

المنطقة الخامسة - (غرب الدلتا)

السيد المهندس / رئيس قطاع التنفيذ والمناطق

تحية طيبة. وبعد،،

بالإحالة إلى مشروع القطار الكهربائي فائق السرعه (برج العرب - الحمام) (القطاع الخامس أ) نتشرف بأن نرفق لسيادتكم طيه المقايسة المعدلة بعد المفاوضة بتاريخ 18-12-2023 تنفيذ المكتب الدولي الحديث للمقاولات والتوريدات

القيمة المالية	المقايسة	نهاية القطاع (كم)	بدایة القطاع (کم)	اسم الشركة	مسلسل
10.516.520 مليون جنيه	إستكمال تشكيل الجسر الترابي (2)	336+480	335+480	المكتب الدولي الحديث للمقاولات والتوريدات	1

برجاء من سيادتكم التفضل بالأحاطه والتوجيه بالازم

وتفضلوا بقبول فائق الأحترام والتقدير،،،

2

رنيس الإدارة المركزية

المنطقة الخامسة- غربيم الدلتا

عميد مهندس/

"هاني محمد محمود طه "

مشروع القطار الكهربائي فائق السرعة قطاع (برج العرب-العلمين) المقايسة المعدلة بعد المفاوضة بتاريخ ١٨-١٢-٢٠ لبنود الأعمال شركة المكتب الدولي الحديث للمقاولات العامة والتوريدات القطاع من المحطة ٤٨٠ ٣٣٥ إلى ٤٨٠ ٣٣٦ استكمال أعمال تشكيل الجسر الترابي (٢)

الاجمالي	الفنة	الكمية	الوحدة	بيان الأعمال	م البند
				اعمال الردم	٣
۳,۲۹۳,۰۸۲	1 • 1 , £	TT1A.,T9T	T _P	بالمتر المكعب اعمال توريد وتشغيل اتربة صالحة للردم و مطابقة للمواصفات والتشغيل باستخدام المعدات بسمك لا يزيد عن ٥٠ سم حتى منسوب ٢ متر و بسمك لا يزيد عن ٥٠ سم لاستكمال المنسوب التصميمي لتشكيل الجسر والاكتاف (نسية تحمل كاليفورنيا لا تقل عن ١٥%) و رشها بالمياه الاصولية للوصول الى نسبة الرطوبة المطلوبة والدمك الجيد بالهراسات للوصول الى اقصى كثافة جافة (95% من الكثافة الجافة القصوى) ويتم التنفيذ طبقا للمناسيب التصميمية والقطاعات العرضية النموذجية والرسومات التفصيلية المعتمدة والبند بجميع مشتملاتة طبقا لاصول الصناعة ومواصفات الهينة العامة للطرق و الكبارى وتعليمات المهندس المشرف. - مسافة النقل ٢ كم - مسافة النقل ٢ كم بالزيادة او النقصان - السعر يشمل عمل تشوينات وتخليط واختبارات ونقل لموقع العمل حتى مسافة ٢ كم - السعر يشمل قيمة المادة المحجرية	1-6
0,101,179	777,5.	10451,175	م٣	علاوة مسافة نقل للترية لمسافة ١٥٣,٦ كم =١٥١,١٥١،٠١ جنيه	
91.,000	107,5.	7577,009	م۲	علاوة مسافة نقل للرمل لمسافة ١٠٣٦٦ كم =١٠١٠١ *٥١، =٢،٢٥١ جنيه	
111,711	١٣	TT1A., Y9T	م۳	علاوة تحصيل رسوم الكارتة والموازين طبقا للانحة الشركة الوطنية	
1.,017,07.	į.			الإجمالي	

أدّ مُلْإِين و خمسمانة وستة عشر ألفأ وخمسمانة وعشرون جنيه مصري فقط لاغير)

مدير المشروع المقاول

مدير المشروع الهينة

م / مارجریت مجدی

مدير مشروعات الهينة R

م/ محمد حسنى فياض

رنيس الادارة المركزية

منطقة غرب الدلتا

الاسكندرية - مرسى مط

عميد مهندس /

" هاني محمد محمود طه "

محضر استلام موقع

مشروع: أعمال الجسر الترابي للخط الأول للقطار الكهربائي السريع قطاع (العين السخنة العاصمة الإدارية العلمين مطروح) قطاع (برج العرب العلمين) لتنفيذ المسافة من الكم 480+335 إلى الكم 480+336 بطول 1 كم (إستكمال تشكيل الجسور)

تنفيذ: المكتب الدولي الحديث للمقاولات العامة. إشراف: المنطقة الخامسة _ منطقة غرب الدلتا طبقاً للعقد رقم (2024/2023/979) بتاريخ 2024/1/11 إنه في يوم الأربعاء الموافق 2024/01/17 اجتمع كل من:-

1- السيد المهندس/محمد حسني فياض

2- السيدة المهندسة/مارجريت مجدي زاخر

3- السيد المهندس/ أحمد عبدالجليل

مدير عام مشروعات - الهيئة العامة للطرق والكباري

مدير مشروع - الهيئة العامة للطرق والكبارى

مدير مشروع -المكتب الدولي الحديث للمقاولات العامة

وذلك للمرور على مسار العملية المذكورة عاليه لاستلام الموقع: وقد تبين أن الموقع خالياً من العوائق الظاهرية ويسمح بالبدء في التنفيذ وبناء عليه يعتبر تاريخ 2024/01/17 هو تاريخ استلام الموقع وبدء الأعمال بالعملية واقفل المحضر على ذلك ووقع الحضور

التوقيعات

3- الحاجة الحال

-2 −2

رئيس الإدارة الركزية منطقة غرب الدلتا

الاسكندرية - مرسكي مطروح عميد . مهندس / مهندس ا

"هاني محمد محمود طه"

مشروع: أعمال الجسر الترابي للخط الأول للقطار الكهربائي السريع قطاع (العين السخنة-العاصمة الإدارية-العلمين-مطروح) قطاع (برج العرب / العلمين) لتنفيذ المسافة من الكم 336+480 إلى الكم 380+336 بطول 1 كم (إستكمال تشكيل الجسور)

رقم البندو بيانه: (3-1) بالمتر المكعب اعمال توريد وتشغيل اتربة صالحة للردم و مطابقة للمواصفات والتشغيل باستخدام المعدات بسمك لا يزيد عن 50 سم حتى منسوب 2 متر و بسمك لا يزيد عن 25 سم لاستكمال المنسوب التصميعي لتشكيل الجسر والاكتاف (نسية تحمل كاليفورنيا لا تقل عن 15%) و رشها بالمياه الاصولية للوصول الى نسبة الرطوية المطلوبة والدمك الجيد بالهراسات للوصول الى اقصى كثافة جافة (95 من الكثافة الجافة القصوى) ويتم التنفيذ طبقا للمناسيب التصميمية والقطاعات العرضية النموذجية والرسومات التقصيلية المعتمدة والبند بجميع مشتملاتة طبقا لاصول الصناعة ومواصفات الهيئة العامة للطرق و الكبارى وتعليمات المهندس المشرف.

ه ورسيد بجميع مسمعرته صبع لاصول الصناعة ومواصفات الهيئة العامة للطرق و الكبارة - مسافة النقل 2 كم - يتم احتساب علاوة 1.4جنيه لكل 1 كم بالزيادة او النقصان - السعر يشمل عمل تشوينات وتخليط واختبارات ونقل لموقع العمل حتى مسافة 2 كم - السعر يشمل - السعر يشمل قيمة المادة المحجرية

تـنفيـذ :المكتب الدولي الحديث للمقاولات العامة

3 ₆ 32180.293 :	الكمية بالمقابسة
JE 32100.233.	

0.00

مقدار العمل السابق:

الكمية	الابعاد (متر)		يلومتري	الموقع الك	(60) SES	بيان الأعمال		
	مساحة المقطع	طول	الى	من	طلب القحص	بيان الحقايسة		
60.00	1.50	40	336+020	335+980	F-01			
60.00	1.50	40	336+060	336+020	F-02			
30.00	1.50	20	336+080	336+060	F-03			
90.00	1.50	60	336+140	336+080	F-04	-		
30.00	1.50	20	336+160	336+140	F-05	-		
30.00	1.50	20	336+180	336+160	F-06			
30.00	1.50	20	336+200	336+180	F-07	-		
60.00	1.50	40	336+240	336+200	F-08	بالمتر المكعب اعمال توريد وتشغيل اتربة		
30.00	1.50	20	336+260	336+240	F-09	صالحة للردم و مطابقة للمواصفات والتشغيل باستخدام المعدات بسمك لا يزيد		
90.00	1.50	60	336+320	336+260	F-10	والتشغيل باستخدام المعدات بسمت لا يريد عن 50 سم حتى منسوب 2 متر و بسمك لا		
90.00	1.50	60	336+380	336+320	F-11	يزيد عن 25 سم لاستكمال المنسوب		
60.00	1.50	40	336+420	336+380	F-12	التصميمي لتشكيل الجسر والاكتاف (نسية		
30.00	1.50	20	335+920	335+900	F-13	تحمل كاليفورنيا لا تقل عن 15%) و رشها		
30.00	1.50	20	335+940	335+920	F-14	بالمياه الاصولية للوصول الى نسبة الرطوية المطلوبة والدمك الجيد بالهراسات للوصول		
30.00	1.50	20	335+960	335+940	F-15	الى اقصى كثافة جافة (95 % من الكثافة		
30.00	1.50	20	335+980	335+960	F-16	الجافة القصوى) ويتم التنفيذ طبقا		
180.00	1.50	120	335+620	335+500	F-17	للمناسيب التصميمية والقطاعات العرضية		
30.00	1.50	20	335+640	335+620	F-18	لنموذجية والرسومات التفصيلية المعتمدة ش يجميع مشتملاتة طبقا لاصول الصناعة		
30.00	1.50	20	335+660	335+640	F-19	ومواصفات الهيئة العامة للطرق و الكبارى		
60.00	1.50	40	335+700	335+660	F-20	وتعليمات المهندس المشرف.		
100.00	2.50	40	336+320	336+280	F-21	- مسافة النقل 2 كم		
100.00	2.50	40	336+420	336+380	F-22	- يتم احتساب علاوة 1.5جنيه لكل 1 كم " د د د د د د د د د د د د د د د د د د د		
100.00	0.83	120	335+620	335+500	F-23	بالزيادة او النقصان - السعر يشمل عمل تشوينات وتخليط		
100.00	2.50	40	335+700	335+660	F-24	واختيارات ونقل لموقع العمل حتى مسافة 2		
100.00	2.50	40	336+020	335+980	F-25	کم ح		
150.00	2.50	60	336+140	336+080	F-26	- السعر يشمل قيمة المادة المحجرية		
50.00	2.50	20: 6		336+160	F-27	-		
100.00	2.50	40	336+240	336+200	F-28	┥		
50.00	2.50	/20 /		335+920	F-29	┥		
100.00	2.50	/ 40	-336+420	336+380	F-30	-		
2105.60	13.16	160	3354660	335+500	F-31REV1	- 0		
50.00	2.50	/ /20'/	336+280	/336+260_	F-32	-		

مهندس الهيئة م/مارجريت مج

مشروع: أعمال الجسر الترابي للخط الأول للقطار الكهربائي السريع قطاع (العين السخنة-العاصمة الإدارية-العلمين-مطروح) قطاع (برج العرب / العلمين) لتنفيذ المسافة من الكم 480+335 إلى الكم 480+336 بطول 1 كم (إستكمال تشكيل الجسور)

رقم البندو بيانه : (1-3) بالمتر المكعب اعمال توريد وتشغيل اترية صالحة للردم و مطابقة للمواصفات والتشغيل باستخدام المعدات بسمك لا يزيد عن 50 سم حتى منسوب 2 متر و بسمك لا يزيد عن 52 سم لاستكمال المنسوب التصميمي لتشكيل الجسر والاكتاف (نسية تحمل كاليفورنيا لا تقل عن 15%) و رشها بالمياه الاصولية للوصول الى نسبة الرطوبة المطلوبة والدمك الجيد بالهراسات للوصول الى اقصى كثافة جافة (95 % من الكثافة الجافة القصوى) ويتم التنفيذ طبقا للمناسيب التصميمية والقطاعات العرضية النموذجية والرسومات التفصيلية المعتمدة والبند بجميع مشتملاتة طبقا لاصول الصناعة ومواصفات الهيئة العامة للطرق و الكبارى وتعليمات المهندس المشرف. مسافة النقل 2 كم

- مسافه النفل 2 كم -يتم احتساب علاوة 1.4جنيه لكل 1 كم بالزيادة او النقصان - السعر يشمل عمل تشوينات وتخليط واختبارات ونقل لموقع العمل حتى مسافة 2 كم - السعر يشمل عمل تسمير يشمل قيمة المادة المحجرية

تنفيذ :المكتب الدولي الحديث للمقاولات العامة

	قايسة : 32180.293 م3	الكمية بالم	م3	0.00	:	مقدار العمل السابق
350.00	2.50	140	336+420	336+280	F-33	
250.00	2.50	100	335+800	335+700	F-34	7
250.00	2.50	100	335+900	335+800	F-35	7
150.00	2.50	60	335+960	335+900	F-36	
100.00	2.50	40	336+020	335+980	F-37	7
150.00	2.50	60	336+260	336+200	F-38	7
2500.00	12.50	200	335+700	335+500	F-39	7
200.00	10.00	20	336+160	336+140	F-42	1
120.00	6.00	20	336+200	336+180	F-43	بالمتر المكعب اعمال توريد وتشغيل اترية صالحة
630.00	10.50	60	336+260	336+200	F-44	للردم و مطابقة للمواصفات والتشغيل باستخدام المعدات بسمك لا يزيد عن 50 سم حتى منسوب 2
420.00	10.50	40	336+060	336+020	F-45	متر و بسمك لا يزيد عن 25 سم لاستكمال الملسوب
2090.00	9.50	220	336+420	336+200	F-46	التصميمي لتشكيل الجسر والاكتاف (نسبة تحمل كاليفورنيا لا نقل عن 15%) و رشها بالمياه الاصولية
200.00	10.00	20	336+160	336+140	F-47	للوصول الى نسبة الرطوبة المطلوبة والدمك الجيد. بالهراسات للوصول الى اقصى كثافة جافة (95 % من
120.00	6.00	20	336+200	336+180	F-48	الكثافة الجافة القصوى) ويتم التنفيذ طبقا للمناسيب
600.00	10.00	60	336+080	336+020	F-49	التصميمية والقطاعات العرضية النموذجية والرسومات النفصيلية المعتمدة ش يجميع مشتملاتة
200.00	10.00	20	336+160	336+140	F-50	طبقا لأصول الصناعة ومواصفات الهيئة العامة للطرق و الكباري وتعليمات المهندس المشرف.
1540.00	7.00	220	336+420	336+200	F-51	- مسافة النقل 2 كم
3300.00	15.00	220	335+920	335+700	F-52	- يتم احتساب علاوة 1.5جنيه لكل 1 كم بالزيادة او النقصان
1250.00	6.25	200	335+700	335+500	F-53	- السعر يشمل عمل تشوينات وتخليط واختبارات ونقل لموقع العمل حتى مسافة 2 كم
2800.00	10.00	280	336+200	335+920	F-54	- السعر يشمل قيمة المادة المحجرية
800.00	5.00	160	335+660	335+500	F31REV1-1	1
990.00	4.50	220	336+420	336+200	F-55	7
3300.00	15.00	220	335+920	335+700	F-56	7
1500.00	7.50	200	335+700	335+500	F-57	7
1400.00	5.00	280	336+200	335+920	F-58	7
1000.00	5.00	200	335+700	335+500	F39-1	7
500.00	2.50	200,	335+700	335+500	F53-1	7
1282.60	5.83	220 3	7 335+920	335+700	F-59	7
32178.20	1 20	17 71	الية (م (ع)	فترة المستخلص الح	اجمالي الكميات خلال	
32178.20	1,1	1 . 3	7 /	لى الكلي (م3)	الاجماا	

مقدار العمل السابق:

مشروع: أعمال الجسر الترابي للخط الأول للقطار الكهربائي السريع قطاع (العين السخنة-العاصمة الإدارية-العلمين-مطروح) قطاع (برج العرب / العلمين) لتنفيذ المسافة من الكم 335+480 إلى الكم 336+480 بطول 1 كم (إستكمال تشكيل الجسور)

رقم البند و بيانه : (1-3) بالمتر المكعب اعمال توريد وتشغيل اتربة صالحة للردم و مطابقة للمواصفات والتشغيل باستخدام المعدات بسمك لا يزيد عن 50 سم حتي منسوب 2 متر و بسمك لا يريد عن 50 سم حتي منسوب 2 متر و بسمك لا يريد عن 50 سم لاستكمال المنسوب التصميمي لتشكيل الجسر والاكتاف (علاوة مسافة نقل التربة 153.6 كم)

تنفيذ :المكتب الدولي الحديث للمقاولات العامة

0.00

3511	نسبة العلاوة الكمية	الابعاد (متر)		يلومتري	الموقع الك		بيان الأعمال	
	80%	مساحة المقطع	طول	الى	من	طلب القحص	بالمقايسة	
48.00	0.8	1.50	40	336+020	335+980	F-01		
48.00	0.8	1.50	40	336+060	336+020	F-02	-	
24.00	0.8	1.50	20	336+080	336+060	F-03	_	
72.00	0.8	1.50	60	336+140	336+080	F-04		
24.00	0.8	1.50	20	336+160	336+140	F-05	_	
24.00	0.8	1.50	20	336+180	336+160	F-06	-	
24.00	0.8	1.50	20	336+200	336+180	F-07	7	
48.00	0.8	1.50	40	336+240	336+200	F-08	بالمتر المكعب اعمال توريد وتشغيل اترية	
24.00	0.8	1.50	20	336+260	336+240	F-09	صالحة للردم و مطابقة للمواصفات والتشغيل باستخدام المعدات بسمك لا يزيد	
72.00	0.8	1.50	60	336+320	336+260	F-10	عن 50 سم حتي منسوب 2 متر و بسمك لا	
72.00	0.8	1.50	60	336+380	336+320	F-11	يزيد عن 25 سم لاستكمال المنسوب	
48.00	0.8	1.50	40	336+420	336+380	F-12	التصميعي لتشكيل الجسر والاكتاف (نسية	
24.00	0.8	1.50	20	335+920	335+900	F-13	تحمل كاليفورنيا لا تقل عن 15%) و رشها بالمياه الاصولية للوصول الى نسبة الرطوبة	
24.00	0.8	1.50	20	335+940	335+920	F-14	المطلوبة والدمك الجيد بالهراسات للوصول	
24.00	0.8	1.50	20	335+960	335+940	F-15	الى اقصى كثافة جافة (95 % من الكثافة	
24.00	0.8	1.50	20	335+980	335+960	F-16	الجافة القصوى) ويتم التنفيذ طبقا	
144.00	0.8	1.50	120	335+620	335+500	F-17	للمناسيب التصميمية والقطاعات العرضية	
24.00	0.8	1.50	20	335+640	335+620	F-18	النموذجية والرسومات التفصيلية المعتمدة ش بجميع مشتملاتة طبقا لاصول الصناعة	
24.00	0.8	1.50	20	335+660	335+640	F-19	ومواصفات الهيئة العامة للطرق و الكبارى	
48.00	0.8	1.50	40	335+700	335+660	F-20	وتعليمات المهندس المشرف.	
80.00	0.8	2.50	40	336+320	336+280	F-21	- مسافة النقل 2 كم	
80.00	0.8	2.50	40	336+420	336+380	F-22	ـــــــــــــــــــــــــــــــــــــ	
80.00	0.8	0.83	120	335+620	335+500	F-23	- السعر يشمل عمل تشوينات وتخليط - السعر يشمل عمل تشوينات وتخليط	
80.00	0.8	2.50	40	335+700	335+660	F-24	واختبارات ونقل لموقع العمل حتى مسافة 2	
80.00	0.8	2.50	40	336+020	335+980	F-25	کم	
120.00	0.8	2.50	60	336+140	336+080	F-26	- السعر يشمل قيمة المادة المحجرية - السعر عشمل قيمة المادة المحجرية	
40.00	0.8	2.50	20.	336+180	336+160	F-27	1	
90.00	0.0	3.50						

336+240

335+940

336+420

335+660

336+280

0.8

0.8

0.8

0.8

80.00

40.00

80.00

1684.48

40.00

40

20

40/

160

336+200

335+920

336+380

335+500

,536+260

F-28

F-29

F-30

F-31REV1

F-32

2.50

2.50

2.50

13.16

الكمية بالمقايسة : 25744.234 م3

مشروع: أعمال الجسر الترابي للخط الأول للقطار الكهربائي السريع قطاع (العين السخنة-العاصمة الإدارية-العلمين-مطروح) قطاع (برج العرب / العلمين) لتنفيذ المسافة من الكم 335+480 إلى الكم 380+336 بطول 1 كم (إستكمال تشكيل الجسور)

رقم البند و بيانه : (1-3) بالمتر المكعب اعمال توريد وتشغيل اترية صالحة للردم و مطابقة للمواصفات والتشغيل باستخدام المعدات بسمك لا يزيد عن 50 سم حتى منسوب 2 متر و بسمك لا يريد عن 50 سم حتى منسوب 2 متر و بسمك لا يريد عن 50 سم لاستكمال المنسوب التصميمي لتشكيل الجسر والاكتاف

(علاوة مسافة نقل التربة 153.6 كم)

تنفيذ :المكتب الدولي الحديث للمقاولات العامة

	الكمية بالمقايسة : 25744.234 م3			36	0.00	مقدار العمل السابق :		
280.00	0.8	2.50	140	336+420	336+280	F-33	T	
200.00	0.8	2.50	100	335+800	335+700	F-34	-	
200.00	0.8	2.50	100	335+900	335+800	F-35		
120.00	0.8	2.50	60	335+960	335+900	F-36	1	
80.00	0.8	2.50	40	336+020	335+980	F-37		
120.00	0.8	2.50	60	336+260	336+200	F-38	7	
2000.00	0.8	12.50	200	335+700	335+500	F-39		
160.00	0.8	10.00	20	336+160	336+140	F-42	7	
96.00	0.8	6.00	20	336+200	336+180	F-43	بالمثر المكعب اعمال توريد وتشغيل اترية صالحة	
504.00	0.8	10.50	60	336+260	336+200	F-44	للردم ومطابقة للمواصفات والتشغيل باستخدام	
336.00	0.8	10.50	40	336+060	336+020	F-45	المعنات بسعك لا يزيد عن 50 سم حتى منسوب 2 متر و بسمك لا يزيد عن 25 سم لاستكمال المنسوب	
1672.00	0.8	9.50	220	336+420	336+200	F-46	التصميمي لتشكيل الجسر والاكتاف (نسية تحمل كاليفورنيا لا تقل عن 15%) و رشها بالمياه الاصولية	
160.00	0.8	10.00	20	336+160	336+140	F-47	للوصول الى نسبة الرطوبة المطلوبة والدمك الجيد	
96.00	0.8	6.00	20	336+200	336+180	F-48	بالهراسات للوصول الى اقصى كثافة جافة (95 % من الكثافة الجافة القصوى) ويتم التنفيذ طبقاً للمناسيب	
480.00	0.8	10.00	60	336+080	336+020	F-49	التصميمية والقطاعات العرضية النموذجية والرسومات التفصيلية المعتمدة ش يجميع مشتملاتة	
160.00	0.8	10.00	20	336+160	336+140	F-50	طبقا لاصول الصناعة ومواصفات الهيئة العامة للطرق	
1232.00	0.8	7.00	220	336+420	336+200	F-51	و الكبارى وتعليمات المهندس العشرف. - مسافة النقل 2 كم	
2640.00	0.8	15.00	220	335+920	335+700	F-52	-يتم احتساب علاوة 1.5جنبه لكل 1 كم بالزيادة او النقصان	
1000.00	0.8	6.25	200	335+700	335+500	F-53	- السعر يشمل عمل تشوينات وتخليط واختبارات ونقل لموقع العمل حتى مساقة 2 كم	
2240.00	0.8	10.00	280	336+200	335+920	F-54	وامل بهواع المحان على المسابق ع الم - السعر يشمل قيمة المادة المحجرية	
640.00	0.8	5.00	160	335+660	335+500	F31REV1-1		
792.00	0.8	4.50	220	336+420	336+200	F-55	1	
2640.00	0.8	15.00	220	335+920	335+700	F-56	1	
1200.00	0.8	7.50	200	335+700	335+500	F-57	-	
1120.00	0.8	5.00	280	336+200	335+920	F-58	-	
800.00	0.8	5.00	290	335+700	335+500	F39-1	-	
400.00	0.8	2.50	/2007	335+700	335+500	F53-1	1	
1026.08	0.8	5.83	220	.3357920	335+700	F-59	-	
	25742.56		1000	المة (عو) عا	فترة المستخلص الح	اجمالي الكميات خلال		
	25742.56		my (2)	11	لي الكلي (م3)			

مهندس الهيئة

مشروع: أعمال الجسر الترابي للخط الأول للقطار الكهربائي السريع قطاع (العين السخنة-العاصمة الإدارية-العلمين-مطروح) قطاع (برج العرب / العلمين) لتنفيذ المسافة من الكم 336+480 إلى الكم 336+480 بطول 1 كم (إستكمال تشكيل الجسور)

رقم البند و بيانه : (1-3) بالمتر المكعب اعمال توريد وتشغيل اترية صالحة للردم و مطابقة للمواصفات والتشغيل باستخدام المعدات بسمك لا يزيد عن 50 سم حتي منسوب 2 متر و بسمك لا يزيد عن 25 سم لاستكمال المنسوب التصميمي لتشكيل الجسر والاكتاف (علاوة مسافة نقل الرمل 103.6 كم)

تنفيذ :المكتب الدولي الحديث للمقاولات العامة

		بالمقايسة : 6436.059 م3	الكمية	م3	0.00		مقدار العمل السابق :
الكمية	نسبة العلاوة	الابعاد (متر)		كيلومتري	الموقع ال	طلب القحص	بيان الأعمال
S#07513	20%	مساحة المقطع	طول	ال	من	طب الفحص	بالمقايسة
12.00	0.20	1.50	40	336+020	335+980	F-01	
12.00	0.20	1.50	40	336+060	336+020	F-02	7
6.00	0.20	1.50	20	336+080	336+060	F-03	7
18.00	0.20	1.50	60	336+140	336+080	F-04	7
6.00	0.20	1.50	20	336+160	336+140	F-05	
6.00	0.20	1.50	20	336+180	336+160	F-06	
6.00	0.20	1.50	20	336+200	336+180	F-07	
12.00	0.20	1.50	40	336+240	336+200	F-08	بالمتر المكعب اعمال توريد وتشغيل اترية
6.00	0.20	1.50	20	336+260	336+240	F-09	صالحة للردم و مطابقة للمواصفات والتشغيل باستخدام المعدات بسمك لا يزيد
18.00	0.20	1.50	60	336+320	336+260	F-10	عن 50 سم حتى منسوب 2 متر و بسمك لا
18.00	0.20	1.50	60	336+380	336+320	F-11	يزيد عن 25 سم لاستكمال المنسوب
12.00	0.20	1.50	40	336+420	336+380	F-12	التصميمي لتشكيل الجسر والاكتاف (نسية
6.00	0.20	1.50	20	335+920	335+900	F-13	تحمل كاليفورنيا لا ثقل عن 15%) و رشها بالمياه الاصولية للوصول الى نسبة الرطوبة
6.00	0.20	1.50	20	335+940	335+920	F-14	المطلوبة والدمك الجيد بالهراسات للوصول
6.00	0.20	1.50	20	335+960	335+940	F-15	الى اقصى كثافة جافة (95 % من الكثافة
6.00	0.20	1.50	20	335+980	335+960	F-16	الجافة القصوى) ويتم التنفيذ طبقا
36.00	0.20	1.50	120	335+620	335+500	F-17	للمناسيب التصميمية والقطاعات العرضية التموذجية والرسومات التفصيلية المعتمدة
6.00	0.20	1.50	20	335+640	335+620	F-18	ش يجميع مشتملانة طبقا لاصول الصناعة
6.00	0.20	1.50	20	335+660	335+640	F-19	ومواصفات الهيئة العامة للطرق و الكبارى
12.00	0.20	1.50	40	335+700	335+660	F-20	وتعليمات المهندس المشرف.
20.00	0.20	2.50	40	336+320	336+280	F-21	- مسافة النقل 2 كم
20.00	0.20	2.50	40	336+420	336+380	F-22	- يتم احتساب علاوة 1.5 جنيه لكل 1 كم بالزيادة او النقصان
20.00	0.20	0.83	120	335+620	335+500	F-23	- السعر يشمل عمل تشوينات وتخليط
20.00	0.20	2.50	40	335+700	335+660	F-24	واختبارات ونقل لموقع العمل حتى مسافة 2
20.00	0.20	2.50	40	336+020	335+980	F-25	کم ۔
30.00	0.20	2.50	60	336+140	336+080	F-26	- السعر يشمل قيمة المادة المحجرية
10.00	0.20	2.50	20	336+180	336+160	F-27	
20.00	0.20	2.50	40	336+240	336+200	F-28	_
10.00	0.20	2.50	1, 20-	335+940	335+920	F-29	_
20.00	0.20	2.50	40	3364420	336+380	F-30	
421.12	0.20	13.16 /	(160)	/ 335+660 /	335+500	F-31REV1	7
10.00	0.20	2.50 / 1 /	20	(836+280	336+260	F-32	

مشروع: أعمال الجسر الترابي للخط الأول للقطار الكهربائي السريع قطاع (العين السخنة-العاصمة الإدارية-العلمين-مطروح) قطاع (برج العرب / العلمين) لتنفيذ المسافة من الكم 480+335 إلى الكم 480+336 بطول 1 كم (إستكمال تشكيل الجسور)

رقم البند و بيانه : (1-3) بالمتر المكعب اعمال توريد وتشغيل اترية صالحة للردم و مطابقة للمواصفات والتشغيل باستخدام المعدات بسمك لا يزيد عن 50 سم حتي منسوب 2 متر و بسمك لا يزيد عن 50 سم حتي منسوب 2 متر و بسمك لا الجسر والاكتاف

(علاوة مسافة نقل الرمل 103.6 كم)

تنفيذ :المكتب الدولي الحديث للمقاولات العامة

		ايسة : 6436.059 م3	الكمية بالمق	36	0.00		مقدار العمل السابق :		
70.00	0.20	2.50	140	336+420	336+280	F-33	T		
50.00	0.20	2.50	100	335+800	335+700	F-34	7		
50.00	0.20	2.50	100	335+900	335+800	F-35	7		
30.00	0.20	2.50	60	335+960	335+900	F-36	7		
20.00	0.20	2.50	40	336+020	335+980	F-37	7		
30.00	0.20	2.50	60	336+260	336+200	F-38			
500.00	0.20	12.50	200	335+700	335+500	F-39	7		
40.00	0.20	10.00	20	336+160	336+140	F-42	7		
24.00	0.20	6.00	20	336+200	336+180	F-43	بالمتر المكعب اعمال توريد وتشغيل اترية صالحة		
126.00	0.20	10.50	60	336+260	336+200	F-44	للردم ومطابقة للمواصفات والتشغيل باستخدام		
84.00	0.20	10.50	40	336+060	336+020	F-45	المعدات بسمك لا يزيد عن 50 سم حتى منسوب 2 متر و بسمك لا يزيد عن 25 سم لاستكمال المنسوب		
418.00	0.20	9.50	220	336+420	336+200	F-46	التصميمي لتشكيل الجسر والاكتاف (نسية تحمل كاليفورنيا لا تقل عن 15%) و رشها بالمياه الاصولية		
40.00	0.20	10.00	20	336+160	336+140	F-47	للوصول الى نسبة الرطوبة المطلوبة والدمك الجيد بالهراسات للوصول الى العمى كثافة جافة (95 % من		
24.00	0.20	6.00	20	336+200	336+180	F-48	الكثافة الجافة القصوى) ويتم التنفيدُ طبقا للمناسيب		
120.00	0.20	10.00	60	336+080	336+020	F-49	 التصميمية والقطاعات العرضية النموذجية والرسومات التفصيلية المعتمدة ش بجميع مشتملاتة 		
40.00	0.20	10.00	20	336+160	336+140	F-50	طبقا لاصول الصناعة ومواصفات الهيئة العامة للطرق و الكبارى وتعليمات المهندس المشرف.		
308.00	0.20	7.00	220	336+420	336+200	F-51	- مسافة النقل 2 كم		
660.00	0.20	15.00	220	335+920	335+700	F-52	حتم احتساب علاوة 1.5جنيه لكل 1 كم بالزيادة او النقصان		
250.00	0.20	6.25	200	335+700	335+500	F-53	- السعر يشمل عمل تشوينات وتخليط واختبارات ونقل لموقع العمل حتى مسافة 2 كم		
560.00	0.20	10.00	280	336+200	335+920	F-54	- السعر يشمل قبعة المادة المحجرية		
160.00	0.20	5.00	160	335+660	335+500	F31REV1-1			
198.00	0.20	4.50	220	336+420	336+200	F-55	7		
660.00	0.20	15.00	220	335+920	335+700	F-56	7		
300.00	0.20	7.50	200	335+700	335+500	F-57	7		
280.00	0.20	5.00	280	336+200	335+920	F-58	1		
200.00	0.20	5.00	/200	335+700	335+500	F39-1	7		
100.00	0.20	2.50	/ 200	335+700	335+500	F53-1			
256.52	0.20	5.83	7220	335+920	335+700	F-59			
	6435.64		1	لية (م8) ٠٠ 🏋	فترة المستخلص الجا	اجمالي الكميات خلال	*		
	6435.64		10 47	11	لى الكلى (م3)				

مهندس الهيئة

مهندس الاستشاري مهندس الاستشاري مكتب كرخالد وكالمستشاري مكتب كرخالد وكالمستشاري مراسيد المستشاد والاستشاري مراسيد المستشارات

The state of the s

مشروع: أعمال الجسر الترابي للخط الأول للقطار الكهربائي السريع قطاع (العين السخنة-العاصمة الإدارية-العلمين-مطروح) قطاع (برج العرب / العلمين) لتنفيذ المسافة من الكم 336+480 إلى الكم 336+480 بطول 1 كم (إستكمال تشكيل الجسور)

رقم البندو بيانه : (3-1) بالمتر المكعب اعمال توريد وتشغيل اترية صالحة للردم و مطابقة للمواصفات والتشغيل باستخدام المعدات بسمك لا يزيد عن 50 سم حتي منسوب 2 متر و بسمك لا يزيد عن 25 سم لاستكمال المنسوب التصميمي لتشكيل الجسر والاكتاف (علاوة تحصيل رسوم الكارتة والموازين طبقا للائحة الشركة الوطنية)

تنفيذ :المكتب الدولي الحديث للمقاولات العامة

الكمية بالمقايسة : 32180.293 م3

0.00

مقدار العمل السابق:

الكمية	لابعاد (متر)	n	يلومتري	الموقع الك		بيان الأعمال
	مساحة المقطع	طول	الى	من	طلب القحص	بالمقايسة
60.00	1.50	40	336+020	335+980	F-01	
60.00	1.50	40	336+060	336+020	F-02	7
30.00	1.50	20	336+080	336+060	F-03	7
90.00	1.50	60	336+140	336+080	F-04	
30.00	1.50	20	336+160	336+140	F-05	
30.00	1.50	20	336+180	336+160	F-06	7
30.00	1.50	20	336+200	336+180	F-07	CONTROL TY PARTY PARTY
60.00	1.50	40	336+240	336+200	F-08	بالمتر المكعب اعمال توريد وتشغيل اتربة
30.00	1.50	20	336+260	336+240	F-09	صالحة للردم و مطابقة للمواصفات والتشغيل باستخدام المعدات بسمك لا يزيد
90.00	1.50	60	336+320	336+260	F-10	عن 50 سم حتى منسوب 2 متر و بسمك لا
90.00	1.50	60	336+380	336+320	F-11	يزيد عن 25 سم لاستكمال المنسوب
60.00	1.50	40	336+420	336+380	F-12	التصميعي لتشكيل الجسر والاكتاف (نسية
30.00	1.50	20	335+920	335+900	F-13	تحمل كاليفورنيا لا تقل عن 15%) و رشها بالمياه الاصولية للوصول الى نسبة الرطوية
30.00	1.50	20	335+940	335+920	F-14	بنمياه الرصونية للوطول الى نسبة الرطوبة
30.00	1.50	20	335+960	335+940	F-15	الى اقصى كثافة جافة (95 % من الكثافة
30.00	1.50	20	335+980	335+960	F-16	الجافة القصوى) ويتم التنفيذ طبقا
180.00	1.50	120	335+620	335+500	F-17	للمناسيب التصميمية والقطاعات العرضية
30.00	1.50	20	335+640	335+620	F-18	النموذجية والرسومات التفصيلية المعتمدة ش يجميع مشتملاتة طبقا لاصول الصناعة
30.00	1.50	20	335+660	335+640	F-19	ومواصفات الهيئة العامة للطرق و الكبارى
60.00	1.50	40	335+700	335+660	F-20	وتعليمات المهندس المشرف.
100.00	2.50	40	336+320	336+280	F-21	- مسافة النقل 2 كم
100.00	2.50	40	336+420	336+380	F-22	-يتم احتساب علاوة 1.5جنيه لكل 1 كم بالزيادة او النقصان
100.00	0.83	120	335+620	335+500	F-23	- السعر يشمل عمل تشوينات وتخليط
100.00	2.50	40	335+700	335+660	F-24	واختيارات ونقل لموقع العمل حتى مسافة 2
100.00	2.50	40	336+020	335+980	F-25	کم
150.00	2.50	60	336+140	336+080	F-26	- السعر يشمل قيمة المادة المحجرية
50.00	2.50	20 -	336+180	336+160	F-27	7
100.00	2.50	40-7	336+240	336+200	F-28	1
50.00	2.50	20/	335+940	335+920	F-29	Η
100.00	2.50	40	338+420	336+380	F-30	1
2105.60	13.16	160	335+660	335+500	F-31REV1	1
50.00	2.50	20	4364380	236+360	E 22	-

مشروع: أعمال الجسر الترابي للخط الأول للقطار الكهربائي السريع قطاع (العين السخنة-العاصمة الإدارية-العلمين-مطروح) قطاع (برج العرب / العلمين) لتنفيذ المسافة من الكم 480+335 إلى الكم 480+336 بطول 1 كم (إستكمال تشكيل الجسور)

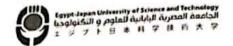
رقم البند و بيانه : (3-1) بالمتر المكعب اعمال توريد وتشغيل اترية صالحة للردم و مطابقة للمواصفات والتشغيل باستخدام المعدات بسمك لا يزيد عن 50 سم حتى منسوب 2 متر و مبايقة بين المنسوب التصميعي لتشكيل المسروالاكتاف (علاوة تحصيل رسوم الكارتة والموازين طبقا للائحة الشركة الوطنية)

تنفيذ :المكتب الدولي الحديث للمقاولات العامة

	ايسة : 32180.293 م3	الكمية بالمقا	م3	0.00	i	مقدار العمل السابق :
350.00	2.50	140	336+420	336+280	F-33	
250.00	2.50	100	335+800	335+700	F-34	7
250.00	2.50	100	335+900	335+800	F-35	7
150.00	2.50	60	335+960	335+900	F-36	7
100.00	2.50	40	336+020	335+980	F-37	7
150.00	2.50	60	336+260	336+200	F-38	1
2500.00	12.50	200	335+700	335+500	F-39	1
200.00	10.00	20	336+160	336+140	F-42	7
120.00	6.00	20	336+200	336+180	F-43	بالهتر المكعب اعمال توريد وتشغيل اثرية صالحة
630.00	10.50	60	336+260	336+200	F-44	للردم و مطابقة للمواصفات والتشغيل باستخدام
420.00	10.50	40	336+060	336+020	F-45	المعدات يسمك لا يزيد عن 50 سم حتي منسوب 2 متر و يسمك لا يزيد عن 25 سم لاستكمال المنسوب
2090.00	9.50	220	336+420	336+200	F-46	التصميمي لتشكيل الجسر والاكتاف (نسية تحمل كاليفورنيا لا تقل عن 15%) و رشها بالمياه الاصولية
200.00	10.00	20	336+160	336+140	F-47	للوصول الى نسبة الرطوية المطلوبة والدهك الجيد
120.00	6.00	20	336+200	336+180	F-48	بالهراسات للوصول الى اقصى كثافة جافة (95 % من الكثافة الجافة القصوى) ويتم الننفية طبقاً للعناسيب
600.00	10.00	60	336+080	336+020	F-49	التصميمية والقطاعات العرضية النموذجية والرسومات التفصيلية المعتمدة ش يجميع مشتملاتة
200.00	10.00	20	336+160	336+140	F-50	طبقا لأصول الصناعة ومواصفات الهيئة العامة للطرق
1540.00	7.00	220	336+420	336+200	F-51	و الكبارى وتعليمات المهندس العشرف. - مسافة النقل 2 كم
3300.00	15.00	220	335+920	335+700	F-52	يتم احتساب علاوة 1.5جنيه لكل 1 كم بالزيادة او النقصان
1250.00	6.25	200	335+700	335+500	F-53	- السعر يشعل عمل تشوينات وتخليط واختبارات ونقل لموقع العمل حتى مسافة 2 كم
2800.00	10.00	280	336+200	335+920	F-54	وبيل لبوقع العمل حتى مسافة 2 مم - السعر يشمل قيمة المادة المحجرية
800.00	5.00	160	335+660	335+500	F31REV1-1	
990.00	4.50	220	336+420	336+200	F-55	-
3300.00	15.00	220	335+920	335+700	F-56	1
1500.00	7.50	200	335+700	335+500	F-57	-
1400.00	5.00	280	336+200	335+920	F-58	1
1000.00	5.00	200	335+700	335+500	F39-1	1
500.00	2.50	200	335+700	335+500	F53-1	1
1282.60	5.83	2204	335+920	335+700	F-59	1
32178.20		1 1.	نالية (م3) .	، فترة المستخلص الح		
32178.20		1	1 3 " 1	اليي الكليي (م3)	-	

مهندس الهيئة

لدس الاستشاري مكتب XYZ


Contractor Company	EL DAWLY ELHADETH			Designer	Company	,		(K.K) Engine	(K.K) Engineering Consulting Office			
Contractor Company	Name	Sign		Date/Serial Number					Time			
Issued by Contractor Eng. Saleh	South				1/2023 .T- 4)		2:00 PM					
		11171		CI	a	C3	00	MM	77	нн	MM	
Received by GARB CONSULTANT	Eng. Sayed Saif	Ichaladaki	MIR	335	EW	cs	12	11	23	2	0	

CONTRACTOR OF THE PARTY OF THE	51 to 521	D1 to 53	Kp XXX Note
CODE-1	Station Reference	Depot Reference	For Kilometer point only Start Km is used
rept. 2		Work Activity	
7008-1	A Sand C D And Sand	Sub Element of Activity	
THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSONS ASSESSED.			

D	escription of Materials	Midlle Embankment (-1.	5 from ferma l	evel)		-0.5	
	Location to be Used	From 335+700		00	то	335+920	
		UIR (F-63)		Date	7/	11/2023	
M	AR & UIR Approval No	M.A.R. QT (6)		Date	22,	/10/2023	
	Supplier Name	EL SEWY			1		
	Test Requirement	P.L.T(DIN 18134)	Sp	ecification	EARTHWORK SPECIFICATION VERSION 2 BY CIVECON GRO	NS & TESTING REPORT (CG21-41.2 DUP	
	Reference Photos	No/Yes		Other			
Item	Desc	ription	Unit	Quantity	Arrival Date	Note	
1	PLATE LO	DAD TEST	NUMBER	2	2/11/2023		
2							
3		TAK I					
4					1 4 4 11 4 15 15 15		
mments by:	(KK)		Comment	Comments by: Eng. Alaa Abd-Allatif (ER)			
-The PLATE LC	OAD Test Result P.L.T. by third Of Science And Tecnology	party lab (egypt-Japan Univer) is Approved.	And Tecno 2-Results	ology) . report attached	third party lab (egypt-li and acceptable with proj to above mentioned com		

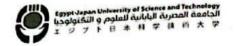
APPROVAL STATUS				
Organisation	Name	Sign	Date	A-AWC-R
Contractor	Eng. Saleh	. Soleh		A
QA/QC *	Eng. Sayed Saif	: Khalea	12ki	A
GARB**	Eng. Margrit Magdi			
Employers Representative	Eng. Alaa Abd-Allatif	lo e	13-11-202	13 Awc

^{**} Alignment/Bridges: Culvert only

Technical Report

Plate Loading Tests

KM 335+700 to 335+800 and KM 335+800 to 335+900


(Middle Embankment (-1.5 m))

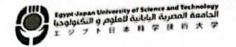
Project

Electric Express Train (Sokhna - New capital - 6th of October city - New Elalamein city)

ELDAWLY ELHADETH Compa

(November 12, 2023)

1. Introduction


The Civil Engineering Testing & Consulting Unit (CETCU) of the Egypt-Japan University of Science and Technology (EJUST) was retained by ELDAWLY ELHADETH Company to conduct two plate loading tests on the Middle Embankment (-1.5 m) of the Electric Express Train project at two locations (KM 335+700 to 335+800 and KM 335+800 to 335+900) in accordance with the German Standard DIN18134. The mandate was communicated by Eng. Saleh Mohamed of ELDAWLY ELHADETH Company. Field team members (Eng. Mohamed A. Elnaggar) from the working CETCU team visited the project site on November 12, 2023 and performed the required tests. This report summarizes the plate loading test procedure according to DIN18134, the test results and their interpretations, and the CETCU pertaining recommendations.

2. Test Set Up and Instrumentation

- The German standard DIN18134 was applied to define the test setup including the loading system, test conditions, and procedure for the plate loading tests.
- The tests were carried out to determine the Strain Moduli (Ev1 and Ev2) and their ratio (Ev2/Ev1) from a stress – deformation relationship of two consecutive loading from Loading-Unloading-Loading regime.
- The loading plate has a diameter of 600 mm and a thickness of 25 mm and it is provided with equally spaced stiffeners. The upper plate face is parallel to the bottom face of the plate to allow a 300-mm plate to be placed on the 600-mm plate top.
- The loading system consisted of a hydraulic pump connected to a hydraulic jack of 700 bar capacity, which can apply and release the load increments.
- The dial gauge used to measure the plate settlement has a resolution of 0.01 mm and the lever ratio was equal to 1.
- The temperature at the time of the test was 16± 1°C.
- The plate was carried out on a Middle Embankment (-1.5 m) (according to the company) at two points (KM 335+700 to 335+800 and KM 335+800 to 335+900). The test surface area was levelled, and the plate was bedded on this surface.
- The hydraulic jack was placed on the middle of, and normal to, the loading plate beneath the reaction loading system and secured against tilting.

The reaction loading system was a heavy multi-purpose Loader CAT 966G.

www.ejust.edu.eg CETC23110014.Trans.Geo.PLT CINTECH@ejust.edu.eg Mobile: +201555631725

3. Test Procedure and Results

The plate load test was conducted in accordance with the DIN18134. Loading, unloading, and reloading regimes were considered to estimate the resilient modulus of the tested soil. Prior to the test, the force transducer and dial gauge were reset to zero, and then a load corresponding to a stress of 0.01 MN/m2 was applied. The load was increased in the first loading cycle until a normal stress of 0.25 MN/m2 was reached, and the loading increment was 0.025 MN/m2. The load was gradually released in four stages. Following unloading, a second loading cycle was performed, but the load was only increased to the penultimate stage of the first cycle. Two plate loading tests on the Middle Embankment (-1.5 m) of the Electric Express Train project were conducted at two locations (KM 335+700 to 335+800 and KM 335+800 to 335+900) and the data collected at the two test points is included in Appendix A.

Table 1 presents the load-settlement data obtained at the first loading and unloading stages of the plate loading test performed at the location (KM 335+700 to 335+800), while Table 2 shows the data obtained at the second loading stage.

Table 1: Load-settlement data obtained at the first loading and unloading stages of the plate loading test performed at the location (KM 335+700 to 335+800)

	Load (F)	Normal stress (σ ₀)	Settlement (S)
Loadir	ng stage kN	MN/m²	mm
0	1.414	0.005	0.00
1	7.07	0.025	0.26
2	14.14	0.050	0.40
3	21.21	0.075	0.59
4	28.28	0.100	0.70
5	35.35	0.125	0.84
6	42.42	0.150	0.99
7	49.49	0.175	1.09
8	56.56	0.200	1.25
9	63.63	0.225	1.35
10	70.7	0.250	1.46
11	56.56	0.200	1.43
12	49.49	0.175	1.36
13	35.35	0.125	1.26
14	21.21	0.075	1.15
15	1.414	0.005	0.57

Communication of maintaining of the second o

www.ejust.edu.eg CETC23110014.Trans.Geo.PLT

3 of 10

CINTECH@ejust.edu.eg Mobile: +201555631725

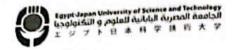
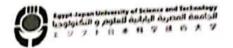


Table 2: Load-settlement data obtained at the second loading and unloading stages of the plate loading test performed at the location (KM 335+700 to 335+800)


plate loading		1	00)
	Load (F)	Normal stress (σ_0)	Settlement (S)
Loading stage	kN	MN/m ²	mm
0	1.414	0.005	0.57
1	7.07	0.025	0.71
2	14.14	0.050	0.81
3	21.21	0.075	0.92
4	28.28	0.100	1.03
5	35,35	0.125	1.09
6	42.42	0.150	1.19
7	49.49	0.175	1.26
8	56.56	0.200	1.35
Many Control of the C	63.63	0.225	1.42

The load-settlement data obtained in all loading and unloading stages for the test performed at the first location (KM 335+700 to 335+800) are shown in Figure 1. Table 3 shows the calculations of the resilient modulus of the tested soil according to DIN18134. The testing data corresponding to the second testing point (KM 335+800 to 335+900) is provided in Tables 4-6 and Figure 2.

Table 3: Calculations of the resilient modulus of the tested soil according to DIN18134: (KM

35+700 to 335+800)		Out to discount
Parameters	1st loading cycle	2nd loading cycle
(s ₀ ,max) MN/m ²	0.25	0.25
a ₀ (mm)	0.10	0.57
a ₁ (mm/(MN/m ²))	6.53	5.05
a ₂ (mm/(MN2/m ⁴))	-4.30	-5.76
Ev= 1.5 r/ (a ₁ +a ₂ , s _{0, MAX})	82.43	124.79
Ev ₂ /Ev ₁	1.1	51

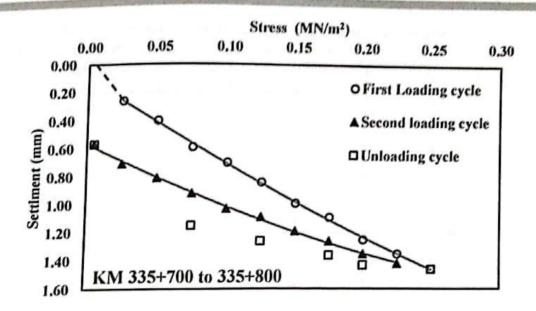


Figure 1: Load-settlement data: plate loading test performed at (KM 335+700 to 335+800)

Table 4: Load-settlement data obtained at the first loading and unloading stages of the plate loading test performed at the location (KM 335+800 to 335+900)

	Load (F)	Normal stress (o ₀)	Settlement (S)
Loading stag	e kN	MN/m ²	mm
0	1.414	0.005	0.00
1	7.07	0.025	0.35
2	14.14	0.050	0.48
3	21.21	0.075	0.73
4	28.28	0.100	0.90
5	35.35	0.125	1.06
6	42.42	0.150	1.20
7	49.49	0.175	1.30
В	56.56	0.200	1.40
9	63.63	0.225	1.57
10	70.7	0.250	1.66
11	56.56	0.200	1.65
12	49.49	0.175	1.60
13	35.35	0.125	1.48
14	21.21	0.075	1.36
.5	1.414	0.005	0.80
		والمعاددة والمعاددة والمعاددة المعاددة	

www.ejust.edu.eg CETC23110014.Trans.Geo.PLT

5 of 10

CINTECH@ejust.edu.eg Mobile: +201555631725

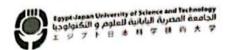


Table 5: Load-settlement data obtained at the second loading and unloading stages of the plate loading test performed at the location (KM 335+800 to 335+900)

plate loading	S teac berre		/
	Load (F)	Normal stress (σ ₀)	Settlement (S)
Loading stage	kN	MN/m²	mm
0	1.414	0.005	0.80
1	7.07	0.025	0.95
2	14.14	0.050	1.04
3	21.21	0.075	1.16
4	28.28	0.100	1.26
5	35.35	0.125	1.36
6	42.42	0.150	1.42
7	49.49	0.175	1.48
	56.56	0.200	1.56
tion of the same o	63.63	0.225	1.60

Table 6: Calculations of the resilient modulus of the tested soil according to DIN18134: (KM 335+800 to 335+900)

+800 to 335+900) Parameters	1st loading cycle	2nd loading cycle
(s ₀ ,max) MN/m ²	0.25	0.25
a ₀ (mm)	0.13	0.79
a ₁ (mm/(MN/m ²))	8.53	5.59
a ₂ (mm/(MN2/m ⁴))	-9.76	-8.92
Ev= 1.5 r/ (a ₁ +a ₂ . s _{0, MAX})	73.89	133.77
Ev ₂ /Ev ₁	1,8	81

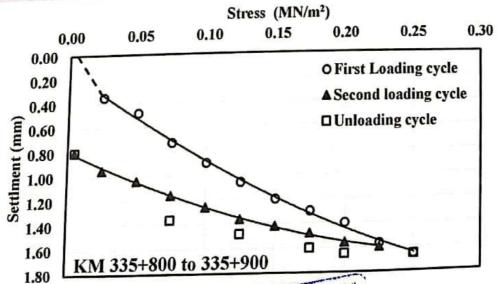


Figure 2: Load-settlement data: plate loading test performed at (KM 335+800 to 335+900)

www.ejust.edu.eg CETC23110014.Trans.Geo.PLT

6 of 10

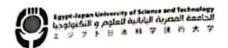
CINTECH@ejust.edu.eg Mobile: +201555631725

4. Closure

Test results presented herein report the load-settlement data obtained from two plate loading tests conducted on the Middle Embankment (-1.5 m) of the Electric Express train project at two locations (KM 335+700 to 335+800 and KM 335+800 to 335+900) in accordance with German Standard, DIN18134.

Location	E _{v1} MN/m2	E _{v2} MN/m2	E _{v2} /E _{v1} ratio
KM 335+700 to 335+800	82.43	124.79	1.51
KM 335+800 to 335+900	73.89	133.77	1.81

• Note: Before interpreting these test results for fulful applications, the Middle Embankment (-1.5 m) in-situ variability between the testing locations should be considered.

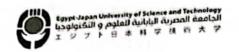

Technical committee

Lab Engineer

Prof. Dr. Mohamed F. M. Fahmy

Mohamed A. Al-Najjar

Appendix A



Location of test site:	KM 335+700 to 335+800		Field team	Eng. Mohamed A. Elnaggar
Project title:	Electric Express Trai	Electric Express Train Project - ELDAWLY ELHADETH Company		12/11/2023
Diameter of loading		.00	Time	2:36:00 PM
plate	0	500		3:05:00 PM
Lever ratio		1	Note:	
Type of Soil	Middle Embar	nkment (-1.5 m)	CAT 9	56G
Bedding material	1	 5°C		
Temperature		Load (kN)	Dial C	auge Reading (mm)
Test regime	Loading Stage No.	1.414	Diai Ga	10.00
Loading Stage	1	7.07	-	9.74
	2	14.14		9.60
	3	21.21	_	9.41
	4	28.28		9.30
	5	35,35	9.16	
	6	42.42	9.01	
		49.49	8.91	
	7	56.56	8.75	
	8	63.63	8.65	
	9	70.7	8.54	
	10		8.57	
Inloading Stage	11	56.56	-	
	12	49.49	8.64	
	13	35.35	8.74	
	14	21.21		8.85
	15	1.414		9.43
est regime	Loading Stage No.	Load (kN)	Dial G	auge Reading (mm)
eloading Stage	0	1.414		9.43
	1	7.07		9.29
	2	14.14		9.19
t	3	21.21		9.08
-	4	28.28		8.97
-	5	35.35		8.91
F	6	42,42	-	8.81
-	7 polaisili q rola			8.74
-		4. 4. K. 43.43		8.65
1	Sen-Harrinenoch	56.56	-	8.58
	F.JUST CE	TC 11nit63.63		0,50

www.ejust.edu.eg CETC23110014.Trans.Geo.PLT CINTECH@ejust.edu.eg Mobile: +201555631725

Location of test site:	KM 335+800 to 335+900		Field team	Eng. Mohamed A. Elnaggar
Project title:	Electric Express Train Project - ELDAWLY ELHADETH Company		Date:	12/11/2023
Diameter of loading		600	Time	3:17:00 PM
plate				3:46:00 PM
Lever ratio		1	Note:	
Type of Soil	Middle Emb.	ankment (-1.5 m)	CAT 96	66G
Bedding material		16°C		
Temperature			D: LC	D !' ()
Test regime	Loading Stage No.	1.414	Diai Ga	uge Reading (mm)
Loading Stage		7.07	-	10.00
	2	14.14	-	9.65
	3	21.21	-	9.52
	4	28.28		
		35.35	9.10 8.94	
	5	42.42	8.80	
	6	49.49	8.70	
	7		8.60	
	8	56.56		
	9	63.63	8.43	
	10	70.7	8.34	
nloading Stage	11	56.56	8.35	
	12	49.49	8.40	
	13	35.35	8.52	
Γ	14	21.21		8.64
Γ	15	1.414		9.20
st regime I	oading Stage No.	Load (kN)	Dial Ga	uge Reading (mm)
loading Stage	0	1.414		9,20
	1	7.07		9.05
-	2	14.14		8.96
-	3	21.21		8.84
-	4	28.28		8.74
-	5	35.35	-	8.64
-	6	42.42	8.58	
-	digo logicisti 9/9	49.49		8.52
-		as any old 1/11 bill by		
-	100000000000000000000000000000000000000	56,56,350		8.44
	F.1UST	TEXT 1163.63		8.40

ww.ejust.edu.eg ETC23110014.Trans.Geo.PLT CINTECH@ejust.edu.eg Mobile: +201555631725

Contractor Company	EL DAWLY ELHADETH		Designer Company				(X.K) Engineering Consulting Office				
Issued by Contractor	Name	Sign		Date/Serial Number				Time			
	Eng. Saleh	Saleh		4/10/2023 QT (6)				8	8:00		
Received by GARB CONSULTANT	14 00010 0001007	11 171		CI	C2	C3	DD	MM	11	нн	MM
	Eng. Khaled Zaki	khabola ki	MAR	335	EW	cs	5	10	23	8	0

C00E-1	51 to 521	D1 to 53	Kp XXX Note
CODE	Station Reference	Depot Reference	For Kilometer point only Start Km is used
CODE 2		Work Activity	
NO ACCESS		Sub Element of Activity	

Description of Materials	Fill Layer Total Quantity (10	000 m³)			
Location to be Used	From Station 335+480 to Sta	ation 336+480			
Sample only	Yes	Materials Type	Fill layers		
Supplier Name	ELSEWY	Data Sheet provided	Yes attached		
Reference in BoQ		Specification	EARTHWORK SPECIFICATIONS & TESTING REPORT (CG21- 41.2) VERSION 2 BY CIVECON GROUP		
Prequalification reference		Test Samples Results			
Reference Photos	No/Yes	Other			
Comments by	(K.K)	Comment	s by: Eng. Alaa Abd-Allatif (ER)		
-Quality test Result By Third Party lab CEL is Approve	uality test Result By Third Party lab CEL is Approved.		r Quality test and were carried-out by Thrid part		
This Sample Representive (5000 m3) only.			2-Results report attached and acceptable with the project specifications.		
أ لصلام بالملح	مَ اللِفِهٰ وعلى يُعَادُ	3-Final approval is subject t	o above mentioned comments.		

	APPF	ROVAL STATUS		
Organisation	Name	Sign	Date	A-AWC-R
Contractor	Eng. Saleh	Saleh		А
QA/QC *	Eng. Khaled Zaki	kharbol Egik	d	A
GARB**	Eng. Margrit Magdi			
Employers Representative	Eng. Alaa Abd-Allatif	10 PS13	2-12-2023	Auk

Designer

^{**} Alignment/Bridges: Culvert only

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

Project : Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample : Soil Embankment Location : St. 335+480 : 336+480

Delivery Date : 05/10/2023 Reporting Date : 25/10/2023

Reporting No. : 002 Sample No. : 02

Dear Gentleman,

Attached here with the Soil Embankment delivered on 05/10/2023

Materials test

1. Sieve analysis according to ASTM D-422.

- 2. Material finer than sieve No. 200 according to ASTM D-1140.
- 3. Liquid limits and plasticity index of soil according to ASTM D-4318.
- 4. Soil classification according to Project Specs.
- Proctor Test according to ASTM D-1557
- CBR according to ASTM D-1883
- 7. Organic Content ASTM D-2974

Note: The sample was brought by the client to our laboratory and the laboratory is not responsible for the way it is taken

Signature /

1

مكتب معامل الإستشارات الهندسية

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

: Electric Express Train, from Al Ain Sokhna to Marsa Matrouh Project

Type of sample : Soil Embankment : St. 335+480 : 336+480 Location

Delivery Date : 05/10/2023 Reporting Date : 25/10/2023

Reporting No. : 002 Sample No. : 02

RESULTS OF SIEVE ANALYSIS According to ASTM D-C 136

Sieve Size (mm)	Passing %
50	98.9
37.5	91.2
25	86.1
19	78.9
12.50	71.2
9.50	62.1
4.75	53.4
2.36	46.1
2.00	42.8
1.18	39.6
0.600	32.6
0.425	27.0
0.300	21.3
0.150	16.8

ignature /

و * حُلُولُ النَّبِيُّ - الْأَلْمُثَوُّ ، الْوَلِمَاتِيثُ ، الْتُلْعُولُ

3 El Malek El Afdal Street Zamalek, Cairo.

Tel.& Fax: 27367231 - 27363093

٣ ش العلك الأفضل الزمالك - القاهرة تليفون + فاكس : ٢٧٣٦٧٢٣١ - ٢٧٣٦٣٠٩٣ www.cel-egypt.com

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

Project : Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample : Soil Embankment

Location : St. 335+480 : 336+480

Delivery Date : 05/10/2023
Reporting Date : 25/10/2023

Reporting No. : 002 Sample No. : 02

Materials finer than 75 μm (no.200) sieve by washing ASTM D-1140.

Test	Results (%)
Percentage of material finer than Sieve Size 75 μΜ (No.200)	12.6

Signature R الشعالات 202

3 El Malek El Afdal Street

Zamalek, Cairo.

Tel.& Fax: 27367231 - 27363093

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

Project : Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample : Soil Embankment Location : St. 335+480 : 336+480

Delivery Date : 05/10/2023

Reporting Date : 25/10/2023 Reporting No. : 002

Reporting No. : 002 Sample No. : 02

Results of liquid limit and plasticity index of soils according to ASTM D-4318

Test	Results (%)
Liquid Limit	24.6
Plastic Limit	19.9
Plasticity Index	4.7

4

Malek El Afdal Street alek, Cairo. 2 Fax : 27367231 - 27363093

__ CEL

Consulting Engineering Bureau & Laboratories مكتب معامل الإستشارات الهندسية

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

Project : Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample : Soil Embankment

Location : St. 335+480 : 336+480

Delivery Date : 05/10/2023 Reporting Date : 25/10/2023

Reporting No. : 002 Sample No. : 02

Soil Classification According to Project Specs (Embankment)

TEST	Results (%)	Limits according Projects Specs			
Group Classification	(A-1-a)	(A-1-a)	(A-1-b)		
2.00 mm (No.10).		Max 50 %			
0.425 mm (No. 40).		Max 30 %	Max 50 %		
0.075 mm (No. 200).		Max 15 %	Max 15 %		
Characteristics of fraction passing 0.425	5 mm (No.40)				
iquid Limit	24.6				
sticity index	4.4	Max 6 %	Max 6 %		

The test results are (Comply - Not Comply) with specifications limits

Signature /

ر المراد الوفيسو * مثلن التناو المافينز . الوفائد ، انتظوه

:

3 El Malek El Afdal Street

Zamalek, Cairo.

Tel.& Fax: 27367231 - 27363093

٣ ش الملك الأفضل الزمالك - القاهرة

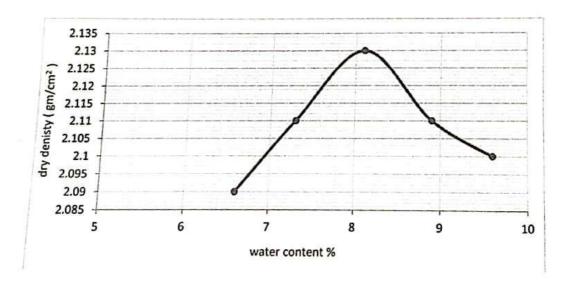
تليفون + فاكس ، ٢٧٣٦٧٢٣١ - ٢٧٣٦٣٠٩٣

www.cel-egypt.com

مكتب معامل الإستشارات الهندسية

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

Project : Electric Express Train, from Al Ain Sokhna to Marsa Matrouh


Type of sample : Soil Embankment

Location : St. 335+480 : 336+480

Delivery Date : 05/10/2023 Reporting Date : 25/10/2023

Reporting No. : 002 Sample No. : 02

Moisture - Density relation of soil Test result (Modified proctor test) ASTM D-1557

Max dry density (gm/cm²) : 2.13

Optimum moisture content % : 8.1

Signature

6

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

Project : Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample : Soil Embankment

Location : St. 335+480 : 336+480

Delivery Date : 05/10/2023 Reporting Date : 25/10/2023

Reporting No. : 002 Sample No. : 02

Test Results of California Bearing Ratio on Base Materials **ASTM D 1883**

per	netration	stress on piston (Mpa)
mm	Inch	stress on piston (wipa)
0.64	0.025	1.36
1.27	0.050	1.75
1.91	0.075	1.97
2.54	0.100	2.16
3.18	0.125	2.43
3.81	0.150	2.66
4.45	0.175	3.03
5.08	0.200	3.37
5.71	0.225	3.71
6.35	0.250	3.98

CBR Result	St	CBR %		
At 0.1 inch (2.54 mm)	St. Value	Sample results	21.2	
penetration	6.90	2.16	31.3	

Notes:

1- Attached graph shows penetration resistance versus penetration magnitude.

2- The sample was compacted to dry density of 2.13 (gm/cm³) at 8.1 % optimum water content.

3- Surcharge load 4.50 Kg

ignature

3 El Malek El Afdal Street

Zamalek, Cairo.

Tel.& Fax: 27367231 - 27363093

٣ ش الملك الأفضل الزمالك - القاهرة تليفون + فاكس ، ٢٧٣٦٧٢١ - ٢٧٣٦٣٠٩٣ www.cel-egypt.com

المكتب الدولي الحديث للمقاولات العامة والتوريدات :

Company Project

: Electric express train.

Delivery Date Report Date

: 23/11/2023 : 02/12/2023

Sample Id Report No. : soil embankment (335+480:336+500)

: 002

ORGANIC OF SOIL ASTM D 2974 METHOD TYPE D

Test	Results
Amount of organic Content %	NIL

Signature Lui 219-991 -537 1

3 El Malek El Afdal Street Zamalek, Cairo.

Tel.& Fax: 27367231 - 27363093

٣ ش الملك الأفضل الزمالك - القاهرة تليفون + فاكس ، ٢٧٣٦٧٢٣١ - ٢٧٣٦٣٠٩٣ www.cel-egypt.com

Contractor Company	EL DAWLY ELHADETH		Designer Company				(K.K) Engineering Consulting Office			
	Name	Sign	Date/Serial Number 17/11/2023 QT (6		Time 8:00					
Issued by Contractor	Eng. Saleh	Salch								
Received by GARB CONSULTANT		1	CI	CZ	C3	DD	MM	W	нн	MN
	Eng. Khaled Zaki	ichaled aki MAR	335	EW	cs	18	11	23	8	0

STREET, STREET	51 to 521	D1 to 53	Kp XXX Note
CODE-1	Station Reference	Depot Reference	For Kilometer point only Start Km is used
1071 2	Work Activity		
1004-1	Sub Element of Activity		

Description of Materials	Fill Layer Total Quantity (20000 m³)		
Location to be Used	From Station 335+480 to Station 336+480		
Sample only	Yes	Materials Type	Fill layers
Supplier Name	ELSEWY	Data Sheet provided	Yes attached
Reference in BoQ		Specification	EARTHWORK SPECIFICATIONS & TESTING REPORT (CG21- 41.2) VERSION 2 BY CIVECON GROUP
Prequalification reference		Test Samples Results	No.
Reference Photos	No/Yes	Other	
Comments by	: (K.K)	Comment	ts by: Eng. Alaa Abd-Allatif (ER)
1-Quality test Result By Third Party lab CEL is Approve	d.	1-All tests were selected fo lab CEL .	r Quality test and were carried-out by Thrid party
2-This Sample Representive (5000 m3) only.		2-Results report attached and acceptable with the project specifications.	
		3-Final approval is subject t	to above mentioned comments.

APPROVAL STATUS				
rganisation	Name	Sign	Date	A-AWC-R
ontractor	Eng. Saleh	Saloh.		А
V/QC *	Eng. Khaled Zaki	chaled	7.	A
RB**	Eng. Margrit Magdi			
ployers Representative	Eng. Alaa Abd-Allatif	for s	2813 2-12-201	23 Auc
esigner				6/1/4

lignment/Bridges: Culvert only

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

Project : Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample : Soil Embankment

Location : St. 335+480 : 336+480

Delivery Date : 18/11/2023

Reporting Date : 29/11/2023

Reporting No. : 004 Sample No. : 01

Dear Gentleman,

Attached here with the Soil Embankment delivered on 18/11/2023

Materials test

1. Sieve analysis according to ASTM D-422.

- 2. Material finer than sieve No. 200 according to ASTM D-1140.
- 3. Liquid limits and plasticity index of soil according to ASTM D-4318.
- 4. Soil classification according to Project Specs.
- 5. Proctor Test according to ASTM D-1557
- 6. CBR according to ASTM D-1883
- 7. Organic Content ASTM D-2974

Note: The sample was brought by the client to our laboratory and the laboratory is not responsible for the way it is taken

Signature

الوكر تونيس ۴ مارة اشته الأخش الزمانية . انتكام

3 El Malek El Afdal Street Zamalek, Cairo.

Tel.& Fax: 27367231 - 27363093

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

Project : Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample : Soil Embankment Location : St. 335+480 : 336+480

Delivery Date : 18/11/2023 Reporting Date : 29/11/2023

Reporting No. : 004 Sample No. : 01

RESULTS OF SIEVE ANALYSIS According to ASTM D-C 136

Sieve Size (mm)	Passing %
50	100
37.5	96.3
25	91.2
19	83.4
12.50	75.6
9.50	67.2
4.75	53.6
2.36	45.6
2.00	43.3
1.18	41.3
0.600	38.6
0.425	33.5
0.300	29.4
0.150	21.5

ignature / ... الساحسل الإستشسارات المهلسية الساحسل الشمالسين 02 ... الساحسل الشمالسين الأمد المؤدند التامره

2

3 El Malek El Afdal Street Zamalek, Cairo.

Tel.& Fax: 27367231 - 27363093

المكتب الدولي الحديث للمقاولات العامه و التوريدات: mpany Name

roject : Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample : Soil Embankment

Location : St. 335+480 : 336+480

Delivery Date : 18/11/2023
Reporting Date : 29/11/2023

Reporting No. : 004 Sample No. : 01

Materials finer than 75 μm (no.200) sieve by washing ASTM D-1140.

Test	Results (%)
Percentage of material finer than Sieve Size 75 μΜ (No.200)	13.5

الساحسل الشمالسية 02 02 الساحسل الشمالسية المنادسية الم

3 El Malek El Afdal Street

Zamalek, Cairo.

Tel.& Fax: 27367231 - 27363093

۴ ش العلك الأفضل الزمالك - القاهرة تليفون + فاكس ، ۲۷۳۲۷۲۳۱ - ۲۷۳۲۳۰۹۳ www.cel-egypt.com

المكتب الدولي الحديث للمقاولات العامه و التوريدات: mpany Name

roject : Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample : Soil Embankment

Location : St. 335+480 : 336+480

Delivery Date : 18/11/2023 Reporting Date : 29/11/2023

Reporting No. : 004 Sample No. : 01

Results of liquid limit and plasticity index of soils according to ASTM D-4318

Test	Results (%)
Liquid Limit	26.1
Plastic Limit	20.8
Plasticity Index	5.3

مكتب معامل الإستشارات الهندسية الساحل الشمالي 02 مكتب المناسية ال

4

3 El Malek El Afdal Street Zamalek, Cairo.

Tel.& Fax: 27367231 - 27363093

0

المكتب الدولي الحديث للمقاولات العامه و التوريدات: mpany Name

Project

: Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample

: Soil Embankment

Location

: St. 335+480 : 336+480

Delivery Date

: 18/11/2023

Reporting Date

: 29/11/2023

Reporting No.

: 004

Sample No.

: 01

Soil Classification According to Project Specs (Embankment)

TEST	Results (%)	A STATE OF THE STA	ts Specs
Group Classification	(A-1-b)	(A-1-a)	(A-1-b)
2.00 mm (No.10).	43.3	Max 50 %	- LEDLES
0.425 mm (No. 40).	33.5	Max 30 %	Max 50 %
0.075 mm (No. 200).	13.5	Max 15 %	Max 15 %
Characteristics of fraction passing 0.425	mm (No.40)		
iquid Limit	26.1		
asticity index	5.3	Max 6 %	Max 6 %

The test results are (Comply - Not Comply) with specifications limits

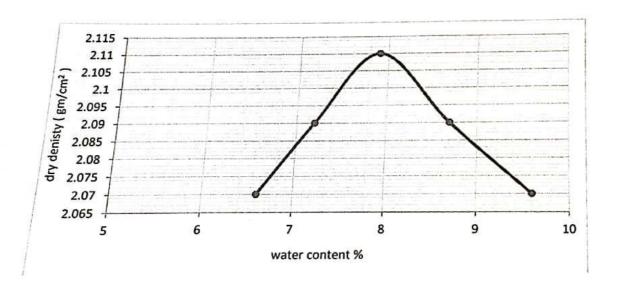
nature/

El Malek El Afdal Street malek, Cairo.

.& Fax: 27367231 - 27363093

٣ ش العلك الأفضل الزمالك - القاهرة تليفون + فاكس ، ٢٧٣٦٧٢٣١ - ٢٧٣٦٣٠٩٣ www.cel-egypt.com

المكتب الدولي الحديث للمقاولات العامه و التوريدات : mpany Name


Project : Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample : Soil Embankment Location : St. 335+480 : 336+480

Delivery Date : 18/11/2023 Reporting Date : 29/11/2023

Reporting No. : 004 Sample No. : 01

Moisture - Density relation of soil Test result (Modified proctor test) **ASTM D-1557**

Max dry density (gm/cm²) : 2.11

Optimum moisture content % : 7.9

Malek El Afdal Street alek, Cairo.

& Fax: 27367231 - 27363093

٣ ش الملك الأفضل الزمالك - القاهرة تليفون + فاكس ، ٢٧٣٦٧٢٣١ - ٢٧٣٦٣٠٩٣ www.cel-egypt.com

المكتب الدولي الحديث للمقاولات العامه و التوريدات: mpany Name ،

: Electric Express Train, from Al Ain Sokhna to Marsa Matrouh project

Type of sample : Soil Embankment

Location : St. 335+480 : 336+480

Delivery Date : 18/11/2023 Reporting Date : 29/11/2023

Reporting No. : 004 Sample No. : 01

Test Results of California Bearing Ratio on Base Materials **ASTM D 1883**

pe	enetration	stress on piston (Mpa)
mm	Inch	
0.64	0.025	1.01
1.27	0.050	1.50
1.91	0.075	1.91
2.54	0.100	2.31
3.18	0.125	2.54
3.81	0.150	2.88
4.45	0.175	3.10
5.08	0.200	3.42
5.71	0.225	3.68
6.35	0.250	3.98

CBR Result	S	tress (Mpa)	CBR %
At 0.1 inch (2.54 mm)	St. Value	Sample results	33.5
penetration penetration	6.90	2.31	33.3

tes:

1- Attached graph shows penetration resistance versus penetration magnitude.

2- The sample was compacted to dry density of 2.11 (gm/cm³) at 7.9 % optimum water content.

3- Surcharge load 4,50 k

ature

Malek El Afdal Street

lek, Cairo.

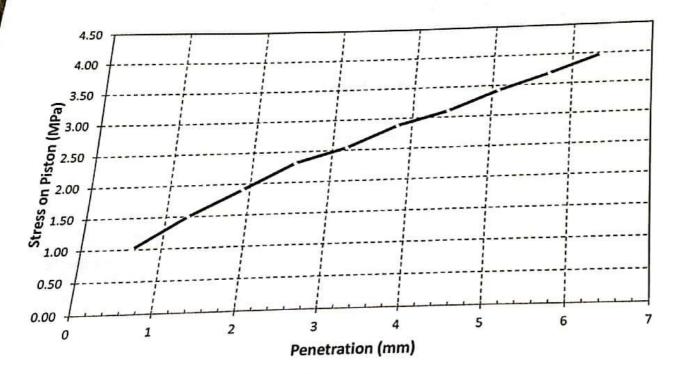
Fax: 27367231 - 27363093

٣ ش العلك الأفضل الزمالك - القاهرة

تليفون + فاكس ، ٢٧٣٦٧٢٣١ - ٢٧٣٦٣٠٩٣

www.cel-egypt.com

المكتب الدولي الحديث للمقاولات العامة و التوريدات : ompany Name .


: Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample : Soil Embankment : St. 335+480 : 336+480

Delivery Date : 18/11/2023
Reporting Date : 29/11/2023

Reporting No. : 004
Sample No. : 01

Load Penetration Curve of CBR Test ASTM D-1883

Signature

الوكو الوليسس * خلوة الشنة الأخفل ، الوَّحَالِث ، التَّكُور الصفيفينينين

8

Aalek El Afdal Street lek, Cairo.

Fax: 27367231 - 27363093

۳ ش الملك الأفضل الزمالك - القاهرة تليفون + فاكس : ۲۷۳۲۷۲۳۱ - ۲۷۳۲۳۰۹۳ www.cel-egypt.com

Company Project المكتب النولي الحديث للمقاولات العامة والتوريدات :

: Electric express train.

Delivery Date Report Date

: 23/11/2023 : 02/12/2023

Sample Id Report No. : soil embankment (335+480:336+500) : 004

ORGANIC OF SOIL ASTM D 2974 METHOD TYPE D

Test	Results
Amount of organic Content %	NIL

مكتب معامل الأنتكام وراث الفندسية معامل الأنتكام وراث الفندسية الاشتجارات المحتوطية ويادة الاشتجارات المحتوطية ويادة ويادة ويادة ويادة ويادة المتعاددة ويادة وياد

El Malek El Afdal Street malek, Cairo.

l.& Fax: 27367231 - 27363093

M C

Contractor Company	or Company EL DAWLY ELHADETH		Designer Company		(K.K) Engineering Consulting Office						
	Name	Sign			Date/Seri				Ti	me	
issued by Contractor		Saler		17/11/2023 QT (§ D)			8:00				
			T	CI	CZ	C3	00	MM	YY	нн	ММ
Received by GARB CONSULTANT	Eng. Khaled Zaki	Khaled Taki	MAR	335	EW	cs	18	11	23	8	0

		51 to 521 D1 to 53		Kp XXX Note		
COOF-1	Station Reference		Depot Reference	For Kilometer point only Start Km is used		
1000			Work Activity			
400K (4			Sub Element of Activity			
Descriptio	n of Materials	Fill Layer Total Quantity (30000 m³)			
Location	to be Used	From Station 335+480 to	Station 336+480			
Samp	ole only	Yes	Materials Type	Fill layers		
Suppli	er Name	ELSEWY	Data Sheet provided	Yes attached		
Referen	ce in BoQ		Specification	EARTHWORK SPECIFICATIONS & TESTING REPORT (CG2 41.2) VERSION 2 BY CIVECON GROUP		
Prequalificat	ion reference		Test Samples Results	A		
Referenc	e Photos	No/Yes	Other			
	Comments by:	: (K.K)	Comments by: Eng. Alaa Abd-Allatif (ER)			
I-Quality test Result By Third	ality test Result By Third Party lab CEL is Approved.		1-All tests were selected fo lab CEL .	r Quality test and were carried-out by Thrid p		
-This Sample Representive (5	s Sample Representive (5000 m3) only.		2-Results report attached and acceptable with the project specificat			
		*	3-Final approval is subject	to above mentioned comments.		
I nis sample Representive ()	ооо на ј виу.	©.				

APPROVAL STATUS					
Organisation	Name	Sign	Date	A-AWC-	
Contractor	Eng. Saleh	Saloh		Α.	
IA/QC *	Eng. Khaled Zaki	Khaled	Zki	A	
ARB**	Eng. Margrit Magdi				
nployers Representative	Eng. Alaa Abd-Allatif	for e	813 2-12-20	23 Au	
Designer	Elig. Aidd Abu-Alldtif	fr	J-11-10.	23	

llignment/Bridges: Culvert only

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

: Electric Express Train, from Al Ain Sokhna to Marsa Matrouh Project

Type of sample : Soil Embankment Location : St. 335+480 : 336+480

Delivery Date : 18/11/2023 Reporting Date : 29/11/2023

Reporting No. : 006 Sample No. : 03

Dear Gentleman,

Attached here with the Soil Embankment delivered on 18/11/2023

Materials test

1. Sieve analysis according to ASTM D-422.

Material finer than sieve No. 200 according to ASTM D-1140.

3. Liquid limits and plasticity index of soil according to ASTM D-4318.

4. Soil classification according to Project Specs.

Proctor Test according to ASTM D-1557

CBR according to ASTM D-1883

Organic Content ASTM D-2974

Note: The sample was brought by the client to our laboratory and the laboratory is not responsible for the way it is taken

Signature

3 El Malek El Afdal Street

Zamalek, Cairo.

Tel.& Fax: 27367231 - 27363093

لملك الأفضل ن + فاكس ، ۲۷۳۹۷۲۳۱ - ۲۷۳۹۲۳۳ www.cel-egypt.

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

Project : Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample : Soil Embankment Location : St. 335+480 : 336+480

Delivery Date : 18/11/2023 Reporting Date : 29/11/2023

Reporting No. : 006 Sample No. : 03

RESULTS OF SIEVE ANALYSIS According to ASTM D-C 136

Sieve Size (mm)	Passing %
50	100
37.5	95.8
25	88.4
19	77.4
12.50	73.4
9.50	64.3
4.75	54.1
2.36	51.2
2.00	45.6
1.18	37.3
0.600	33.5
0.425	28.1
0.300	23.5
0.150	20.4

3 El Malek El Afdal Street

Lamalek, Cairo.

el.& Fax: 27367231 - 27363093

ں الملك الأفضل مالك - القاهرة بفون + فاكس ، ٢٧٣٦٧٢٣١ - ٢٧٣٦٣٠٩٣

www.cel-egypt.co.

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

: Electric Express Train, from Al Ain Sokhna to Marsa Matrouh Project

Type of sample : Soil Embankment

: St. 335+480 : 336+480 Location

Delivery Date : 18/11/2023 Reporting Date : 29/11/2023

Reporting No. : 006 Sample No. : 03

Materials finer than 75 μm (no.200) sieve by washing ASTM D-1140.

Test	Results (%)
Percentage of material finer than Sieve Size 75 μΜ (No.200)	14.1

Signature

3 El Malek El Afdal Street

Zamalek, Cairo.

Tel.& Fax: 27367231 - 27363093

٣ ش الملك الأفضل الزمالك - القاهرة تليفون + فاكس : ٢٧٣٦٧٢٣١ - ٣٢ ٢٧٣٦٢٠٩٣ www.cel-egypt.com

Consulting Engineering Bureau مكتب معامل الإستشارات الهندسية

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

: Electric Express Train, from Al Ain Sokhna to Marsa Matrouh Project

Type of sample : Soil Embankment : St. 335+480 : 336+480 Location

Delivery Date : 18/11/2023 : 29/11/2023 Reporting Date

Reporting No. : 006 Sample No. : 03

Results of liquid limit and plasticity index of soils according to ASTM D-4318

Test	Results (%)
Liquid Limit	26.2
Plastic Limit	21.4
Plasticity Index	4.8

Signature /...

3 El Malek El Afdal Street Zamalek, Cairo.

Consulting Engineering But مكتب معامل الإستشارات الهندسية

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

: Electric Express Train, from Al Ain Sokhna to Marsa Matrouh Project

Type of sample : Soil Embankment : St. 335+480 : 336+480 Location

Delivery Date : 18/11/2023 : 29/11/2023 Reporting Date

Reporting No. : 006 Sample No. : 03

Soil Classification According to Project Specs (Embankment)

TEST	Results (%)	Limits ac	
Group Classification	(A-1-a)	(A-1-a)	(A-1-b)
2.00 mm (No.10).	45.6	Max 50 %	
2.00 mm (No.10). 0.425 mm (No. 40).	28.1	Max 30 %	Max 50 %
0.075 mm (No. 200).	14.1	Max 15 %	Max 15 %
Characteristics of fraction passing 0.425	5 mm (No.40)		
Liquid Limit	26.2		
lasticity index	4.8	Max 6 %	Max 6 %

The test results are (Comply - D Not Comply) with specifications limits

Signature #

3 El Malek El Afdal Street

Zamalek, Cairo.

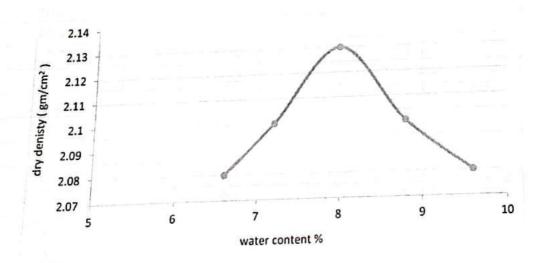
Tel.& Fax: 27367231 - 27363093

٣ ش العلك الأفضل الزمالك - القاهرة

تليفون + فاكس ، ٢٧٣٦٧٢٣١ - ٢٧٣٦٣٠٩٣ www.cel-egypt.com

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

: Electric Express Train, from Al Ain Sokhna to Marsa Matrouh Project


Type of sample : Soil Embankment

: St. 335+480 : 336+480 Location

Delivery Date : 18/11/2023 : 29/11/2023 Reporting Date

Reporting No. : 006 : 03 Sample No.

Moisture - Density relation of soil Test result (Modified proctor test) ASTM D-1557

Max dry density (gm/cm2) : 2.13

Optimum moisture content % : 8.0

Signature

3 El Malek El Afdal Street Zamalek, Cairo.

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

Project : Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample : Soil Embankment

Location : St. 335+480 : 336+480

Delivery Date : 18/11/2023 **Reporting Date** : 29/11/2023

Reporting No. : 006 Sample No. : 03

Test Results of California Bearing Ratio on Base Materials **ASTM D 1883**

pen	etration	stress on niston (Mno)
mm	Inch	stress on piston (Mpa)
0.64	0.025	0.83
1.27	0.050	1.12
1.91	0.075	1.44
2.54	0.100	1.90
3.18	0.125	2.37
3.81	0.150	2.72
4.45	0.175	3.02
5.08	0.200	3.22
5.71	0.225	3.47
6.35	0.250	3.67

CBR Result	Stress (Mpa)		CBR %
At 0.1 inch (2.54 mm)	St. Value	Sample results	
penetration	6.90	1.90	27.6

Notes:

1- Attached graph shows penetration resistance versus penetration magnitude.

2- The sample was compacted to dry density of 2.13 (gm/cm³) at 8.0 % optimum water content.

Surcharge load 4.50 Kg.

Signature

3 El Malek El Afdal Street

Zamalek, Cairo.

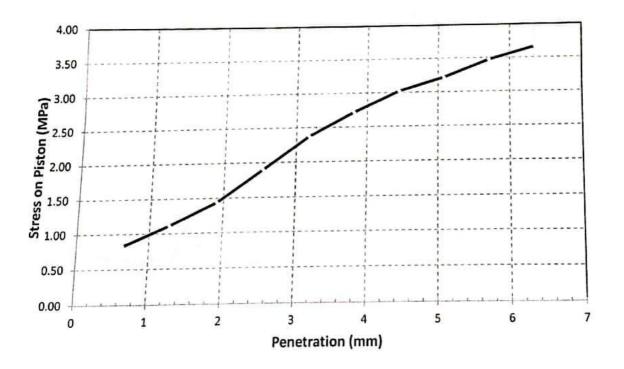
Tel.& Fax: 27367231 - 27363093

٣ ش الملك الأفضل الزمالك - القاهرة تليفون + فاكس : ٢٧٣٦٧٢٢١ - ٢٧٣٦٢٠٩٣ www.cel-egypt.com

المكتب الدولي الحديث للمقاولات العامه و التوريدات: company Name

Project : Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample : Soil Embankment


Location : St. 335+480 : 336+480

Delivery Date : 18/11/2023

Reporting Date : 29/11/2023

Reporting No. : 006 Sample No. : 03

Load Penetration Curve of CBR Test <u>ASTM D-1883</u>

مكتب معامدل الإستشار التسلامين الإستشار التسلامين الإستشار التسلامين التسلام التسلام

8

Company

المكتب الدولي الحديث للمقاولات العامة والتوريدات :

Project

: Electric express train.

Delivery Date

: 23/11/2023

Report Date

: 02/12/2023

Sample Id

: soil embankment (335+480:336+500)

Report No.

: 006

ORGANIC OF SOIL ASTM D 2974 METHOD TYPE D

Test	Results
Amount of organic Content %	NIL

مكتب معامل الاستنطاع المنظم ا

Contractor Company	EL DAWLY ELHADET	H		Designer	Company			(K.K) Enginee	ering Consult	ting Office	
	Name	Sign	-		Date/Seri	al Numbe	r		Ti	me	
Issued by Contractor	Eng. Saleh	Salch				/2023 (7 4)			8:	:00	
Received by GARB		111124	T	CI	CZ	C3	DD	ММ	YY	HH	MN
CONSULTANT	Eng. Khaled Zaki	Klaladaki	MAR	335	EW	cs	5	10	23	8	0

	51 to 521	D1 to 53	Kp XXX Note	
CODE-1	Station Reference	Depot Reference	For Kilometer point only Start Km is used	
(00) - 1		Work Activity		
(0.01 - 1		Sub Element of Activity		

Description of Materials	Fill Layer Total Quantity (15000 m³)	
Location to be Used	From Station 335+480 to	Station 336+480	
Sample only	Yes	Materials Type	Fill layers
Supplier Name	ELSEWY	Data Sheet provided	Yes attached
Reference in BoQ		Specification	EARTHWORK SPECIFICATIONS & TESTING REPORT (CG21 41.2) VERSION 2 BY CIVECON GROUP
Prequalification reference		Test Samples Results	
Reference Photos	No/Yes	Other	3
Comments by	r (KK)	Commen	ts by: Eng. Alaa Abd-Allatif (ER)

1-Quality test Result By Third Party lab CEL is Approved.

anielli are the lake shouls

1-All tests were selected for Quality test and were carried-out by Thrid party lab CEL .

2-Results report attached and acceptable with the project specifications.

3-Final approval is subject to above mentioned comments.

APPROVAL STATUS				
)rganisation	Name	Sign	Date	A-AWC-R
ontractor	Eng. Saleh	Salch		А
A/QC *	Eng. Khaled Zaki	phalad a	ki'	AWC
ARB**	Eng. Margrit Magdi			
nployers Representative	Eng. Alaa Abd-Allatif	for e	elf 2-12-2	2023 Awa

llignment/Bridges; Culvert only

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

Project

: Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample

: Soil Embankment

Location

: St. 335+480 : 336+480

Delivery Date

: 05/10/2023

Reporting Date

: 25/10/2023

Reporting No.

: 003

Sample No.

: 03

Dear Gentleman,

Attached here with the Soil Embankment delivered on 05/10/2023

Materials test

1. Sieve analysis according to ASTM D-422.

- 2. Material finer than sieve No. 200 according to ASTM D-1140.
- 3. Liquid limits and plasticity index of soil according to ASTM D-4318.
- 4. Soil classification according to Project Specs.
- 5. Proctor Test according to ASTM D-1557
- 6. CBR according to ASTM D-1883
- 7. Organic Content ASTM D-2974

Note: The sample was brought by the client to our laboratory and the laboratory is not responsible for the way it is taken

Signature

الفرق الونيس المثوا الله الملتز الومالية التامود

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

Project : Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample : Soil Embankment

Location : St. 335+480 : 336+480

Delivery Date : 05/10/2023 Reporting Date : 25/10/2023

Reporting No. : 003 Sample No. : 03

RESULTS OF SIEVE ANALYSIS According to ASTM D-C 136

Sieve Size (mm)	Passing %		
50	100		
37.5	95.6		
25	89.3		
19	81.4		
12.50	74.6		
9.50	63.4		
4.75	56.8		
2.36	47.9		
2.00	43.6		
1.18	37.7		
0.600	33.6		
0.425	28.9		
0.300	24.1		
0.150	19.8		

Signature /.

مكتب معامسل الإستشسارات الهندسي الساحسل الشمالندن 22

2

3 El Malek El Afdal Street Zamalek, Cairo.

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

Project : Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample : Soil Embankment

Location : St. 335+480 : 336+480

Delivery Date : 05/10/2023 Reporting Date : 25/10/2023

Reporting No. : 003 Sample No. : 03

Materials finer than 75 μm (no.200) sieve by washing ASTM D-1140.

Test	Results (%)
Percentage of material finer than Sieve Size 75 μΜ (No.200)	14.2

Signature /

3 El Malek El Afdal Street Zamalek, Cairo.

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

: Electric Express Train, from Al Ain Sokhna to Marsa Matrouh Project

: Soil Embankment Type of sample

: St. 335+480 : 336+480 Location

: 05/10/2023 **Delivery Date** : 25/10/2023 Reporting Date

Reporting No. : 003 : 03 Sample No.

Results of liquid limit and plasticity index of soils according to ASTM D-4318

Test	Results (%)
Liquid Limit	25.6
Plastic Limit	20.7
Plasticity Index	4.9

Signature /.

3 El Malek El Afdal Street

Zamalek, Cairo.

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

: Electric Express Train, from Al Ain Sokhna to Marsa Matrouh Project

Type of sample : Soil Embankment

Location : St. 335+480 : 336+480

Delivery Date : 05/10/2023 Reporting Date : 25/10/2023

Reporting No. : 003 Sample No. : 03

Soil Classification According to Project Specs (Embankment)

TEST	Results (%)	Limits according Projects Specs		
Group Classification	(A-1-a)	(A-1-a)	(A-1-b)	
2.00 mm (No.10).	43.6	Max 50 %		
0.425 mm (No. 40).	28.9	Max 30 %	Max 50 %	
0.075 mm (No. 200).	14.2	Max 15 %	Max 15 %	
Characteristics of fraction passing 0.42	5 mm (No.40)			
Liquid Limit	25.6			
lasticity index	4.9	Max 6 %	Max 6 %	

The test results are (Comply - Dot Comply) with specifications limits

Signature

3 El Malek El Afdal Street

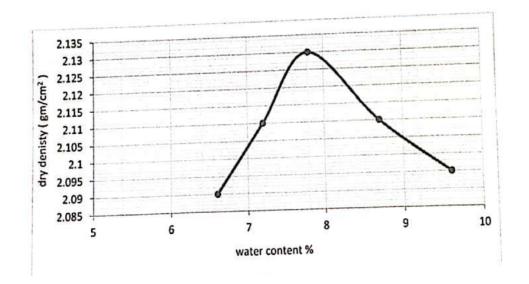
Zamalek, Cairo.

Tel.& Fax: 27367231 - 27363093

٣ ش العلك الأفضل الزمالك - القاهرة تليفون + فاكس : ٢٧٣٦٧٢٣١ - ٢٧٣٦٣٠٩٣ www.cel-egypt.com

المكتب الدولي الحديث للمقاولات العامه و التوريدات: mpany Name

roject : Electric Express Train, from Al Ain Sokhna to Marsa Matrouh


Type of sample : Soil Embankment

Location : St. 335+480 : 336+480

Delivery Date : 05/10/2023 Reporting Date : 25/10/2023

Reporting No. : 003 Sample No. : 03

Moisture – Density relation of soil Test result (Modified proctor test) ASTM D-1557

Max dry density (gm/cm²) : 2.13

Optimum moisture content % : 7.8

Signature /

التوقد الرئيس * فان الله الأفلا ، الزامانة ، الكامرو

6

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

: Electric Express Train, from Al Ain Sokhna to Marsa Matrouh project

Type of sample : Soil Embankment

Location : St. 335+480 : 336+480

Delivery Date : 05/10/2023 **Reporting Date** : 25/10/2023

Reporting No. : 003 : 03 Sample No.

Test Results of California Bearing Ratio on Base Materials **ASTM D 1883**

pen	etration	stress on piston (Mpa)
mm	Inch	
0.64	0.025	1.34
and the first of t	0.050	1.58
1.27	0.075	1.88
1.91	0.100	2.14
2.54	the state of the s	2.51
3.18	0.125	2.86
3.81	0.150	3.09
4.45	0.175	The second secon
5.08	0.200	3.37
The second secon	0.225	3.62
6.35	0.250	3.98

CBR Result	Stress (Mpa)		CBR %
	St. Value	Sample results	30.9
At 0.1 inch (2.54 mm) penetration	6.90	2.14	500

Votes:

Attached graph shows penetration resistance versus penetration magnitude.

2- The sample was compacted to dry density of 2.13 (gm/cm³) at 7.8 % optimum water content.

3- Surcharge load 4.50 Kg.

ignature

3 El Malek El Afdal Stree

Zamalek, Cairo.

Tel.& Fax: 27367231 - 27363093

٣ ش العلك الأفضل الزمالك ـ القاهرة تليفون + فاكس : ٢٧٣٦٧٢٣١ - ٢٧٣٦٣٠٩٣ www.cel-egypt.com

Consulting Engineering E مكتب معامل الإستشارات الهندسية

المكتب الدولي الحديث للمقاولات العامه و التوريدات: Company Name

project

: Electric Express Train, from Al Ain Sokhna to Marsa Matrouh

Type of sample

: Soil Embankment

Location

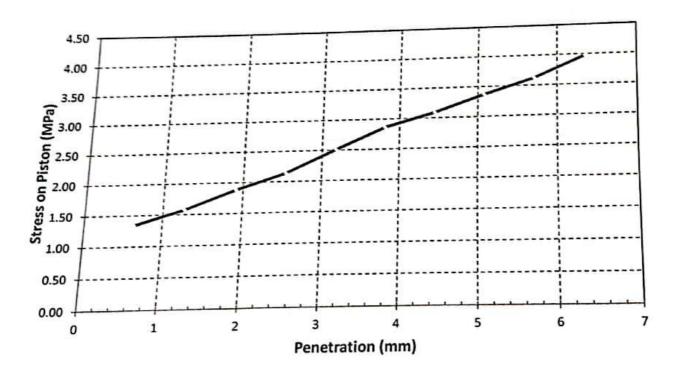
: St. 335+480 : 336+480

Delivery Date

: 05/10/2023

Reporting Date

: 25/10/2023


Reporting No.

: 003

Sample No.

: 03

Load Penetration Curve of CBR Test ASTM D-1883

Signature

Company

المكتب الدولي الحديث للمقاولات العامة والتوريدات :

Project

: Electric express train.

Delivery Date

: 23/11/2023

Report Date

: 02/12/2023

Sample Id

: soil embankment (335+480:336+500)

Report No.

: 003

ORGANIC OF SOIL ASTM D 2974 METHOD TYPE D

Test	Results
Amount of organic Content %	NIL

مكتب معامل الاستخطاعة الهندسلي Signature الهندسلي عامل الاستخطاعة الهندسلية الاستخطاعة المحتملة المحت