	0 81	19.34	19.61		0.568	8.350		0.525	1	r. + 11 75 -	Q- 47	41	(C)
11.040	17.1	1457	1.01	19 22	19.55	100	0.581	11.130	-	0.365	4	- delivity	alion mod	bius	
12,800	28.2	11,204	6.14	1621	16.52		8750	0.100	1	8.615	De .	- food in	CONVERSE.		
11.900	53.3	17.842	4.23	16.14	14.87.	-	0.844	11.500	-	246.0	0.	- Letter			
13.000	41.4	22,315	9.42	18.00	15.11		0.840	0.530	-	0.785	н	+ GLANNIG	et of the p	itti, gira	vally 0.
- 14	-		and the second second			tion be	A BREAK	0.429		9,400					
					222			10.000		-					
			-			-		11			-				-
	-						_	_	_			-			
	-	_				-			-	_		_		-	
-	_				-	-				_		-	_		-
	-		-			-				_			_		
	-								-			-		_	
	1.1						-		-	-	-	-	-	_	
			1			-			-	-	-				_
	-								-			-	-		-
-	Lais Spen	tieffeit	-		1	_	1.4.5								_
Name :	1.1.1					1	Lah Eng		-			Cons	ultant Eng	piseer	_
A COMPANY OF						Nami	NHM	DHALE	EM.		Nas	ne: 7	+ + sich	Re	1-6


1

				1.10.1				_		T	Cimility		Trayram	10	
Chant	Centralization			Centificite	Consilier	_	1	_	ALLAN		Contine	-	-		
	-					_	te Lo	_	SIR	esults			1		-
Com	pany N	ame			100	ALI	MOST	AFA	-		-	-	alter.	1 /100	
L	ocation	1-		524	+ 760		To	-	\$24	+ 900	-	-		1	
	ste Da					-	-09-202	la de la deservación de	_		-				-
	yer lev		-		S	UB BA	LLAS	T +0.9	0		_				
	FOU	PLIPN	TAN	TEST	PRO	CEDU	RE :-				-	_		-	-
	Lance .	-					sta seale	mit mater	ini aisu	plates with	diametin D = 0.8	Si m and	11 - 0.710	7 m am 10	et
		_		_	_	_	id step th	-	ient.mo		nolicoable end , an excelation c		- testing in the	A ADD TO	C TRANK
-	300mm		-	-		-	-	-	-			-	_		-
Linding	Lud	Level	line	1mm	Dail	DMT	NR/F	Sec.1	Set 1	A spi Rett	-	-	1	14	jl.rr
Sugi No	j.ar	0.5	-	-	-	-	inte	-10	min	-	0.7 04	0.15	1.05	17.26	10.Z
0.009	0.0	0.000	0.00	20.00	20.00		0.000	000.0	1.1	0.000	130.	115	1.22333		1.1
1.000	7.1	0.707	0.01	19.97	18.93	-	6.430	16.076	-	0.050	1.70	4.15	1.855	111663	02
2.000	17.1	5.652	0.00	18.53	19.51	-	0.460	0.490	-	0.476	D (mat)	309	1		-
0.080	24.2	101.11	D.16	19.46	19.24	-	0.590	0.768	-	0.675	Ev	123.00			
4.000	\$3.2	17.663	0.25	19.78	18.95		8.620	1.050	-	0.835	En	207.33	-		
5.000	10.5	23,315	0.31	14.76	18.76	-	0.910	1.240	-	0.940	Anna (Saper)	Q.arreas			-
6.000	89.8	29.673	0.42	19.26	18.ST	-	0.740	1.490	-	1.115	Dome of the	-	· .		
7.000	105.5	35.325	0.50	15.21	18,12		0.790	1.640	-	1.205	Detto 1	L11	-		
11.0100	63.4	17,663	0.35	19.22	38.37	_	0.780	1.630	-	1.185				-	
9 000	26.7	8.831	0.12	19.24	18.19	-	0.760	1,610	-	1.035					
9.008	2.1	0.707	9.01	19:36	18.57		0.640	1,430	-	1.035	1 4	·-##	p - Ja /	41	
10.000	2.1	0.707	0.01	19.35	18.57	-	0.610	1.840	-	3.045	ε,	- deform	tim med	Reins	
13.000	17.1	5 852	0.16	19.32	18.57		0.660	1.480	-	1.070	De	w load its			
12,000	34.2	11.304	0.25	10.31	18 42	-	0.030	1.580		1.135	<i>0</i> +	* cettion			
13.000	52.3	23.315	0.11	19.28	18.30	-	0.720	1.707		1.210	ø	A Diamain	er al line p	ialit, gune	uity 0.3
14.000	70.5	10.672	0.42	19.21	18.25	1	0.700	1.730	100	1.270					
15.000	89.2	gaara	17.0	heritumi	Ty+ Is=0.	spile Real	****	- and	0.3 et	-					
+ cautor -							6	07/641							
						1.1		-0	-				1.1		26
								17							1
	1.1.				-	_		-			-		-	-	
	-	1.1.1			-	-			-	-	-	1	-	-	-
	1		-		-		-	-	-	-	-	-	-	-	-
	-			. L.	1.5	-		1.0			-			-	-
					1			1.11		1		-	- 2	din la	-
1.00			-		1.1				-			1.1			-
	-		-	-	T			1			1.2		-	1	
		-	-	-	-				_		í l	Cenu	Hant Engl	iner	-
	Lab. Speci	a Gut			1	-	Lals Engl				New	. 4	ant	R.g.	1
Name :					1	ame :	AHME	Band	W.		Nam	e. /	undel.	1. 1	-

				antinetter C	10.00		- En	CENTRA	LAR		Compress	-			
Dent	-	-	-	and action of	and comments	Dist		-			California	-		-	- 3404 1
		-	-				Loa		t Res	suits	-	-		1 miles	5
	any Na	me	-	104	100	ALM	OSTA	FA				-	- 1	124-8	-
	cation	-	-	524 +	760		To		524 4	900	4 4	.9412		(main	-
	te Date						09-202	-	_	-	-			_	
	er leve	-		-		-	LLAST	+0.90							
	FOILI	MEN	LAND	TEST	PROC	EMDE	E	-			-		_		
The di	ameter D	bi the pla	to is ger	erally D.3	om For	utry com	rse graine	d materi	ni niso ;	plates with dia	meller () = 0.50	m and D	- is 787 1	m are use	st
lond is app meched th	læd in fill Wilload	ad increa	monte pl dure car	equal size begin. Al	n Winder i Ner Ohat, i	Pin pistin	i step pro Is reinedi Tor Ney h	ni in 5.si	eps. Al	i come le a no madeil iruck, a	niceable end (- in excavator or	0.02 mm e roller L	Voniouna) aunaity sa	After tha rys as co	maxima
cter =	300mm	-								_		-		-	
Landing	imi.	(Line)	Trans	Dui)	06/2	0113	Bet V	sių 7	10.1	Arg		1	- b	AS	An
Stage No.	Ret	13	MATH	-	-	- 240	-	+		-	8.7 m	4.15	0.82375	831125	0.2
0.000	0.0	0.000	00.0	20.00	20.00		10.000	0.000	_	0.000	43 4	ê.15	8.4825	-	-
1.000	21	0,707	0.01	19.07	10.83		0.010	0.170	_	0.)00-	0.3 ₇₆	6.35	1.16087	8.18667	9,2
2.000	17.1	\$ 657	R DM	19.78	19.54	-	0,100	0.420	-	0.360	83.42	815	0.58	-	-
0.080	34.2	11.204	0.16	19.61	15.18		0,190	0.010	-	0,500	(A (mon)	Jame and	-	-	
4.000	51.1	17.663	0.25	19.50	15.08		0.500	0,920	-	0.710	En,	131.87	-	-	_
6.000	105	23.315	0.31	18.40	18.87		0.600	4.130	-	0.845	Evy	ENTINY .	-	-	_
7.000	106.0	13.321	9.50	13.12	18.52		0.730	1.250	-	0.090	Arra (Seat	example:			
8.000	33.4	17.661	0.25	15.16	18.54	-	0,840	1.460	-	1.150	R-Davi	1.00	1	-	1
8.000	16.7	ARTI	0.12	18.15	18.64	-	0.510	1.360	+	0.005	- Bridgers	141		-	
9.000	2.1	10707	10.01	18.30	18.80	-	0.700	1.200	-	0.050					
10.000	7.1	6.707	0.01	19.30	18.80	-	0.700	1.200	-	8.959	1	E 1112	D - 60	140	I
17.009	17.1	52.22	10.00	19.20	18.79	1	0.770	1.210	-	0.005	D.	- defium	nation ma	éuluta	
12.000	142	11.204	0.16	1928	18.70		0.760	1.300	-	1.010	D.	÷ Isanii II	-		
13.000	133	17.861	0.25	10.22	18.60		6.780	1.400		1.090	D+	+ +=131m	ments incom	arriers .	
14.000	70.5	23.313	0.21	18.20	18.30		6.800	1.500		1.150	p	+ diama	ter of the	piere, pro	erally a
15.000	114	29.873	0.42	15.12	18.13	1	0.840	1.570	1	1.225					
A second	-		and y	aren 1720	P4 160			MANAG		_		-		_	
	-				-				_						
-	-		_		-	-	-					-		-	-
1,7	-		_	1			-	-	-				_		
_	Lab Spe	vialler		1		È	Late L	- bylizeer	-	E		Cu	man and a	Lingineer	_
Name:						Name		MEDHA	LEEM			ame c	Years	FR.	9-6
Sign ;						Sign		Part of			5	igu z		Ting	er


				1.00			1	Part		-	area.	-			`
Linear .	Committeet	-		Ingravities	Comultana	1.11	-	CANTRA	LIAR	-		-		-10-12	7
-		-	-		_	Plate	e Loa			snlts	Candler and		-	1.10	7.
	pany Na	910	-	1		AL M	OSTA	FA	1. 1.1	Suns	-	_			
_	ocation	-		524+	760	-	To		574	+ 900					~
	isie Date				-	1.1	0 2023	-	303	+ 900	- 1	the state	-	fite	186
Li	iver leve	_		100	SU	BRAI	LACT		-	-	-				
	-	EOUIP	MEN	LAND	TEST	PROC	EDUD	E.	-		_				
The	diameter D	of the sta	to in an				dutre in	antes .	-		(-			
-		and but	ne is ger	torally 0.3	0 m For	VETY EAS	til grave	d maket	il also	plates with d	liameter 0 = 0.1	to m and	D - 0 162	I M ATO LAS	-
	carse and the	muoadin	9 proced	lune can b	egin: All	er that, th	w plate is	relucion	5 W 1 1 1	teps. A inade	diruch, en esc	+ S EE mi	a roller a	L After IV	i film
eter =	300mm	-			-	COUNTS	rwinght	or the by	diama in the	(Nich		1100			-
Landing	i and	1.000	Sume	Duti .	inte I		-	-	-		_				-
94 9 54	Au-	KN	NNNU	-	Pul7	Digity	Sen. I	Seil	ber i	- 418 - 101			. 1-	44	-
0.000	0.0	0.900	0.00	20.00	20.00	-	0.600	0.000	-	-	41 41	8.8	8.51003	R. BASSER	8.0
1.000	2.1	0.707	0.01	19.87	13.87	-	0.130	0.000	-	0.906	8.5 m	815	9451		-
2,000	17.)	5.652	2.75	19.63	19.72	-	0,370	0.230	-	0.120	8.74	8.85	0.86832		14
0.080	34.2	11.304	0.16	19,4E	19.57	1	0.540	0.430		0.485	D formal	-6-13	9.82	-	
4.000	52.3	17-663	0.25	19.30	19.42	1	0.700	0.580	-	0.640	Et.	TIN25			-
5.000	70.5	23.315	0.31	19.16	19-25		0.860	0.750	1	0.805	EQ.	787.33		-	-
6.000	65.6	29.673	0.48	19.02	15.14		0.860	0.600		0.920	Arrow (Signal	-			-
1.000	105.8	32.352	10.50	18.96	19.01		1,100	0,990		1.045		-			
8.000	51.4	17.663	41.25	18.92	19.05	-	1.080	0.050		1.015	Extens	246			
9.000	2.1	8.821	0.12	19,00	19.18	-	1.000	0.820		0.910	1.00	_			
10.900	-	0.707	9.01 R.0)	19.10	19.30	-	0.900	0.798	-	0.900	_				
11.000	-	3,652	0.08	10.00	19.30	-	0.000	0.700	-	0.600		F. + 8.75	11 - 10	F.84	1
12.000	_	11.304	0.16	15.05	19.22	-	0.950	0.710	-	0.810			AND IN CASE	Giuluit	
13,000	51.3	17.661	0.25	19 00	19.15	-	1.000	0.850	+	0.925	0.	- Ised in	crowned insure	1	
14.000	70.5	23,315	0.33	18.96	19.09		1,040	0.910	-	0.975	D. 10			plant, gern	
15.000	in the second second	25.675	0.42	18.90	15.03		1,104	0.970		1.035				person (perso	and.
in calcu	nivîn dê se	10012	usonity t	1ken fism	the inad	span be	ween 6.3	7	10.7 :	Trans.					
	100					÷		MN/M2							
	-										hat?				~
		_	_	-			1.1			-					
					1						_				-
				-		-	-	-	-						-
				-		-	_	_							
						-				- 10					
		-	-				-	-	-	-	1			_	-
		-			-			-	-		-		_		2
	u				1							1			
	Lah Spe	cialist	_	1		-	Lab.Es	shurie	_	1	-	-	de la f	-	2
Name			-	•			- 4.5	1.7.	-	-			nitan En		de la
NOTIF.						Name :	AHW	ED HALL	-		Na	me: /	10 2354	11	1
Sign :						Sigu	N	1 and 1			SL	gn :		1 all	


1				5	44 .1	and a	الغرب	- t -	1 m			-	-	daright :	-
2	-			anticharrow I	Care Nant	1	1	FREEMA	6.6.88		Francis		0 		-
-	-					Plate	e Loa	d Tes	l Re	esults				-	
Com	any Na	me	-		-	AL M	OSTA	FA					·	1.14	0
Comp	cation			524 +	500	-	Ta		524	+ 640	-	54	-	874	. 891
	te Date				-	28-	09 202	3	-		_		-	~	-
	er leve		-		SU	B BAI	LLAST	+0.00			_				
	_	MENO	AND	TEST	PROC	EDUR	11.				_				
-	-		_					-	-			-	-		-
The die	motor D	ni iha pia	ien je Ginu	neality 0.3	0 m Tari	nery Enn	ne graine	di materi	al atto	plates with d	Slamator D + D	66 m and	P = 1 75	2 47 47 1 12	ned.
nd to appli ced is real	ed in 6 Li chos like	and increa	mots of g procest	equal size	e Unders egin Año	er Hiad, ih	d sing the m plate to oweight to	reforded	11151	APPL A LOAM	noticeable and id truck an evo	(+ 0 07 m availar of	en anticipation de la constante de la constante La constante de la constante de	I Aller P	ar 100 (10) 15/10 (10)
ler e	200mm						_		_		-	-			-
tilling.	Louit	1.000	-	TRUE	0.417	Pela	1.04		\$+0.1	4-18 5-11				19	
tugi No	Des	69	-	(MA)	-	in the	-	and a	-	-	4.7 01	A 15	0.315	8.866NT	8.Ì
6,000	0.0	0.000	0.00	20.00	20.00	-	0.000	8.000	-	O INHO	8.3 0	4.45	0.355		
1.000	2.1	0.707	0.01	19.04	19.97		0.020	0.010	-	0.025	8.54		0.60	0.17722	8.2
2.000	47.1	5.652	0.04	19.84	1975	-	0.420	0.258	-	0.345	Diami	3/10			
0.060	142	17.583	0.25	19.75	19.56		0.250	0.000	-	0.570	EN	16450	-		
5.000	53.3	23.315	0.23	19.11	1924		1 540	0.766		0.660	Ev,	251.82	-		1
6.000	80.5	30.073	0.42	19.04	10.01		0.000	11.930	-	0.795	Area Sector				
7.000	100.8	35.325	0.50	19.20	18.00	-	0.800	1.100	-	0.050			-	-	
1.000	33.4	17.663	0.25	19.20	19.01		0.740	0.970		0,855	P-D-WH	10	-		
9.000	20.7	8.831	0.12	15.31	19.10		0.899	0.900		8.795		_			
9 8 90	2.7	6.707	0.01	19.48	19.30		0.520	Q.7mi		0.610	-	-			
10.000	2.1	0.701	0.01	19.18	19.30	1.1	0.520	0.700	-	6.010		6,-171-	-		
11.000	12.1	3.652	0.08	19.44	19.76	_	8.540	0,749	-	0.050	e,		offent mus	a'nu	
12.000	34.2	11,301	0.16	19.53	15,20	-	0.870	0.999	-	0.735	p. Di	- trail in	and parent	Common Color	
13-800	52.3	17.663	0.25	19.28	10.13	-	0.720	0.870	-	0.795	0				nality 6
14.000	70.5	23,315		19.24	29,05	-	0.700	0.950	-	10.03.0					
15.000 celculate	89.8	29.672	0.42	10.36	19.00	LUDO DE			10.7 #						
CHICLARD	on an w	a de ain	distantly :					MIN/MIZ							
YE	-		11			0.07		1.420			1.01	-			
	1 1	-		-	1	-		-	-		-	-	-	-	-
	-	-		-			1.2	-	-						
144	-		-		-	10.1	-	1.1				-			_
		-	-	-	-							_	-	-	_
			1			11.1		-	1				-		-
	A	1			1.00	-	-	-		-					_
-		-	-		-		1.1	-	-1			_			
			-	-	-	10.11	-	1	-		1.1		÷	_	
	-	-	-	-	-	-		_	_	1	-	Tana	ullanti E.A.	einert	-
	Lab. Sp			1		-	Lah Bo	1.1.1.1		1	-	-	/ == HE		7=4
Names						Name:	AUM	ED HALL	EM		Na	me: /		Ensel	
River's						Sign :	1	1 tot	-		50	an.	1	144	ŝ.
Sign :							11	fiat	11				-		

1		1.1		inter-	he and		-			-1 -7		-		-	-
(hentr D)	in the second		D	nineine S	_	-		CENTRA		1.1	Contentine		Owner		74
-						Plate	2 Load	1 Tes	t Re	sults					
Compa	ny Na	nie				AL M	OSTAI	7A			1			12	~
	ation			524 +	500		To	-	524	+ 640		500	inter la constantina de	524	1.595
Tast	e Date					28-	09-2023	1	-		- '	-	-		-
	er level	_	_	-	SU	BBAI	LAST	+0.96	-		-				
		MENT	AND	TEST	_				-		-				
-	DOCTOR NO.	ATACALLA	2 HILLS	Lint.	Labe	L DUO	-		-				-		-
The dis	metor D	of the pla	te is gem	erally 0.3	m.For	ery coa	se graim	d maleri	al alto	places with d	lemoier D = D 6	0 m and	D=0.76	I m bro us	ed.
ioad is real	ched share	Unicading	i procedi I procedi	nguai sin um can b	, Under J ogin. Afte	r Ihal, ih	t slop the re pinia is rweight fo	related	11055	trps. A loade	neilceable end i d muck, an exc	a D.02 mi	núminute a roller u	g Merth sually sa	e mast
	100mm		-	-			_			_					
Loging	Let	5488	Shreniji	11611	Det 2	Dul i	Sen i	148-2	Set? 1	Arg.	-			- 65	41
Stage Mr.	8=	OKN_	APRIMA .	-	-	he	-	inn	intr.	-	10.7 m	6.35	6.973	0.35375	
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000	12.5 10.	615	6.62125	-	100
1.000	2.1	0.707	0.01	19.92	19.97	-	0.080	0.930		0.055	0.701	8.35	1.54389	6,78895	19.0
2.000	17.1	3.652	0.08	19.60	19.70	-	0.400	0.300	-	0.350	0.502	8.15	2.355	-	
1.000	31.2	17.863	0.16	19.75	19.43	_	0,750	0.570	-	0.690	[] (mm)	100	-	-	-
5.000	70.5	21 315	0.13	38.70	19.45	-	1.100	0.350		1.015	EN	228.24	-	-	
6.000	87.8	29.673	0.42	18.50	19,13	-	1,509	0.130	-	1.985	fire the state	1.8785	-		_
7,000	105.8	36,325	0.50	18.25	18.90	-	1.750	1.100	-	1.425	1944 (94 MI	alanasi.	1		
1.600	53.4	17 663	0.25	13.30	19.03		1.700	0.570	-	1,315	Detti	10			1
5.000	26.7	114.8	0.12	15.03	19.06		1.570	0.940		1.255			-		
9.000	21	0.707	0.01	16.62	12.11		1.300	D.890		1.125				1.1	
10.000	2.1	0.707	.0.01	18.6Z	19.11		1.380	0.890		1.135		Gedra-	D dar i	dr .	
41.000	171	5.652	0.00	顶口	19.10		1.590	0.900		1.145	5,	+ deform	alien med	Suing	
12,000	34.2	11301	D.IE	18 50	12.06		1.500	0.920		1.210	D+	- fisad by	crimini		
13,000	11.3	17.667	-	19,46	18.05	_	1.600	0.950		1.275	01	in pattless	nent histe		
34.000	78.5	23.315	-	18.30	10.03	-	1.700	0,970	-	1.335	.0	- diamet	its of this p	aitis, gene	mily 0.3
15.000	59.0	29.671	0.42	18.25	19.00	100	1.750	1.000	_	1.375					
is calcula		60.2× 10.5			n Ehe Kand	201		MN/M		-					
	- 1.0			1.1		0-3	1.1			1.1.1	L L L		8		
			-	1	-	11	-	1	-	111		-	-	-	-
	-	-	10	-	- 2-	-	++	-	-	1 1 1	1		-	-	-
	- 10	-		-	+ 1	17	-	-	-		1 1 1	-			-
	- 104		-	-	-			-	-	1.1	-	-	_		-
		-	-		1.1				-	-	5.4.0				-
	-	100	100	-	-	1		_	-1-		-1			_	_
			1.00	1.0	1-1	100	-1-1	1.4	1		1		_		-
	(60 -		-			1					n		-		
1	_	secialist.		1			Lab/E	ni fuitri e		1	1	Conte	ultiet Err	dinime.	_
Name	-		-			Name	1	EDHAL	ETA)	-	10	me . 7	A ante	L Re	10
(reality)						(Failer	all'	01	ine	-			1.000.00	E Res	
Sign;						Stewa	2/1	inter	1		SI	te :	1	1119	
							12	EFG	17.				1	Sec. 1	

dias	-	-	-	at raise a	1000		mak	-		5 3	12 mar	+istim.			
ITempe C	ans driant	-		Construction of	Consideration	-		ELVISA	LAN	-	Construction	1.1		-4-1-	
1.		-	-	_	-	Plat	e Loa	d Tres	t Re	stille	i' unrifi. mi	-	· here	-	740
_	any Na	ime	-		100	AL.M	OSTA	FA		Suita	-	-		-	
_	cation	-	-	524 +	500		To		524	+ 640	-	-	_		>
	te Date	the second se			1997	1.1	0-2023		964	+ 040	-	34	Sin .	524	-571
	er leve				SU	TH HA	11 467		-	_	-			-	~
_	EOUT	MEN	LAND	TEST	PROC	EDUB	Et.	Think	-		_				
The di	ameter D	of the ph	ANI IS DOG				-	-	-		_	-			
and in case		-	_	and and	d m t bl	herA cost	ttë graine	d materi	ai atso	pieles with	diameter D + D.	60 mi amil.	D = 0,787	-	ad
load is rea	ichied the	Minimacion	NUMBER OF	equal sign	. Under	Mach Nas	d siep the	artiinme	ril mag	of come to a	noticeable and				
_			a process	Sere can n	-on An	COLUMN D	te plate ta rendons te	reloader	in 5 a	lipt. A ines	noticeable and of truck, an exc	avaine im	B rollar b	Aller the	é maxi
	200 million		-			-		- nande	ar and mic	Jacz'		_	_		
Locia	Les	Load	- times-	Xibia	Tim 2	1944	50.1	Sec. 7 1	Lari. 3	Ast	-				
0.000	-		801142	-	-	ini.	-	-	-	20	12	-		<i>i</i> 4.	4
1 100	0.0	1.000	0.00	20.09	20.00		0.000	0.000		0.090	474	0.15	4.925	6.23186	0.2
2.000	17.1	11.707	0.01	19.60	19.67		0.246	0.130		0.165	1.TR.	8.15	871513	-	_
0.060	34.2	3.652	0.64	19.43	19.52	-	0.578	0.410		852.0	0.30	0.15	1.00	6.135	87
4.000	511	17.881	0.16	19.21	19.31	-	0.790	0.650		0.740	D (com)	100			-
5.000	70.5	73.315	0.12	19.07	19.21		0,910	0.790		0.860	Ety.	11.35	-		-
6.900	85.8	29.571	0.42	18.00	19.08	-	1.100	0,920	_	1.010	Ev.	533.54			-
7.000	106.8	35.325	0.50	18.60	16.80	-	1.190	1.010	-	1.100	Armi/Squi	A.m.		-	
1.000	53.4	47 663	0.25	18.65	11.01	-	1,490	1.200	-	1.500				-	
9.000	26.7		112	16.81	18.89	-	1.190	1.170	-	1.200	Everena	1.87	-		
1.000	2.1	0707	16.01	18.95	18.97	-	1.010	1.020	-	1.150					
10.000	2.1	0.701	6.01	18.95	18.97		1.056	1.030	-	1.040	-		-	-	
11.000	17.1	528.6	0.08	18.91	38.94		1.090	1.060	-	1.075	6	* datayou	_	1.000	
12.000	342	11.304	9.15	18.21	14.92	-	1.179	1.080		4.129	17,-	Alload in		and.	
33.000	53.3	17 663		18.74	38.88	-	1.250	3.120		1.190	01			-	
15.000	78.5	21.313	-	18.69	18.85	_	1.520	1.159		1.215	ð			ante, gente	my a.
	85.8	26.673	8.42	18.62	18.82		1.380	1.140		1.255					
cecuteo	(A) 40 40	0.7+64	Damily D	iken from	the load	mpan be	timerry D.3	17. max 1819	88.7.0	Phil I					
	10.1		1.64			14	1	MN/M2							
								17					•		~
14	-		-	-				-	-		-	-		_	_
4.4	×	2	-	+ + +	-	-	-	-	1	1.17	1.1			_	
44			1	1.1	11	1.1	1.1		1	1.1.4					
			-	Th	1.1	21				CL.				-	-
				1.0	11.1		-	1	1	1.1.1					-
34		-	_	1	11	-		-	-		-	-	-	_	_
6.0	-	-	-	10		-	-	-	-		-				_
	-			1.7						1	111-1-				
	Lah. Spe	cialist	-	1		-	Lik Be	-	-	1	-	-	-	Real Providence	-
Name :		-				New		ED HALE	THE	-	-		diam En	FRA	3-1
						Name	2	01	DO.		Ne	ine; /	12.110		77
Sign :						Sign :	1	100 m			5	gei		1:215	
						1	X	1.	Υ.,						
							1.00	1000	- 1 . Ma						

Scanned by CamScanner

-	XX	1		-	
Press Freeshart	Canada In Canadiana	13	NEPAL LAR	Castoria	
	Pl	ate Load	Test Resul	ls	
Company Name	AL	MOSTAF/			
Location	524 + G10	To	524 + 70	10	Tame Mile-194
Taste Date	2	8-09-2023			0
Layer level	SUB B				
FOUPMENT	AND TEST PROCED	IRE : .			

This diameter D of the plain it generally 0.30 m. For very course grained material also planes with diameter D = 0.40 m and D = 0.711 m and

The load is explired in 8 load increments of equal size. Under such load size the settlement must come to 4 noticeable and to 0.02 a load is reached the unloading procedum can begin. Mur that, the plate is reloaded in 5 steps. A loaded murs, an exceeder or counterweight for the hydrivatic jack a or a rollin county serve as

Louisval	Land	Lond	Seni	ERM F	THILE	-Biai 3	50.1	See. 3	540.2	Art
Rage No.	Bar	- 84	MININA	-	- 100	-	interio.	-	-	-
0.000	0.0	0.000	0.00	20.00	20.00	1	0.000	0.000		6,00
1.000	2.3	0.707	0.01	18.95	19.95	-	0.040	0.050	1.1	0.04
2.000	17.1	5.652	0.08)9.90	13.64	_	0.100	0.360	11-1	0.23
0.040	34.2	11.394	0.16	18.80	18.32		0.200	0.680		0.44
4.000	\$3.2	17.663	0.25	18.75	18.67		0.250	0.930		0.55
5.006	79.5	21.315	0.35	19,70	18.80		0.100	1.200		0.75
000.0	89.8	25.573	9.42	18.81	18.80		0.390	1.400		0.89
7,000	106.9	13.375	0.50	19.50	18.43		0.500	1.570		1.03
8.000	\$2.4	17.662	0.25	19.61	18.58		0,370	3.420	1.1	6.83
9.000	26.7	8.833	012	19.68	10.71		0.320	1.290		0.80
9.000	2.1	0.707	0.01	19.72	14.95		0.290	1.020		8.65
10,000	2.5	0.707	0.03	19.72	18.08	1	0.250	1.020	1.00	0.65
11.000	17.1	5.652	9.05	19.69	18.91	1	0.319	1.070		9,69
12.000	24.2	11.104	0.16	12.64	18-81	1	0.360	1.190		9.77
13.000	533	17.963	0.25	19.60	1873	1	9.400	1.270		0.83
14.000	10.5	23,315	0.33	19.57	18.59	1.00	0.430	1,410		0.97
15.000	85.8	25.813	0.42	19,55	28.45		0.470	1.559		1.01

			2.0	- 14
87	1.15	4.272.9	1	
150,	815	4 12 873	+ 1141)	
8.74,	# 25	3.84	1.1.1	
0.3m	210	\$73	8.21	42
D (ann)	366			-
Bry I	125-64			-
85	214.25			
inte 1 Time of	a syntax		-	-

Brat-i	173	
_		

l

0	8.+071- D: Ar / At
۴.,	+ detroyenter much its
Oh.	+ load assessed
a.	-

1.0	1	14	-10	MN/042			2
	-		-				_
		in the second se	4	a land			_
			F-st Co		1		-
	Lah Specialist			(ab. Engineer		Constitute Exposes	

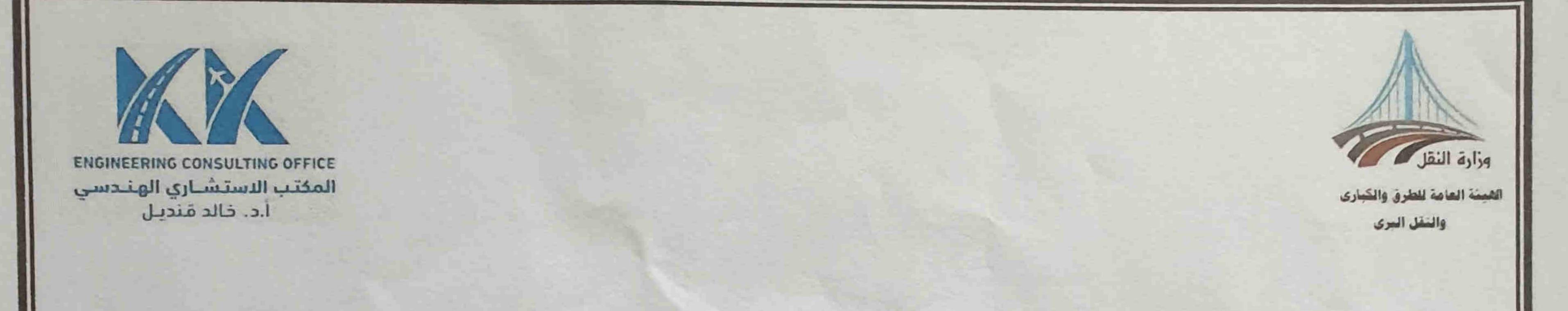
7

International product of the second s	Charles	Ce form	-		Contraria	Convellage			CDITU	_			-	- mark		
Company Name AL MOSTAFA Location 524 + 640 To 524 + 760 Taste Date 1-10-202	-	-	-		-	-	Plat	elna		_	-	Canteria	*	-		9.44
Location 524 + 640 To 524 + 760 Tasie Date L10-2023 SUB BALLAST + 0.90 Layer level SUB BALLAST + 0.90 Endimmer 2 of the plate is generally 6.20 m. For very carre grande material alon poles with diamier 2 = 0.80 m and 2 - 8.20 m are sententiated in plate is signade material alon poles with diamier 2 = 0.80 m and 2 - 8.20 m are sententiated in mixading processus can begin. Whet thes, the plate is related on 5 adopts and alon poles with diamier 2 = 0.80 m and 2 - 8.20 m are sententiated in mixading processus can begin. Whet thes, the plate is related on 5 adopts and a full 0.000 moltimed is dong a mixading including three materials alon poles with diamier 2 = 0.80 m and 2 - 8.20 m are sententiated in mixading processus can begin. Whet thes, the plate is related on 5 adopts and a full 0.000 moltimed is dong a mixading including three materials along the plate is related on 5 adopts and a full 0.000 moltimed is dong a mixading including three materials along the plate is related on 5 adopts and a full 0.000 moltimed is dong a mixading including three materials along a mixading processus can begin. Whet thes, the plate is related on 5 adopts and a full 0.000 moltimed is dong a mixading processus can begin. Whet thes, the plate is related on 5 adopts and a full 0.000 moltimed is dong a mixading m	Com	nany N	ame	-	-	-	_	_		SI-IQ	esuits	-	-			
Taste Date 1:10-2023 Num Pairt 100 Layer level SUB BALLAST +0.90 NUM Num Pairt 100 KULLIPALENT AND TEST PROCEDURE: The domester ball the plate is a plane of the plate is the plate is a plane of the plate is the plate is a plane of the plate is the plate is a plane of the plate is the plate is a plane of the plate is the plate is the plate is a plane of the plate is the plate is a plane of the plate is the plate is a plane of the plate is the plate is a plane of the plate is the plate is a plane of the plate is the plate is a classed is a single. A kadde back is an excistence of a ratio county since a classe is a non-classe is a single reacting the plate is the plate is a kadde back is a maximum of the plate is the plate is a kadde back is a maximum of the plate is a plane of the plate is the plate is a kadde back is a maximum of the plate is a plate is plate is a plate is a plate				-	524	0.40	ALN		A	-		-	_	1.1	1	5
Layer level SUB BALLAST +0.90 KOLIDEMENT AND TEST PROCEDURE: The diameter <i>D</i> of the plate its generally (2.00 m. For very carst & grained material also plates with diameter <i>D</i> = 0.80 m and <i>D</i> = 0.704 m are used which also plate its generally (2.00 m. For very carst & grained material also plates with diameter <i>D</i> = 0.80 m and <i>D</i> = 0.704 m are used which also plate its generally (2.00 m. For very carst & grained material also plates with diameter <i>D</i> = 0.80 m and <i>D</i> = 0.704 m are used which also plate its generally (2.00 m. For very carst & grained material also plates with diameter <i>D</i> = 0.80 m and <i>D</i> = 0.704 m are used which also plate its generally (2.00 m. For very carst & grained material also plates with diameter <i>D</i> = 0.80 m and <i>D</i> = 0.704 m are used which also plate its generally (2.00 m. For very carst & grained material also plates with diameter <i>D</i> = 0.80 m and <i>D</i> = 0.704 m are used targe its also the diameter is also the diameter is also the diameter <i>D</i> = 0.000 m and the			_	-	364	peo -	-	-	_	524	+ 760	-	50	the contract of the second	\$34.	m
Object 2000 Colspan="2">Construct Colspan="2">Construct Colspan="2">Construct Colspan=2 Construct Colspan="2">Construct Colspan=2 Construct Colspan=2	_		-	-	-	-	_	and the second se			_	-			~	~
	-				-				+0,90	1		_				
an la la general di la local interenents of equal size. Under metri fado is pipe la solilizente in anoticable end (e 102 medianda in even en number ender la la di cua di una di una di una di metri. The pipe la relazada di si singe a Acaded tack, an encavelor di a tollor inventori di to encavelor di a tollor inventori di tollo di tolo di		15LULI	COLEN	ANI	TEST	PROC	FDU	SE								
an la la general di la local interenents of equal size. Under metri fado is pipe la solilizente in anoticable end (e 102 medianda in even en number ender la la di cua di una di una di una di metri. The pipe la relazada di si singe a Acaded tack, an encavelor di a tollor inventori di to encavelor di a tollor inventori di tollo di tolo di	The d	timeter 4	al the pt	alle ill ger	nervity 6.	is m For	very coa	rse grain	ed mater	tal alich	plates with	dameter D = 0	60 m and	D-874		
Lands Land Turns Dials Sear 5 Sear 5 Sear 5 Ann	load 15 m	ind to 6 in active the	oad incre i unicadin	ments of	ers and rela	a Destruction	er that th	d step the	sittlem reloade	d in Sa	si come in a		_	-		_
Section Section <t< td=""><td></td><td>1</td><td></td><td></td><td>-</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td></t<>		1			-	_						-	-			-
Same Same Same Same Same Same Same Same Same Same Same Same Same Same			-	-	Dist.r.	196)2	iDial 2.	SALT	Set	54 3	Ave			1.	1 41 1	-44
1.000 2.0 0.007 0.00 0.000 0.000 0.000 2.000 17.1 5.652 0.08 18.09 19.95 0.010 0.000 0.000 0.000 2.000 17.1 5.652 0.08 18.09 19.95 0.010 0.020 0.020 0.020 4.000 52.3 17.60 0.23 18.88 0.120 0.120 0.120 0.120 6.000 49.8 19.15 0.23 18.88 0.200 0.230 0.243 18.10 18.88 0.200 1.200 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.130 0.14 1.84 2.800 1.200 1.200 1.200 1.200 0.4183 0.200 0.200 0.203 1.200 1.200 1.17.65 0.125 0.200 0.200 0.200 0.200 1.200 1.200 1.270 0.200 0.200 0.203 0.200 0.203 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200			-		_		-	-	m	-		27.4	8.18	-		-
2.00 1.01 0.01 1.0.01 1.0.01 1.0.01 0.010 0.021 0.020 0.021 0.0225 0.020 0.025 0.020 0.023 0.021 0.023 0.0225 0.020 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.0235 0.0235 0.0235		1						0.000	0.000		0.000	43 r.		and the second second	0.18438	8.1
111 213 200 32.97 38.94 6.039 0.050 0.045		-			-		-	0.010	0.930		8.020	2.5%	10.55	84187		
4.000 5.22 17.601 6.28 18.80 0.220 0.120 0.120 5.000 70.5 6.33 18.75 15.74 0.280 0.220 0.190 6.006 47.8 28.75 0.47 19.55 19.80 0.280 0.270 0.265 7.000 106.6 35.15 0.30 19.74 0.280 0.225 0.265 7.000 16.6 35.15 0.30 19.75 19.84 0.440 0.365 0.425 9.000 26.7 4.031 19.76 19.84 19.70 0.390 0.225 9.000 24.1 10.707 0.01 19.76 19.85 0.220 0.150 0.185 10.000 21.3 17.85 0.25 19.84 0.350 0.285 0.285 0.270 0.185 10.000 21.3 17.85 0.25 19.84 0.350 0.350 0.285 0.285 0.285 0.285 0.270 0.235 6.250 0.370 0.235 6.250 0.370 0.235 6.250 0.370<		-					-				0.015	PoLO	0.15	11.24.501	0.12640	0.2
5.000 70.5 23.15 6.33 19.72 19.74 0.280 0.180 0.190 6.000 49.8 20.675 0.42 19.55 18.68 0.410 0.320 0.265 7.000 106.6 35.315 0.50 19.51 19.60 0.440 0.320 0.265 8.000 26.7 4.631 0.12 19.53 19.54 0.440 0.326 0.420 9.000 22.1 0.707 0.01 19.76 19.85 0.220 0.130 0.185 10.000 2.1 0.707 0.01 19.76 19.85 0.220 0.150 0.185 12.000 3.62 11.304 0.16 19.65 19.81 0.350 0.235 13.000 5.23 17.661 0.25 19.81 0.350 0.236 0.326 13.000 5.23 17.661 0.42 19.85 0.350 0.350 0.326 13.000 5.23 19.60 19.77 0.355 0.350 0.356 0.327 13.000 5.23 19.62 19.77 0.355 0.356 0.355 0.357 13.000 5.24.27 0.427 0.356 0.356 <td>1114</td> <td>-</td> <td></td> <td></td> <td>_</td> <td>in the second</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>D (mm)</td> <td>300</td> <td></td> <td>1.1</td> <td></td>	1114	-			_	in the second	-					D (mm)	300		1.1	
6.006 19.8 20.673 0.47 19.50 19.64 19.51 19.64 19.51 19.64 19.51 19.65 19.51 19.65 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 0.485 0.425 0.425 1.65 1.65 1.65 1.65 1.65 0.426 0.4270 0.425 0.425 0.425 0.425 0.426 0.4270 0.426 0.4270 0.426 0.4270 0.4270 0.425 0.4270 0.4270 0.425 0.4270 <		-				_	-	and the second second		-	-	E.e.	244.87	-	-	
7.000 106.6 35.125 0.50 185.5 15.00 0.400 0.400 0.465 8.000 52.4 17.805 6.25 18.51 15.80 0.400 0.400 0.440 9.000 26.7 6.611 6.12 19.64 15.71 0.300 0.226 0.225 9.000 2.1 0.707 0.01 19.78 19.85 0.220 0.150 0.185 10.000 17.1 3.632 0.00 19.76 19.85 0.350 0.235 12.000 34.2 11.304 0.15 19.85 0.350 0.220 0.155 13.000 53.3 17.661 0.25 19.85 0.350 0.235 13.000 53.3 17.661 0.55 19.77 0.350 0.290 14.001 70.5 23.317 0.435 0.350 0.360 0.370 14.001 70.5 23.31 19.50 19.77 0.350 0.390 0.370 14.001 75.2 23.31 0.435 19.77 0.350 0.390 0.370 14.001 75.2 19.41 19.52 19.77 0.350 0.390 0.370 14.001	5.000	_	-	-			-		_	-	-	-	111.28		1	
x.000 53.4 17.603 0.25 19.64 0.400 0.448 x.000 24.7 4.81 0.42 19.56 19.44 0.266 0.400 s.000 2.1 0.707 0.01 19.78 19.85 0.220 0.150 0.485 10.000 2.1 0.707 0.01 19.78 19.85 0.220 0.150 0.485 10.000 2.1 0.707 0.01 19.78 19.85 0.220 0.150 0.485 10.000 2.1 0.707 0.01 19.76 19.85 0.220 0.150 0.485 12000 2.1 10.707 0.01 19.77 19.85 0.350 0.385 0.2270 13.000 15.15 19.60 19.76 0.350 0.390 0.270 0.77 13.000 50.3 17.650 0.25 19.80 19.77 0.355 0.380 0.270 13.000 50.8 2.9473 0.42 18.45 19.61 0.550 0.385 13.000 50.8 2.9473 0.42 18.45 19.62 0.350 14.000 7.8 19.845 19.84 19.87 19.87 19.85 <	7.000					-	-	-		-	the second s	Arrs / Sg.m	-			
8.000 26.7 8.831 0.12 19.64 19.71 0.446 0.400 0.400 9.000 2.1 0.707 0.01 19.78 0.855 0.220 0.155 0.165 10.000 2.1 0.707 0.01 19.78 19.83 0.220 0.150 0.185 10.000 2.1 0.707 0.01 19.78 19.83 0.300 0.170 0.235 12.000 34.2 11.304 0.16 19.65 19.85 0.350 0.185 0.270 13.000 2.31 17.663 0.25 19.60 19.77 0.350 0.280 0.270 0.320 14.000 70.5 23.145 0.437 19.71 0.350 0.390 0.325 0.355 0.350 0.370 14.000 70.5 23.145 0.437 19.41 19.42 19.50 19.771 0.350 0.370 18/contrator d.e and d.e	8.000	52.4		-					-	-		1	-	_		
9.000 2.1 0.707 0.01 19.78 0.845 0.020 0.130 0.185 10.000 2.1 0.707 0.01 19.78 0.845 0.220 0.130 0.185 10.000 2.1 0.707 0.01 19.78 19.85 0.220 0.130 0.185 11.000 17.1 5.632 0.08 19.70 19.84 0.300 0.170 0.225 12.000 34.2 11.304 0.16 19.55 19.87 0.350 0.190 0.270 0.325 13.000 5.3 17.565 0.25 19.80 19.76 0.400 0.240 0.320 0.370 0.42 0.320 0.370 0.345 0.370 0.345 0.370 0.345 0.370 0.345 0.370 0.345 0.370 0.370 0.370 0.370 0.310 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370 <t< td=""><td>9.000</td><td>and the second second</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>. Extra</td><td>1.19</td><td>1.0</td><td></td><td></td></t<>	9.000	and the second second					-					. Extra	1.19	1.0		
10.000 2,1 0.707 0.01 19.76 19.85 0.220 0.150 0.185 11.000 17.1 5.652 0.08 19.70 19.84 0.300 0.170 0.235 0.185 12.000 3.42 11.304 6.16 19.65 19.84 0.300 0.170 0.235 0. 4.66 0.300 0.170 0.235 0. 4.66 0.300 0.170 0.235 0. 4.66 0.300 0.185 0.300 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.370 0.320 0.370 0.320 0.370 0.370 0.320 0.370 <	9.000	2.I	0 707		_		-		10000	-						
M1.090 17.1 3.633 0.08 19.70 19.83 0.300 0.170 0.235 12.000 3.42 11.30 0.16 19.65 19.81 0.350 0.190 0.270 13.000 51.3 17.663 0.25 19.81 0.350 0.190 0.270 0.320	10.000	2,1	0.707	0.01					-			-				
122000 34.2 11.304 6.16 19.65 19.81 0.350 0.196 0.270 0.4 0.4 0.320 0.4 0.4 0.320 0.4 0.4 0.320 0.4 0.4 0.320 0.4 0.4 0.320 0.4 0.4 0.320 0.4 0.4 0.320 0.4 0.4 0.320 0.4 0.4 0.4 0.320 0.4	11.000	17.1	5.632	10.08	19.70	19.81			-			-			the second se	
13 000 513 17.65 0.25 19.00 19.76 0.400 0.240 0.320 0	12.000	342	11.304	0.15	19.65	15.87	-		-	-					No.	
14.000 70.5 21.115 0.43 19.50 19.71 0.500 0.390 0.395 0.395 0.395 0.395 0 ####################################	13 000	513	17.663	0.25	19.60	19.76			_							
13,000 80.8 20,673 0.42 16,051 0.350 0.470 Editor/cloon dot and direction dot and dir	14.000	70.5	21315	0.43	19.50	19.71		0.500	the second se		_					
Edebuticion de end 2 ; ere lossaffy laber, iron the lost span behavelin it 2 vere and 0.7 dree. Image: I	15,000			0.42		10.01	1.1	0.550	0.190		0.010		- Contraction	er in eis p	ant days	my o.:
Lab: Speciality Lab: Speciality Lab: Speciality Lab: Speciality Lab: Engineer Name : N			1.4										_			1 1 1 1
Lab. Specialist Lab. Specialist Lab. Engineer Consortant Engineer Name :	10	-	-	-		-	11			-		Sec. 1		-		-
Lab. Specialist Lab. Engineer Consultant Engineer Name : N	17	-			-		1.11		_		-				_	
Lab: Specialist Lab: Engineer Occuration Engineer Name : Name : Name : Name : Name : Name : Name : Name :						-	-		-	~						
Lab: Specialist Lab: Engineer Consultant Engineer Name : Name : Name : Name : Name : Name : Name : Name :				-				-		-	1.00		_	-	-	
Name: Name: Address HALEEM Name: J. Antif J Antif J		_		_	-	-	_		-	-		-		_		
Name: Name: Adden HALEEM Name: J. Am F R-2+5	0	cato. Spec	Mild	-		1	-	Lab Eng	in ter i	1.2			Cerced	hant Eogo	ant.	
in Print	Came :						Name	AHME	O RALES	M		Nam		-		\$
Sign: Sign:	Sign :						Sign :	1	Sel	De l				4	auet	

1		1			-	Note:	M		4 -	Come.				• 1
- 10				E-YE AL	1.00		-						12 21	47
(home Crew	diam'	-	Sar	Inche Ce	_	21	-	NTRAL I		Geniumsy	2	-	-	hermalitan
-		-		_	_		_		Results		-			
Campan	_	16			_	ML MC	DSTAF/	_				_	2	2
Loca		-		524 + 1	140	_	Ta	5	24 + 760		Faire	_ 1	(sum	57
	Date	-	-	_	-	_	9.2023			-				
	level	1		- D. D. C. C.	_	_	LAST -	0.90		_				
E	onte	MENT	AND T	FEST	ROCI	PUR	Ro-					_		1
The day	eler D e	i ihn pian	n in gene	aty 0.30	m. Fer v	rry coart	te grained	material	also plates with	diamone D + 0.00	mand /	- 0 767	m are Line	
	-	_	-	_	_					s noticeable and (A 44	-		
ed is react	hed ites i	micading	rocudu	The start for	min. After	COMP. THE	e plata in r	alonded.	In S steps, A load	did mick, an exca	value or a	nolier 43	Suntry war	maaimaani (9-25
r+ 3	DGmm	-		-	_	COMPLEX	will ght for	ine idu	raulite juck		-	-	_	_
anting	Leni	Lest	Similar	These 1	mae I	-	-	1.2.4	1 AM 1	-		-		_
m'm	An	NN I	MINAR	~		and a	-	Mit 1	tes 1 tes	87 4	4.15		35	60
0.006	0.0	0.000	0.00	20.00	20.00	-	0.000	0.010	0.000	63 4	815	0.94042	9.35562	80.
000.	2,1	0.707	0.01	19.98	19.97	-	0.020	0.030	0.025	67.	0.15	1.09187		-
2.008	17.1	5.652	15,00	19.75	19.50		0.230	11.500	8,375	0.30,	218	1.95	C LOLIN	02
0.680	342	11.301	0.16	19.62	1513		0.100	0.850	0.615	D (mm)	ent	1		
4.000	53.3	TIBUS	0.25	18.52	18.92	_	0.480	3 080	0.760	ENj	175.54	1		
5.000	70.5	21.715	0.33	19.43	1840		0.550	1.400	0.075	Exp	267.71			
6.000	89.8	20.623	0.42	19.37	18.46		0.020	1.540	1.0985	Ame 1 Sq.	007465	1		
7.000	106,A	35.325	0.50	19:20	18:50	1	0.800	1.760		-	_	_		
9.000	53.4	17.663	0,25	10,29	18.33	-	8,710	1.670	-	Pitri	1.00	1	1	1
9,000	267	0.707	0.12	19.43	48.37	-	0.570	1.030	1.00					
38,000	2.1	0.707	0.01	19,51	18.59	-	0 470	1.410	-	-		-		-
11.000	47.1	5 652	9.08	19.52		-	0.470	1.410			£,-8.15	-	141	1
12.000	342	11.204	-	19.48		-	0.520		-	E.		Increment		
13.000	53.4	17.663	-	19.44		-	0.500	-		-		amon in	e	
14,000	70.5	21.31	0 33	-	-	-	0.600	-	-	-				manually to 30 in
15.000	69.8						0.680		6 1.250	-			a france 2	
s palaciti	07 12 1	nd 2 + M	e cercaty	Nikers Pis	in the lo	ed span	Dativeiri D	1 vent	and 0.7 m	-				
								MN/N	42					
	-	-	-			14	-	-	0.	- Def	_		-	_
	-			iii pa						444		14		-
	-		-	-	-	-				-	-	-	_	_
1	45		-			-	111	12	1111			-	_	-
1.1	h		-	-	-		11	-			-	-	-	
	-			-	- 2	-	-	1.11	-	-			-	-
	8 -		-	-	-		1.		1 miles					-
	-	-	-		-			-	-		_	-	-	
	(m)				1.10	_	-	1	1.4		_			
	Lah.3	Specialisi					Lab	England	-	-		Cernoliti	ni Engunet	
Name :						N		1100	VALEEM	_	_		sef 1	2-3-6
								10	Z Jie		Name :	1.	ner j	art
Sign ;						51	en: /	M	No.		Sign :		his	43
						2	112	1	No.					
							15 11	4						

21

Scanned by CamScanner


100.0	a	-		minuted (-	apr.	CENTRA	_	T	Cantartin	-	11-11-1	3	۲
Owne	and at	-		successive of	- Ministration	-	1			lin	President of	-			~
-	-	-	_	_	_	-	e Loa		a Ki	suits	-	-	1		
Comp	any Na	me	_		-	AL M	OSTA	FA.			-	-	-	1 10	-
Lo	cation	_		524 +	640	_	To		524	+ 760	-	34		1 (824	-695
Tas	ste Date					_	0-2023		_		_				
Lay	er leve	-			SU	B BAI	LLAST	+0.90		-	_				
	EQUIP	MENT	AND	TEST	PROC	EDUR	E:-	1.1							
The di	under D	of the pla	til is gen	milyan	om For	wrycom	rse graine	d malert	ni elso	planes with	diamoter D = 0	tina m 08	I7 = 0.76	t in one lin	bed
ined is app	lind in 8 lo school the	uniciaciim	g proceed	equal size	n, Under e egin, Aftr	er that, if	i sing the replace is ready to	reinadim	5 m 5 s	Sope. A load	noticeable end ind muck, an exc	(= 0.02 m availat or	a roller s). After the	e ma Na P
Ser =	300mm	1								-	-				
Looks	-	4.000	form.	2	1949.2	1944 3	Sell, 1	Sen 2	Ser. i	Atg.				45	50
fragi No.		8.5	-	-	-	-	-	-	-	-	-0.7 e,	0.15	1.01582	0.34667	8.2
0.006	8.6	0.900	0.00	20.96	10.00	_	0.000	0.000		000.0	6.3.0.	0.15	0.54875	_	_
1.0(0	2.1	0.707	0.01	19.85	15.90	_	0.150	0100	-	251.0	8.7e,	0.25	1.08036	# 14855	8.2
2.000	31.1	5452	0.05	15.63	1960	-	0.370	0.409	-	0.365	4.30,	0.15	0.02		-
0.040	312	(1.50)	0.14	15.41	18.40	-	0.590	0.600	-	0.595	D (mm)	906	-	-	-
4.500	313	17.643	0.75	19.72	19.21		0.780	0.790		0.785	Ev,	125.72		-	-
5.000	10.5	25.515	6.33	10.10	19.04	-	0.900	0.960		0.930	Eve Ame i Seem		-	-	_
7 000	106.8	35.325	0.50	16.90	28.80	-	1.100	1.200		1.150	Aug 1 Septem	E.erena			
1,000	53.0	17.661	0.25	12.94	18.85	-	1.068	1.150		1.105	242/241	2.16		-	
8.000	26.7	8.835	0.12	19.04	16.96	-	0.960	1.100		1.030	114010	1.11	-		
\$.000	2.1	0.701	0.61	19.17	15.41		0.830	0 840	-	0.860					
10.000	2.1	11 787	19.471	19.17	19.11		0.810	0.010		0.800		475 -	U- At J	31	
11,000	47.1	4.612	0.04	18 15	19 07		0.850	0.930		0.890	π,	· delorm	ation mod	Live	
12,000	142	11.104	0.16	18.13	18.97		D.870	1.030		0.950	p.,	« lund im	-		
13.000	113	17.663	0.25	19.00	14.95		0.920	1.070	- 1	268.0	17.4	- settlers	eri incren	Hold .	
14.000	70.5	25.815	-	19.00	18.87	-	1.000	1.130		1,005	IJ	n diamina	it of the p	ule, genes	419 D.
15.000	44.4	25.672		18.97	18.81		1.040	1.190		1.135					
Fig CarCold	they do at		formally 6	stan from	Bie ited	ayard a				(mer -					
	24					-		MN/M2				10			
	-				-				-			-			-
	-		-	2.2	1.1			-	_			_			
	-		_	-	12	-					1111				4
	2.2									1.0	_	-			
	-		-						-			-			-
					-		-			-	-	-	-		-
	-			-	-	-	-	_	-		-		-		-
	-	_	_		-							_	_		_
_	Lats Sp	-ciality		1		-	Lak Be	alianer:	-			Lonn	irani Eogli	1111	-
Name						Nami :		EDHALE	TM		Nam	7	anef	RAJ.	k.
							X	84	F		1940	. /	1	wet	
Signt						Sign:	141	~			5łg	1 × 1	15	12	

-	KK	J.		man-		1
Constant International Interna	Contraine Domitiani	1 00	MTRALLAD	Castantar	0	Funt
	PI	ate Load	Test Results			
Company Name	AL	MOSTAFA			-	~
Location	524 + 640	To	524 + 760		Sieles	\$24-645
Taste Date		1-10-2023		-		0
Laver level	SUB I	BALLAST +	0.90			
EQUIPMENT	AND TEST PROCED	URE :-				

The diameter D of the plate is generally 1.10 m. For very coarse grained insterial also plates with diameter D = 0.81 m and D = 0.751 m are used

The load is applied in 8 load increments of equal size. Under each load step the settlement must come to a reliceable and (< 0.02 meanmaile). After the meanmaile load in reached the Uniceding procedure can begin. After that, the plan is reloaded in 5 steps. A loaded truck, an escave or a roller usually serve as counterweight for the hydraufic jack.

Landing .		-	-	_	_		_	_	_		1.10	_	-			-
	Land.	Land	Same	real t	2Net 2	Dul 1	100.1	64.1	50 3	ATE.	1		_		AV I	
Sign for	-	80	NNM		1	-	-	1	-	-		8.T #1	0.35	·0.735	8 3225	
11.000	0.0	0.900	0,00	20.00	50.00	-	6.006	0.000	1.1	8,009		134	015	84123	1.24	1.0
1.895	2.1	0.707	0.01	19.85	18.95		8,050	0,050	1.1	0.859		8.7eg	0.15	9.84278	0.16279	
2,000	17.1	5.652	0.08	18.70	19.86	į	0.300	6.140		0.220	1	1.34	815	878		1
0.090	34.2	13.304	0_16	19.80	18.52	1.1	0.400	0.490		0.440	1	D (mini)	304			
4.000	53.3	17,863	9.25	19.57	19.30		0.410	0 700		0.565		Er,	13842			
5.090	70.5	23.315	0.12	19.15	39.70		0.650	0.800		0.725	1	En.	276.45		_	
8.000	89.8	28.873	9.42	19.25	19.07		0.750	0.950		1.840		envil Squar	-			-
7.000	106.8	35 225	0.50	19.15	18.53		0.050	1.070		0.950		-		-		
1.000	53.4	17851	0.25	19.16	16.50	-	0.620	1.020	1	8.920	ſ	E-SE-I	1.00			
5 000	26.7	8.831	0.17	19.21	18.04		0.790	0.940	-	0.875					-	
9 040	1.5	a m/	8,01	19.33	19.15		0.570	0.850		D.760						
10.007	2.1	0.707	0.01	19.23	19.15		8.670	0.650	1	0.760	T	1	F. + 875	D 30	(da	
11.000	17.1	5652	0.00	15.32	13.14	-	0.680	0.860	-	0.770		π.		where man		
12,000	342	11.304	-	19.25	15.07	-	8.740	0.930	-	0.835	1	De		clement		
13.000	53.3	17.843	-	18.11	15.01	-	0.750	0.050	-	028.0		D.		and lease	-	
14.000	70.5	23.315		18.18	18.95	-	8.820	1.050		0.915				-		-
Sector.	13.5	25.671		19.15	18.51	-	-	_	-							
15.000 I Calculuty	-			and the second		agum De		L090		0.570	-					
i calcularo +	-			and the second		apan de	Carrowy G 3	σ		_	-	_		-		
4 CANCULARY 44	-		usually s	and the second	i ba kat	-	Carrowy G 3	σ		_	-	_				
4 CANCULARY 44	-	N.J.134	usually s	and the second	i ba ket	epuer, Da	Carrowy G 3	σ		_	-					
4 CANCULARY 44	-	N.J.134	usually s	and the second	i ba kat	-	Carrowy G 3	σ		_	-					
4 CANCULARY 44	-	N.J.134	usually s	and the second	i ba kat	-	Carrowy G 3	σ		_						
4 CANCULARY 44	-	¥.41199	usually s	and the second	i ba kat	-	Carrowy G 3	AN AN		_				uitam Eng	anert -	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		¥.41199	usually s	and the second	i ba kat	-	Lat Ex			_			Cuert			1-6
Name ;		¥.41199	usually s	and the second	i ba kat		Lat Ex	Cierr ED HAL		_		Na	Curr mei : /	witam Enu		1-6
4 CANCULARY 44		¥.41199	usually s	and the second	i ba kat	-	Lat Ex	Cierr ED HAL	EEM	_		Na	Curry	witam Enu		
Name ;		¥.41199	usually s	and the second	i ba kat		Lat Er	Cierr ED HAL	EEM	_		Na	Curr mei : /	witam Enu		1-6
Name ;		¥.41199	usually s	and the second	i ba kat		Lat Er	Cierr ED HAL	EEM	_		Na	Curr mei : /	witam Enu		

مشروع: أعمال الجسر الترابى والاعمال الصناعية لمشروع القطار الكهربائى السريع (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح محضر تحديد مسافة نقل (الأتربة)

أنه في يوم الأحد الموافق 2023/9/10 وبناءاً على طلب شركة المصطفى للمقاولات لتحديد مسافة نقل الأتربة من محجر (المصرية) على طريق وادي النطرون العلمين للمشروع المذكور أعلاه تم زيارة المحجر من قبل :

1. المهندس / حسن عبدالسلام سليمان مهندس جيولوجي مكتب د خالد قنديل 2. المهندس / مصطفى محمد ثابت مدير مشروع شركة المصطفى للمقاولات

وتبين أن المحجر على مسافة 302.5 كم من منتصف قطاع شركة المصطفى للمقاولات

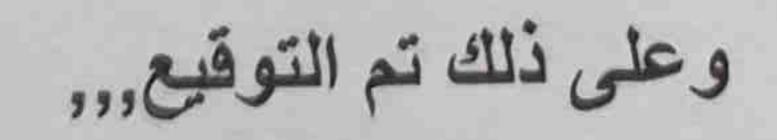
إحداثي المحجر: E 29° 45' 06.7" N 30° 33' 19.7"

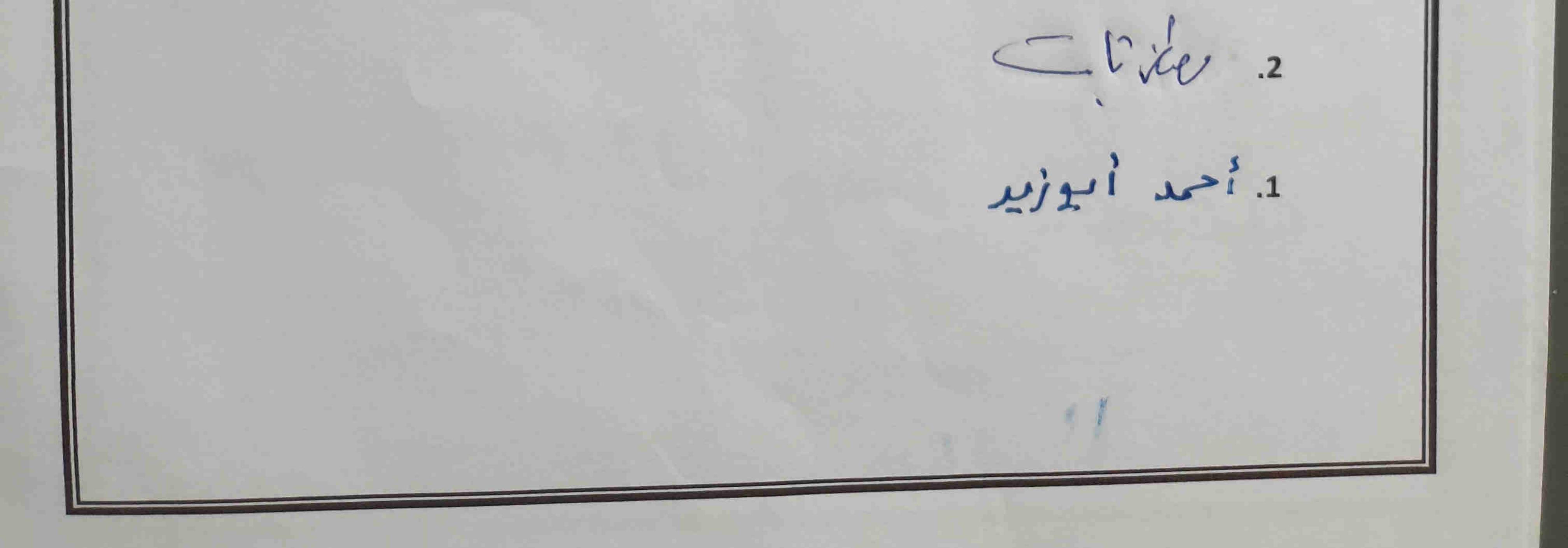
وعلى ذلك تم التوقيع,,,

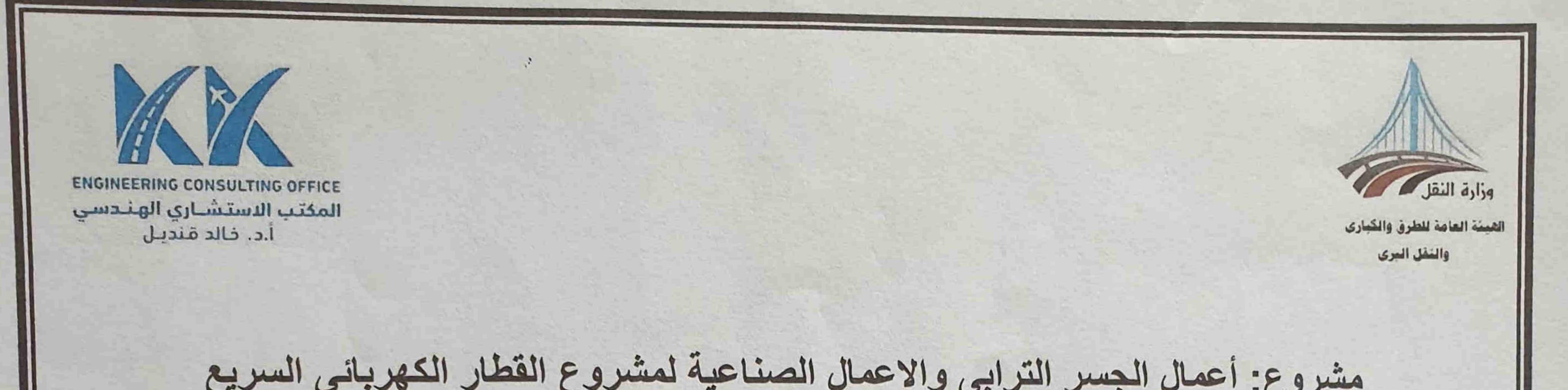
in any my lung and

مشروع: أعمال الجسر الترابى والاعمال الصناعية لمشروع القطار الكهربائى السريع (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح

محضر تحديد مسافة نقل (طبقة التأسيس)


أنه في يوم الأحد الموافق 2023/9/10 وبناءاً على طلب شركة المصطفى للمقاولات لتحديد مسافة نقل طبقة التأسيس للمشروع المذكور أعلاه تم زيارة الكسارة من قبل:

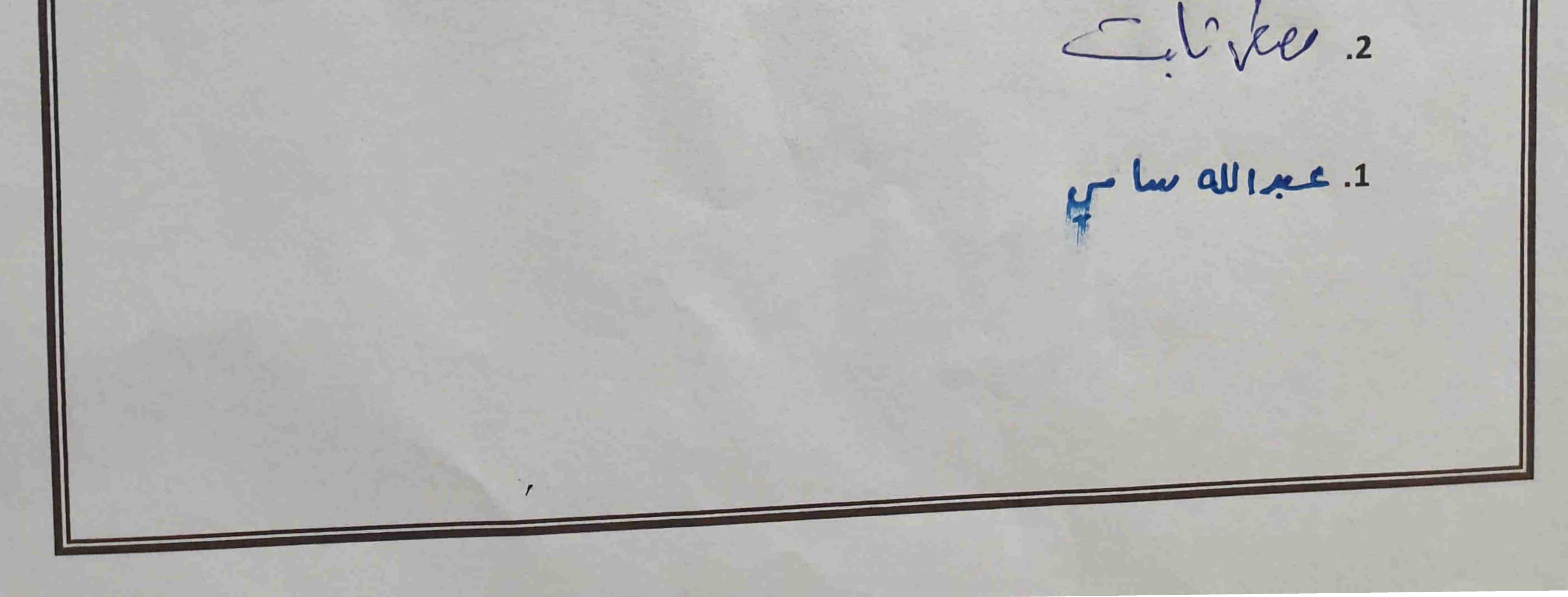

1. المهندس / أحمد أبوزيد مهندس جيولوجي مكتب د خالد قنديل 2. المهندس / مصطفى محمد ثابت مدير مشروع شركة المصطفى للمقاولات


وتبين أن الكسارة على مسافة 83 كم من منتصف قطاع شركة المصطفى للمقاولات

E 29° 42' 28" N 36° 38' 33"

إحداثى الكسارة:

مشروع: أعمال الجسر الترابى والاعمال الصناعية لمشروع القطار الكهربائى السريع (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح محضر تحديد مسافة نقل (طبقة الأساس)


أنه في يوم الأحد الموافق 2023/9/10 وبناءاً على طلب شركة المصطفى للمقاولات لتحديد مسافة نقل طبقة الأساس للمشروع المذكور أعلاه تم زيارة الكسارة من قبل:

1. المهندس / عبدالله سامي مهندس جيولوجي مكتب د خالد قنديل 2. المهندس / مصطفى محمد ثابت مدير مشروع شركة المصطفى للمقاولات

وتبين أن الكسارة على مسافة 233 كم من منتصف قطاع شركة المصطفى للمقاولات

إحداثى الكسارة: E 29° 42' 28" N 36° 38' 33"

وعلى ذلك تم التوقيع,,,

