للطرق والخبارى محضر استلام موقع مشروع: أعمال الجسر الترابي والاعمال الصناعية لمشروع القطار الكهرياني السريع (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح (مرحلة الحفر وتشكيل الجسور والتأسيس والأساس والخرسانة) لتنفيذ المسافة من الكم 500+524 الى الكم 0.38+524 بطول 0.38 كم تَنْفَيدُ: شركة المصطفى للمقاولات "أحمد مصطفى عبدالمحسن" اشراف : المنطقة الخامسة - منطقة غرب الدلتا طبقاً للعقد رقم (2024/2023/336) بتاريخ : 7/9/2023 إنه في يوم الخميس الموافق 7 /2/2023 اجتمع كل من :-مدير عام المشروعات - الهينة العامة للطرق والكباري 1- السيد المهندس / محمد حسني فياض مهندس العملية - الهينة العامة للطرق والكباري 2- السيد المهندس /إبراهيم عبد الله الحناوي مدير مشروع - شركة المصطفى للمقاولات 3- السيد المهندس / مصطفى محمد ثابت وذلك للمرور على مسار العملية المذكورة عاليه لاستلام الموقع :-وقد تبين أن الموقع خالياً من العوانق الظاهرية ويسمح بالبدء في التنفيذ وبناء عليه يعتبر تاريخ 2023/9/27 هو تاريخ استلام الموقع وبدء الأعمال بالعملية. واقفل المحضر على ذلك ووقع الحضور التوقيعات -tike -3 -et-1 رنيس الادارة المركزية منطقة غرب الدلتا الاسكندرية - مرسي مطروح عميد , مهندس / @ "هالي محمد محمود طه" "١

Compressive Strength For Stone Semple

Testing date	13-54-2023
Company Name	AL MUSTAFA
Location	524+500 To 524+800

Sample- No	Station	Waged (gm)	Violania (Gm3)	Demisty (gm/cm3)	Average Deritsty mencer3)	Accent (ISN)	Strangtil (Kg/Gm2)	Average Strongth (Kg/Gm2)
1		999	421.88	2.37		249	450.69	
2	524+500 To 524+560	915	421.88	2.17	2.31	132	238.92	463.4
3		1007	421.88	Z.39		387	700.47	
4		1042	421.88	2.47		395	466.495	
5	524+560 To 524+620	948	421.88	2.25	2.22	299	353.119	318.5
6		823.5	421.88	1,95		115	135.815	
7		714	.343.00	2.08	2.08 117 243.36 2.12 2.17 165 345.28	243.36	1	
8	524+620 To 524+680	726.8	343.00	2.12		165	345.28	251,8
9		853	367.50	2.32		86	166.84	
10		841	421.88	1.99	1000	75	135.75	
11	524+580 To 524+740	866.6	421.88	2.05	1.97	86	155.66	152.0
12		789	421.88	1.87		.91	164.71	
13	And the second second	850	421.88	2.48	1.1	80	144.8	
14	524+740To 524+800	802	343.00	2.55	2.53	60	124.8	131.5
15		879	-421.88	2.55		69	124.89	

Consultant Engineer Nome: Hassan

Sign :

From El An El Bohne City To El Alamein - MATROUH		From El An El Sokhna City To El Alamein - BATROUH Secti-n - 7 From FCKA 10 MARSA MATROUH	الهمة القهيد فالكاني المدوالتراده
--	--	---	-----------------------------------

Compressive Strength of stone sample

Touting Date	25-2-2023	Station	\$38+549 To 526+759
Location .	K.P (524+500)	Material	Reck
Computer Name	المصطفى	Macruel	Hat

Dersaming i

AL Nuby Central Lab

Sample No,	Station	wieght (gm)	deristy (gm:um3)	Average Density	load (ICN)	Strength (Kg/cm2)	Average Strength (Kg/cm2)
1		910	2.65		384	1967	
3	524+500 Te 524+550	898	2.62	2.50	409	\$50.7	641.3
3		765	2.23		132	279.6	
4		866.5	2.53		602	1252.2	
5	524+550 To 534+600	828	2.41	2.54	398	427.8	1107.9
6		921	2.69		596	1243.8	-
7		980.9	2.86		510	1060.5	857.7
*	\$24+600 To \$24+850	947.8	2.76	2.63	586	3238.9	
9		776	2.26		141	193.3	
10		943.4	2.75		699	1453.9	
11.	524+650 To 524+700	938	2.13	2.73	513.6	1068.3	1248.4
12		981	2.71		588	1228.0	
13		850.4	2.48		634	1818.7	
14	524+700 To 524+750	889.4	2.59	2.58	645	1341.6	1218.2
15		912	2.66		478	994.2	

last Erg

Faculty of Engineering

Engineering Center for Community Development Properties and strength of Material Lab. Structural Engineering Dept

جامعة الإسكندرية كلية الهندسة المركز الهندسي للخدمة العامة معمل خواص ومقاومة المواد قسم الهندسة الإنشانية

اختيار الضغط على عبنات حجر

عينة رقم (2)

(من المحطة 540+524 الى المحطة 580+ 524)

نتائج الأختيار:-

A.		أيعاد العينة (سم)		مساحة المقطع	فرّن العينة	حمل الكسر	اجها <i>د</i> الكسر	ملاحظات
	طول	عرض	ارتقاع	(سم 2)	(جم)	م) (kN) (كجم/سم2)		
1	7.0	7.0	6.8	49.0	850	265	551.3	
2	7,0	6.8	7.0	47.6	772	105	224.9	+
3	7.0	6.9	7.0	48.3	805	283	597.3	

ملحوظة هامة:

م تحديد عدد العينات (3) بمعرقة العميل ، مع العلم أن هذا العدد غير مطابق للمواصفات القياسية لهذا الاختبار
م توريد العينات بمعرفة العميل وكذلك المعلومات الخاصة بها .

المشرف على الاختيار 10 . 5 د. اسماعيل أحمد محمد محر و س

تحريرا في : 2023/2/9 رقم التقرير . 6

جمهورية مصر العربية ، الأسكندرية ، ص. ب. 1544 – تايتون 6/7/ 5925550 (03) – فاكس 5921853 (03)

Faculty of Engineering

Engineering Center for Community Development Properties and strength of Material Lab. Structural Engineering Dept

جامعة الإسكندرية كلية الهندسة المركز الهندسي للخدمة العامة معمل خواص ومقاومة المواد قسم الهندسة الإتشانية

اختيار الضغط على عينات حجر

عينة رقم (3)

(من المحطة 524+580 الى المحطة 620 + 524)

نتائج الأختبار:-

رقم		أبعاد العيثة (سم)		مساحة المقطع	ودن العينة	نعينة الكسر الكسر		ملاحظات
	ظول	عرض	ارتفاع	(سم 2)	(جم)	(kN)	(كجم/سم2)	
1	7.0	7.0	7.1	49.0	873	293	609.5	
2	7.0	7.0	7.0	49.0	870	209	434.8	
3	7.0	7.0	7.1	49.0	845	257	534.6	

. ملحوظة هامة:

- تم تحديد عدد العيدات (3) بمعرفة العميل ، مع العلم أن هذا العدد غير مطابق للمواصفات القياسية لهذا الاختيار
- تم توريد العيدات بمعرفة العميل وكذلك المعلومات الخاصة بها .

المشرف على الأختبار مدير المعمل 1 452 . 5 در عبد اللطيف السيد ابو د اسماعيل أحمد محمد محر وس تحريرا في : 2023/2/9 ر قم التقرير

جمهورية مصر العربية ، الاسكندرية ، ص. ب. 1544 = تليقون 7/6/ 592550 (03) - فاكس 5921853 (03)

Faculty of Engineering

Engineering Center for Community Development Properties and strength of Material Lab. Structural Engineering Dept

جامعة الإسكندرية كلية الهندسة المركز الهندسي للخدمة العامة معمل خواص ومقاومة المواد قسم الهندسة الإتشانية

اختبار الضغط على عينات حجر

عينة رقم (4)

(من المحطة 620 +524 الى المحطة 660 + 524)

نتائج الأختيار:-

قم		أبعاد العبنة (سم)		مساحة المقطع	وذن العينة	حصل الكسر	إجهاد الكسر	ملاحظات
	طول	عرض	ارتقاع	(22)	(جم)	جم) (kN) (کچم/سم2)		
1	7.0	7.0	7.0	49.0	786	153	318.3	
2	7.0	7.0	6.9	49.0	816	296	615.8	
3	7.0	7.0	7.1	49.0	855	249	518.0	

ملحوظة هامة:

- تم تحديد عدد العيدات (3) بمعرفة العميل ، مع العلم أن هذا العدد غير مطابق للمواصفات القياسية لهذا الاختبار
- تم توريد العيدات بمعرفة العميل وكذلك المعلومات الخاصة بها .

المشرف على الاختبار مدير المعما 010 د. عبد اللطيف السيد أبو . د. اسماعيل احمد محمد محر و تحريرا في : 2023/2/9 ر قم التقرير

جمهورية مصر العربية ، الاسكندرية ، ص. ب. 11544 – تلينون 6/7/ 5925550 (03) – فاكس 5921853 (03)

Faculty of Engineering

Engineering Center for Community Development Properties and strength of Material Lab. Structural Engineering Dept

جامعة الإسكندرية كلية الهندسة المركز الهندسي للخدمة العامة معمل خواص ومقاومة المواد قسم الهندسة الإنشائية

اختبار الضغط على عينات حجر

عينة رقم (5)

(من المحطة 660 +524 الى المحطة 700 + 524)

نتائج الأختيار:-

رقم	أيعاد العلينة (سم)			مساحة المغطع	وزن حمل العيلة الكسر		اجهاد الکسر	ملاحظات
	طول	عرض	ارتقاع	(محمد 2)	(جم)	(عجم/سم (kN) (عجم/سم 2)		
1	7.0	7.0	6.9	49.0	877	244	507.6	degh.
2	7.0	7.0	7.0	49.0	868	226	470.2	- dia
3	7.1	7.0	6.9	49.7	825	319	654.3	

- ملحوظة هامة:

تم تحديد عدد العينات (3) بمعرفة العميل ، مع العلم أن هذا العدد غير مطابق للمو اصفات القواسية لهذا الاختيار
تم توريد العينات بمعرفة العميل وكذلك المعلومات الخاصة بها .

المشرف على الاختبار 2. 105 د. اسماعيل أحمد محمد تحريرا في : 2023/2/9 رقم التقرير

مدير المعمل

Faculty of Engineering

5.18

Engineering Center for Community Development Properties and strength of Material Lab. Structural Engineering Dept

جامعة الإسكندرية كلية الهندسة المركز الهندسي للخدمة العامة معمل خواص ومقاومة المواد قسم الهندسة الإنشانية

اختيار الضغط على عينات حجر

عينة رقم (1)

(من المحطة 500+524 الى المحطة 540 +524)

نتائج الأختيار:-

ملاحظات	إجهاد الكسر	العينة الكسر الكسر		مساحة المقطع				
_	(2 (kN) (جم/سم) (kN) (ج	(جم)	(سم 2)	ارتفاع	عرض	طول		
	419.7	196	793	47.60	7.0	6.8	7.0	1
	439.1	196	767	45.50	7.0	6.5	7.0	2
	289.0	135	765	47.61	7.0	6.9	6.9	3

- ملحوظة هامة:

تم تحديد عدد العينات (3) بمعرفة العميل ، مع العلم أن هذا العدد غير مطابق للمواصفات القياسية لهذا الاختبار
تم توريد العينات بمعرفة العميل وكذلك المعلومات الخاصة بها .

المشرف على الاختبار مدير المعمل 2 1 0/09 د. اسماعيل أحمد لحمد د. عبد اللطيف السيد أبو محروير تحريرا في : 2023/2/9 رقم التقرير:-C.04/ 909 Republic V

جمهورية مصر العربية ، الاسكندرية ، س. ب. 1544 - تليفون 6/7/ 5925550 (03) - فاكس 5921853 (03)

MATERS INSPECT REDUCT	ΟŇ	الهيئة القومية للإنقاق	Maria Januaria Januaria	IL ADDINE	Laure addition	
Contractor		MOSTAFA COMPAN	v	Designe	r Company	

Company	AL-IVIOSTAFA CON	PANT					1.11	n.n.				
issued by	Name	Sign		Date				Time	Time			
Contractor	MOSTAFA THABET	Kostala Thebe		26-02-2023								
Received by				1	11	G	DD	MM	YY	HH	MM	
Received by ER			MIR	8.JP 524	EW	0.7	26	nr	2023			

CODE 1	51 to 521 Station Reference	D1 to 53 Deput Reference	Kp XXX Note For Kilometer point only Start Km is used
CODE - Z		Work Activity	
CODE-3		Sub Element of Activity	

Desci	ription of N	laterials		REPLA	CEM	ENT FILL M	ATERIAL RES	ULTS
Locat	lon to be U	lsed	From 524+900 524+880 524+880 524+820 524+820 524+820 524+800 524+800 524+800	TO 524+920 524+920 524+920 524+920 524+920 524+920 524+920 524+920 524+920	FILL FILL FILL FILL FILL FILL	(-3.00 m) (-2.50 m) (-2.00 m) (-1.75 m) (-1.50 m) (-1.25 m) (-0.75 m) (-0.75 m) (-0.50 m)		
MAR	Approval N	la					Date	
Supp	lier Name							
Test	Requireme	nt			Spe	cification	Clause	
Refer	Reference Photos		Yes attach	ed / No	Oth	er		
item	Descripti	on		Unit		Quantity	Arrival Date	Note
1		Sieve and	alysis		M3	5000	26-02-2023	
2		Classifica	ation		M3	5000	26-02-2023	
3	P	roctor &	O.M.C		M3	5000	26-02-2023	
4		L.L & P.L	& PI		M3	5000	26-02-2023	
5		C.B.	8		M3	10000	26-02-2023	
	ments by:					Comments by		
	UMA BADR	LAB) and	rom fill mater the results fo ns and accept	unded meet ed.	the			
-	-	Lai		the system is		STATUS	Inclusion	I diament
Orgai	nisation	Name			lgn		Date	A-AWC-R
Contr	ractor	Hosta	he That	Her 1	Lest	als This het		
)C *	Abda	Albh SAN	17 1	Ab	low		
GARB	3=+							
	oyers esentative							

File: MtR - Material Inspection Request Rev E

Contractor Company	AL-MOSTAFA CON	IPANY		Desi	gner C	ompa	ny	K.K			
the second has	Name	Sign		Date			Time				
Issued by Contractor	Mostafa Thabet	Hstoly TA	iter	28-0	2-202	3					
Received by				64	C2	63	DG	MM	w	HH	MM
ER	_		STR	R.P 524	EW	0.T	25	02	7023		

CODE-1	\$1 to \$21	D1 to 53	Kp XXX Note
-	Station Reference	Depot Reference	For Kilometer point only Start Km is used
CODE - 2		Work Activity	
CODE-3		Sub Element of Activity	

		NB: Package 1 Only (Pai	ckage 2 via Aconex)		
	THE FOL	LOWING TEST RESULTS A	RE ATTACHED FOR REVIEW		
Descripti	on of Test Materials	Soil (A-1-b)			
Location of Test			K.P (524)	-	
Item	Specification	Test Requirement	Test Result Attachment	Remarks	
1	ASTM D 75	Aggregate sampling	According to specification		
2	ASTM C 136	Sieve Analysis	According to specification		
3	ASTM D 1440	Passing sieve #200	13.2		
4	ASTM D 4318	Atterberg limit	N.P		
5	ASTM D 2974	Moisture content	6.3		
6	ASTM D 1557	Modified proctor	2.16	_	
7	ASTM D 1883	C.B.R	53.0		
		1			

Comments by:	Comments by:

	A	PPROVAL STATUS		
Organisation	Name	Sign	Date	.A-AWC-R
Contractor	Mostah Thabet		* T I.	A
Designer	Hassan	2000		A
GARB *		-		
Employers Representative	1			

File: MAN Test Result Form Rev E

AL Huby Central Lati

California Bearing Ratio TEST

Testing Date	1/3/202023	Codit			
Location 1	K.P (524+800)		FROM STA	An angles	525+000
Company Name	AL Mustafa	MO (2)			

-: Test Results

Compaction % for Mold	-
Mintal No.	4.
Huld Vol. (cm ³)	2158
Meld WT. (gm)	\$290
Model WT. + Wes. WT. (gpm)	-1011
ike WT. (gni)	4921
West Density (g/cm ⁸)	1.280
they Density (g/2mm ²)	2.154
Precise Density 1.9/1791	2.140
Compaction **-	49.7

Tarn Na.	18
Tare WT. (gm)	48.7
Tare WT. +Wet WT. Igni	150
Tare WT. + Dry WT. (gm)	1461
2.3vn	1.1
bry WI; igni	104.4
Meisture Content %	5,9

Sheathing	
VM#d./in.	1
Due	1/3/2628/23
Social Height (mm)	5,00
Final Height (nori)	5.15
inDeressi	
Sample Height (mm) /	120.00
Inching Main 14	0.1%

Loading Reading :

			Li		3.18	3.89	4.45	5.00	5.40
46.50	3.64	1.27	1.91	1.54	3.18	- Print.	_		0.02
Load Reading (mm)	8.83	9.88	-	36.81	9.32		-0.32	1.34	9,42
	4444				44		9.6	10.8	12.6
Lond (KN)	0.9	2.4	3.9	3.1	6.6			-	

Calculations :-

cumpons	In Leader -		and the later		Comparison	LBB
E number	Load	Stendard Lund	CBR	Muld - Contemportune	2.41.5	
Peditretos	(8.8)	(Ib)	1463	1.01	1963	17.5%
(mm)	-	13.4	and the		-	11.0%
3.50	. 10			100		34.0.0
4.00	a second	78.0	the second second		the second second	

Cansulaint Engineer Lib. R Lob. Speciality 0 Name: Frank? Vater 40.0 i felgeli 1-22

California Bearing Ratio TEST

Testing Date (1/3/202023	Code			
Lacation :	K.P (524+800)	section	INDUSTS!	12+	125.000
Company Name	AL Mustafa	MO (2)			125+000

.: Test Results

Compaction % for Mold	
Mald No.	T.
Madd Vin. (cm ³)	1158
Mald WT. (gm)	-
Sealed WT, - Wet WT. (gas)	1851
Wei WT. (gas)	4921
With Density (g/cm ³)	1.250
Dry Drawity (g/cm ²)	3.854
Pressor Density (g/cm ²).	1.160
Competition %-	98.7

Tany No.	38
Tare WT. (gm)	43,7
Then WT Wei WF. (gm)	150
Tare WT. +Day WT. (gm)	1461
1348	63
Dry W.L. (gm)	106.4
Maintare Couters 14	3.9

Switting	
Wedd Siz	1
Date	10/2/08/25
fectial 21-sight (may)	1.00
Winak Melght (men)	5.13
Lifference	
Sixegle Halgh (stor)	136.00
welling Rates to	0.1%

Consultant Engineer

Name

P

Loading Reading :

46.50	8.64	1.27	1.91	2.44	3.18	3.89	4,45	5,00	8.40
Lood Heading (mm)	1.03	0.00	0.13	141	9,22	0.27	9.32	6.84	8,42
Lord (KN)	1.9	1.4	3,9	5.1	6.6	8.1	9.6	19.8	12.4

Calculations 2.

		1 Mail 1786 Maile - Compaction		And Printers	Committee	CHR
Pentaration	Lopi	Stateturd Land -	136	State - c suggerner		-
(mm))	(86m)	(16)	1968	1791	1963	37.5%
2.50	5.00	L1,4	16.275	100		51.075
5.00	LO.M.	199.0	10.075			

*9.1°**

20 212

Call. For

Same.

100

Lab, Speciation

Name :

Sign 1.

	Electric Express Train - HSR Fran El Aln El Sokhas City To El Mamoin - MATHOUH Dection - 7 Fran FOKA To MARSA MATROUH	marine set set instant
Oproving Lab AL Nuby Central La	Firm Blating 604+050 To Station 243+177	

PARTICLE SIZE DISTRIBUTION OF SOIL

TESTING DATE:	26-2-2023	26-2-2023 Code			
LOCATION	K.P (524+800)		2006	524+500	825+000
NAME COMPANY	AL Mustafa	MO-LD	_		

1-VIBUAL INSERCTION ME

2-Gradient test

-gradation of bulk mate	riais			SAMPLE W	EIGHT (g)	2524	6,00	gm	1	table classify
steve size	2	1.5	1	4/3	2/1	8/3	#4	PASS		soli classify
Mass retained (g)	0.0	2215.0	2141.0	1907,0	2104.0	2201.0	2141.0	-		A-1-b
Currolative Related (g)	20	TAPACK.	4357.0	5344.0	8448.0	10649.0	12790,0		PRO	2.16
Cumulative Retained N.	28	A.B	(7.3	25.1	33.5	42.2	50.7		WC	6.30
Constance Passing %	105.1	91.2	82.7	74.8	11.10	17.8	40.5		CBR	5374

6-soft material gradation			F	WT.OF sample	600.00	gm
SHEVE \$126	10	40	300			
Comutatione Relations (g)	29.60	160,00	3/46.70			-
Comulative Persined %	6.12	12 05	73.34			
Simulative Passing %	34.68	HE.00	26,68			

C-General gradient

2	1.5	1	3/4	1/2	3/6	#4	# 10	# 40	# 200
50.0	37.5	25.0	19.0	12.5	9.5	4.75	2.00	0.425	0,076
100.0	91.2	112.7	74.8	18.5	67.đ	496.2	- HL.P	30.6	137
				-		_	-		-
						-	-		
		50.0 37.5	50,0 37.5 25.9	50.0 37.5 25.0 19.0	50.0 37.5 25.0 19.0 12.5	50.0 37.5 25.9 19.0 12.5 9.5	50.0 37.5 25.9 19.0 12.5 9.5 4.75	50.0 37.5 25.9 19.0 12.5 9.5 4.75 2.00	50,0 37,5 25.0 19.0 12.5 9.5 4.75 2.00 0.425

ATTEREMENT	WORD LINT LA.I	PLANTIC LINEY (TILL)	CLARKE HUGH BILL
LINTS	N.P	N.P	N.P

Contractor.

Consultant

the

	Electric Express Train - HSR From El Ain El Sokhna City To El Alemain - MATROUH Section - 7 From FOKA TO MAREA MATROUH	-	Mill Sweet Bage
Partie of Wally Beer and	From Bratino Statedop 74 Ballion Shire 77		4

PROCTOR TEST

TEST	ING DATE	26-2-2023	Code			
LOG	ATION	KP (524+800)	Gotte	2000	524+500	525+000
NAME	COMPANY	AL Mustafa	MO (2)			

Veight of empty mold :	br of empty mold : 6037,0		MAX Dry Den	aity	2,35
Mold Volume:	2193.0		Water content %		13
trial no 1	1	1	3		1
WI. Of Mold+wet.mii	10145.0	30575.0	19865.0	10621	
WT. WETSON.	41005.0	4538.0	4828.0	1784.0	
WI. Dedsity	1.953	2.158	2.2%	2.275	

Ture No.	20	18	73	7	10	-8	π	20	-
Tare wi.	60.0	7.7	41.5	42.0	43.3	46.7	46.3	60.3	
WL Of wer soil & tare	150.0	358.0	150.0	150.0	158.0	150.0	150.0	150.0	
Wit Of dry will & take	146.7	143.1	145.5	145.6	148.7	1460	141.9	143.2	
Wit Of water	3.3	0.9	4.5	4.4	6.3	6,0	4.1	6.8	
Wit. Of day soil.	123.0	267,8	103.6	183.0	108.4	97.3	95.6	82.9	
We ster content %	2.7%	2.6%	4.4%	4.3%	6.3%	6.2%	2,5%	8.2%	
AV.H ater cursent %	2.6	1%	43	559	-6.3	1%	4,3	176	
Des Density	1.5	40.3	2.0	169	2.1	61	2.1	100	

Consultant Hassan 420

Contractor Company	AL-MOSTAFA CON	IPANY	Desi	gner C	ompa	ny	K.K				
Issued by	Name	Sign	Date				Time				
Contractor	MOSTAFA THABET	Hostil TI	uber	26-0	3-202	3				1	
Received by				C.1."	02	13	DD	MM	YY	HH	MM
ER			MIR	8.P 324	¢W.	0.7	36	113	2023		

CODE-L	51 to 521	D1 to 53	Kp XXX Note
and the second se	Station Reference	Depot Reference	For Kilometer point only Start Km is used
CODE-2		Work Activity	
CODE - 3		Sub Element of Activity	

Descr	ription of M	laterials	rials REPLACEMENT FILL MATERIAL RESULTS									
Locat	ion to be U	ised	From 524+900 524+880 524+920 524+920 524+920	70 524+92 524+92 525+00 525+00 525+00	O FILL	L (-0.25 FERMA L (-3.00 L (-2.50 L (-2.00	m) m)					
MAR	Approval N	lo						Dat	e			
Suppl	ier Name											
Test F	Requirement	nt			Sp	pecification Clause		Clause		ation Clause		
Refer	ence Photo	5	Yes attack	ed / No	Ot	ther						
Item	Descripti	on		Unit		1	Quantity	Arrival	Date	Not		
1		Sieve and	alysis		M3		5000	26-03-2023				
2		Classifica	assification		M3		5000	25-03-2023				
3	P	roctor &		M3			5000	26-03-2023				
4		LL& P.L	& PI		M3		5000	26-03-2023				
5		C.B.F	8		M3	_	10000		3-2023			
	nents by:		om fill mate				ments by:	:				
	UMA BADR	LAB) and	the results f is and accep	ounded mi ted.			JS					
Organ	nisation	Name			Sign				ate		A-AWC-R	
Contr	actor	hosta	Ilah 3	et	Mos	stade	Thereber	T				
qa/q	¢*	Abd	allah 3	ANS	Itt	dest	d_					
GARB	**											
Emplo	overs											

÷

Contractor Company	AL-MOSTAFA COMPANY		Designer Company				K.K				
benund bu	Name Sign		Date			Time					
Issued by Contractor	Mostafa Thabet	Mostacha 7	In Thatel 28-03-2023								
Received by				11	12	[3	DD	MM	Ϋ¥.	H H	MM
ER			STR	1LP 520	E.W	0.7	28	04	1023		

CDIDE 1	\$1 to \$21	D1 to 53	Kp XXX Note
	Station Reference	Depot Reference	For Kilometer point only Start Km is used
CODE - 2		Work Activity	
CUDE - 3		Sub Dement of Activity	

	NB: Package 1 Only (Pac	ckage 2 via Aconex)				
THE FOL	LOWING TEST RESULTS A	RE ATTACHED FOR REVIEW				
Description of Test Materials Soil (A-1-a)						
Test	K.P (524)					
Specification	Test Requirement	Test Result Attachment	Remarks			
ASTM D 75	Aggregate sampling	According to specification				
ASTM C 136	Sleve Analysis	According to specification				
ASTM D 1440	Passing sieve #200	12.8				
ASTM D 4318	Atterberg limit	N.P				
ASTM D 2974	Moisture content	6.4				
ASTM D 1557	Modified proctor	2.16				
ASTM D 1883	C.B.R	56.0				
	THE FOU of Test Materials Test Specification ASTM D 75 ASTM C 136 ASTM D 1440 ASTM D 4318 ASTM D 4318 ASTM D 2974 ASTM D 1557	THE FOLLOWING TEST RESULTS Aof Test MaterialsTestSpecificationTest RequirementASTM D 75Aggregate samplingASTM C 136Sieve AnalysisASTM D 1440Passing sieve #200ASTM D 4318Atterberg limitASTM D 2974Moisture contentASTM D 1557Modified proctor	TestK.P (524)SpecificationTest RequirementTest Result AttachmentASTM D 75Aggregate samplingAccording to specificationASTM C 136Sleve AnalysisAccording to specificationASTM D 1440Passing sleve #20012.8ASTM D 4318Atterberg limitN.PASTM D 2974Moisture content6.4ASTM D 1557Modified proctor2.16			

Comments by:	Comments by:		

		APPROVAL STATUS		
Organisation	Name	Sign	Date	A-AWC-R
Contractor	Mostafur The bet			A
Designer	Hassan	and the	Sall	A
GARB *		-		
Employers Representative				

File: MAR Test Result Form Rev E.

Electric Express Train - HSR

2-1 -

California Bearing Ratio TEST

TESTING DATE	28/3/2923	10.01					
location	K.P524+800	-	ZONE	524+588	125+000		
NAME COMPANY	AL Moustafa	and the second					
.: Test Results	operate by	GOMAA BADE	RLAB				
Compaction % for M	iold.	Moniture Ratio	o After Compact	red Mold		Swelling	
Made No.	1	Ta	w.No.	4	Mold	No.	1 1
Squad Val. (cm2)	Manual Well. (com/2). 20177.8		Tara WT. (get)		Diale		-
Water Street Light	10444	Term WT. +Wes WT. (gm)		24.65	Entited Holight (many)		
present in T Warf W.T. (great)	21346	Tare WT. +Dry WT. (gas).		112.86	Final Shight (mm)		
Wet WT. (gm)	4982	WL	H water	7.6	Difference		9
Wet Density (alorn)	Wet Density (g.(cm?) 2.251		VT. (gm)	124.3	No mple Holghi (mm)		
Dry Dessity (a/cm)	3.121	Molvine	Content %	6.1	Swelling	Rathe %	-
Provier Density 10/00	m ³) 2.844						
Composition %	98						

Londing Rending ;

KK

pentralian	0.64	1.27	1.91	2.54	3.18	3.80	4.45	5.00	6.49
Lond Reading (kg)	97.00	187.00	379.08	101.00	497.00	845,00	978,60	100	1176.00
Load (KN)	1.0	1.8	3.7	1.1	6.8	8.3	9.6	11.0	13.5

-	_	_	-	_
A		10.00	in the	
	211	1900	ines	

ALL COLOR D. L.			CBR	Mold - Compaction	Campacilini	CBR
Penteration	Load	Standard Load		(%)	(%)	% 100 Auri ale
(men)	(Ka)	(1b)	(%)	1.47		41,7%
2.58	8.47	13.4	41,4%	98	100	56.0%
6.00	11.62	20.0	55,8%			

Consultant Engineer

Name : 20 Sign 1

Electric Express Train - HSR		
From E. Aim El Bolehna City To ID Alaminin - MATHOLIN	and the second	
Buction - I From FORA TO MAREA MATHOUN	United a stability of the state	عاشران المعدد الإطاء
Prant Station Mid-One 7 a Station Md+117	40-1	

PROCTOR TEST

TESTING DATE	27/3/2023	prise .		and the second	
location	K.P524+800		ZOME	524+500	\$254.000
IANE COMPANY	AL Moustafa	and the second			
	operate by	GOMAA BADE	RLAB		
Weight of empty inc	M: 8364		MAX Bry Dr	maity	6.409
Matel Values	2104.3		Winter exists	an 74	2.36

trial no :	1.	2	3	4	
Wt. Of Mald+ wet soll	11008.0	TITLE	TUTE	TAINE	
WT. WET SOIL	4524.8	4658.0	4840.0	4758.0	
Wt. Density	2.147	1.209	2.299	2.257	

Tare No.	1	8	1	1	1	2	14	34	-	1	-	4
Tare et.	25.34	3534	26.92	26.92	23.84	22.84	27	27		-		1
Wit. Of wet sell & tare	146.15	146.35	151.66	151.64	141.14	141.34	121.65	1223-85			-	1
W1. Of dry sell & terri		TAF	355.76	152.76	133,25	1,83.25	114.57	134.57		1		4
Wr. Of wister	2.3	2.3	4.9	4,9	7.1	7.1	7.3	7.3				1
WL Of dry sid	116.9	118.9	126.8	126.8	118.4	110.4	87.6	87.6				1
Water castest %	2.0%	2,0%	3.9%	3.9%	6.4%	6,4%	8.3%	83%				
AV, Prater cautest %	2.	8%	3.	9%.	6.	4%	8.	3%				
Dry Density	2	108	2	127	2	161	.2	084				

Consultant

Ale

	Electric Express Train - HSR From El Ain El Bokhna City To El Alamain - MATROUH Section - 7 From FOKA To MAREA MATROUH	and the second states
WSER STREET STREET	From Station \$544,059 To \$1400-1584-177	

PARTICLE SIZE DISTRIBUTION OF SOIL

TESTING DATE	26/3/2923	node			- And And	
location	K,P524+800	e cole	ZONE	524+500	525+000	
NAME COMPANY	AL Moustafa					
1-visual inspection test	operate by	GOMAA BADER LAB				

2-Gradient lest

A-gradation of bulk materials		dation of bulk materials. SAMPLE WEIGHT		WEIGHT [g]	33045.00				table classify	
sieve size	2	1,5	1	4/3	2/1	8/3	#4	PASS		soil classify
Mans retained (g)	120.0	1880.0	0,0086	2000.0	5500.0	2520.0	4450.0			A-1-8
Cumulative Retained (g)	120.0	2160.0	SELIND, O	7600.0	13180.0	10010.0	20270.0		PRO	2.161
Cumulative Retained %	0.7	0.4	16.9	21.8	9.86	67.8	673		WC	6.4
Cumulative Passing %	39.3	93.0	63.1	11.0	F0.1	. 12.2	24.7		CBR	55.0%

B-soft material gradation	n			WT.OF sample	600.00	gm
sievo size	10	40	200			
Cumulative Retained (g)	09.00	170.00	355.00			
Cumulative Retained %	15,99	34.00	87.00			
Gumulative Passing %	14.20	06.00	33.00			

General gradient										
sieve size(in)	2	1.5	1.	3/4	1/2	3/8	#4	\$10	# 40	# 200
sieve size(mm)	50.0	37.5	25.0	19.0	12.5	9.5	4.75	2.00	0.425	0.075
Cumulative Passing %	99.3	33.6	83.1	77.0	脑.4	52.2	38.7	713	28.5	17.8
								-		
1					_			-		-
							1	1		-

Contractor Company	AL-MOSTAFA CON	MPANY		Designer Company			КК				
towned ber	Name	Sign Mostalu TEmber		Date				Time			
Issued by Contractor	MOSTAFA THABET			11-04-2023							
Received by				11	17	B	DD	MM	YY	HH	MM
ER			MIR	5.P 534	E.W.	D.T	32	104	2033		

x00F-1	S1 to S21 Station Reference	D1 to 53 Depot Reference	Kp XXX Note For Kilometer point only Start Km is used
CODE - Z		Work Activity	
CODE - 3		Sub Element of Activity	

Description o	f Materials		PREPAR	RED S	UBGRADE N	ATERIAL RES	SULTS
Location to b	e Used	From 524+780 524+500	70 525+000 525+000		B 1 (+0.25) B 2 (+0.50)		
MAR Approva	al No					Date	
Supplier Nam	e						
Test Requirer	ment			Spe	cification	Clause	
Reference Ph	otos	Yes attach	ed / No	Oth	er		
Item Descri	ption	-	Unit	-	Quantity	Arrival Date	Note
1	Sieve and	alysis	1	13	5000	11-04-2023	
2	Classifica		1	M3	5000	11-04-2023	
3	Proctor &	O.M.C	P	EN	5000	11-04-2023	
4	LL&P.L	& PI	1	M3 5000		11-04-2023	
5	C.B.F	3	1	EN/	10000	11-04-2023	
Comments by	V:				Comments by:		
		is and accept					
	1			Concession of the local division of the loca	STATUS	-	-
Organisation	Name	1	Si	gn	1	Date	A-AWC-R
Contractor		In Thole	a u	etto	the The 20	r	_
QA/QC *	Alabal	What SAM	15 1	Ab	the Theize		
GARB**							
Employers Representativ							

* Designer ** Alignment / Bridges: Culvert Only

TEST RESULTS	SUBMISSION oF TEST RESULTS	البهيئة القومية للإنفاق	and the second se	REMOSTREA	And a start a
--------------	-------------------------------	-------------------------	---	-----------	---

Contractor Company	AL-MOSTAFA COM	WPANY		Designer Company			к.к				
to the state	Name	Sign		Date			Time				
Issued by Contractor	Mostafa Thabet	Hestelle 7	ale The bet 11-04-2023								
Received by			1	-11	C2	13	DD	MM	AA.	H H	MM
ER			MAR	K.P 524	EW	0.7	11	194	2023		

COLE-1	51 to 521	D1 to 53	Kp XXX Note
	Station Reference	Depot Reference	For Kilometer point only Start Km is used
CODE - 2		Work Activity	
CDDE-3		Sub Element of Activity	

		NB: Package 1 Only (Pac	kage 2 via Aconex)	
	THE FOL	LOWING TEST RESULTS A	RE ATTACHED FOR REVIEW	
Descriptio	on of Test Materials		Soil (A-1-a)	
Location	of Test		K.P (524)	
Item	Specification	Test Requirement	Test Result Attachment	Remarks
1	ASTM D 75	Aggregate sampling	According to specification	
2	ASTM C 136	Sieve Analysis	According to specification	
3	ASTM D 1440	Passing sieve #200	8.30	
4	ASTM D 4318	Atterberg limit	N.P	
5	ASTM D 2974	Moisture content	6.50	
6	ASTM D 1557	Modified proctor	2.175	
7	ASTM D 1883	C.B.R	89.90	

Comments by:	Comments by:

		APPROVAL STATUS		
Organisation	Name	Sign	Date	A-AWC-R
Contractor	Mostaly Traket			A
Designer	Yousses Ray to	1/ apet		A
GARB *		100		
Employers Representative				

File: MAR Test Result Form Rev E

KK _	Electric Express Train - HSR. From El Ale El Sokhia City To El Alamain - MATROUH Saction - 7 From FOKA To MARSA MATROUH	المانة التجديد ليانتان - معر الكان المارك
Opreating Lab AL Nuby Centra	From Stancer 194-009 To Similar State 177	

AL Nuby Central Lab

PARTICLE SIZE DISTRIBUTION OF SOIL

TESTING DATE:	11-4-2023	Code			
LOCATION	K.P (524+800)	MO (P-1)	Zone	524+500	525+000
NAME COMPANY	Al Mustafa	INIQ (P+1)			
Lorisonal inspection test					

2-Gradient test

SAMPLE WEIGHT (g) 17415.00 **Table classify** A-gradation of bulk materials gm A-1-a #4 PASS Soil Classify 4/3 2/1 8/3 steve size 2 1.5 1 1098.0 4079.0 2,175 981.0 PRO 1836.0 2489.0 812.0 Mass retained (g) 122.0 6,50 7128.0 11207.0 WC Cumilitative Retained [g] 122.0 1958.0 4457.0 5069.0 6030.0 84.3 CBR 40.9 Cumulative Retained % 0.7 11.2 25.6 29.1 34.6 Los Angles 30.96 65.6 59.1 35.7 Cumulative Passing % 19.5 74.4 70.9 85.4 WT.OF sample 500.00 gm B-soft material gradation sieve size 10 40 200 383.00 258.00 Contulative Relatived (g) 133.00 Consistive Related % 76.60 51.60 26.60 23.40 Cumulative Passing % 73.40 48.40 C-General gradient # 40 # 200 2 1.5 ¥ 3/4 1/2 3/8 #4 # 10 sieve size(in) 0.425 0.075 50.0 37.5 25.0 19.0 12.5 9.5 4.75 2.00 sieve size(mm) 35.7 26.2 17.3 8.3 Cumulative Passing % 99.3 38.8 74.4 70.9 65.4 59.1

LIQUID LIMPT (LLL)	PLASTIC LIMIT (P.L.)	PLASTIC NDEX (P.4
N.P	N.P	N.P
- Internet		Consultant
At-she		Yewssef Raga
1 1 1 1		Leveral Lever
2 mil		
/		
	and the second se	

PROCTOR TEST

TESTING DATE:	11-4-2023		Co	ode					
LOCATION	K.P (524+800)		MO	(P-1)	ZO	ne	524+	+500	525+000
NAME COMPANY	Al Mustafa	Al Mustafa		11.11	1		_		
Weight of empty mold :		6037.0		М	AX Dry Dea	lity		2.175	
Stold Volume:		2113.6			v	Pater content	76		6.5
			1	_			-		
1738 Bert				1	-			•	
WI. Of Mold+ wet sail	105	23.0	3.08	154.0	-105	61.0	10	899	
WT. WET SOIL	14	86.0	48	17.6	49.	25.0	48	62.0	-
Wr. Density	Wr. Density 2,123		1	280	2	331	2.3	34)1	
Tare No.	75	16	22	44		iś	26	19	
					-				
Tare wt	35	33.9	54.1	46.4	46.8	31,9	55	44.4	
Wt. Of wet soil & tare	150,0	158.0	159.0	150.0	158.0	150.0	150.0	150.0	
WL Of dry soil & pare	140,5	145.9	145.0	344.5	142.7	141.8	14L7	148.7	
	1								

Dry Density	2.6	46	2.1	60	2.1	67	2.0	1998	
AV.Water content %	3.7	P%s	5.1	5%	7.5	1%	5,	8%.	
Water vonient %	3.8%	3.7%	5,5%	5.6%	7.6%	7.5%	9.6%	9,7%	
Wi. Of dry sail	91.5	112.0	90.9	98.Y	95.9	109.9	86.7	96.3	
WL Of water	3.5	4.1	5.0	5.5	7.3	8.2	8.3	9.3	
VI, Of dry soil & pare	140,5	145.9	145.0	144.5	142.7	141.8	141.7	140.7	

Consultant Youssef aff al

Electric Express Train - HSR From El Am El Sobhes City To El Alamsia - MATROUH Section - 7 From POKA To MARSA MATROUH	الله الله الماريخ الله الماريخ
Press Station 504+000 To Station 568+177	· ·

	Los Anglos	abrasion A	ASHTO-T96		
NAME COMPANY	Al Mustafa	MO (P-1)			
LOCATION	K.P (524+800+)	MO (P-1) zone		524+500	525+00
TESTING DATE:	11-4-2023	code			

Results:-

Weight of sample before test (gm)	Weight of sample after test (gm)	Abrasion ratio (%)
5000	3452	30.96

Consultant Engineer Lab. Engineer aprille Name ; U 0% Name : Youssef Ragab Sign Sign : ستنجب و تعمل التور لمركز יוש מוצו - ממעיב

Lab. Specialist

Name :

Sign :

California Bearing Ratio TEST

Leaning 1/1-	13-4-2023	13-4-2023 Code			
Location	K.P (524+800)	100.00.00	FROM STA I	524+500	525+000
Campiese Trans	Al Mustafa	MO (P-1)			

-: Test Results

Compaction % for Mold	
Media (me	3
Harrise trees (error ³)	2025
Main Win, agent	3034
Mold WT Stat WT. (gar)	9725
1980 (1997)	a691
Sachtman (gram)	2.317
Dev Denser (g/rm^2)	2.179
Process Secular 11/09031	2.175
1	100.0

Ture No.	15
Tare WT. (gm)	31,9
Tare WT. +Wet WT. (gm)	150
Tare WT. +Dry WT. (gm)	142.0
Water WT. (gw)	7.2
Dry WL (gm)	3,10.5
Muistare Content %	6.5

Swelling	
Maid No.	3
Data	13-4-2023
Instial Beight (sem)	0,00
Final theight (mm)	0.00
Difference	0
Sample Height (mm)	(20.00
Swelling Ratio %	0.0%

Loading Resting

46.50	0.04	1.27	1.91	2.54	3.18	3.80	4.45	5.00	6.40
Land Reading (mm)	8,16	4,17	6.26	0.32	0.46	6,49	8.53	0.60	0.78
Lond (KN)	3.0	5.1	7.8	9.6	12.0	34.7	15.9	18.0	23.4

Cateulations :

Personalitier	i.eed	Standard Loni	CBR	Mold - Compaction	Comparties	CBR
Course	iknj	(16)	(%)	1961	(%)	٥٨ محد تسبية ٢٨
1:541	9.60	13.4	71.9%			70.5%
4.06	18.00	29.6	89.9%	100	98	88,1%

Lair, Spanning,

Name

No.

Commitant Engineer Name: Yoursef Rafeb

Sign :

Contractor Company	AL-MOSTAFA CON	IPANY Designer Company		к.к								
in second law	Name	Sign		Date				Time				
Issued by Contractor	MOSTAFA THABET	مطفى تما بت	20	10-09-2023								
Received by				E1_	a	3	DD	MM	YY	HH	MM	
ER ER			IR	8.8 524	E/0	2.7	10	99	202			

CO06-1	S1 to S21 Station Reference	D1 to 53 Depot Reference	Kp XXX Note For Kilometer point only Start Km is used
CODE-2		Work Activity	
CODE 3		Sub-Element of Activity	

Descr	iption of M	aterials		SU	B-BAL	LAST MATE	RIAL RESULT	S
Locati	ion to be U	sed	524+500 5	10 25+000 25+000		ALLAST 1 (+0.7 ALLAST 2 (+0.9		
MAR	Approval N	0					Date	
Suppl	ier Name							
Test Requirement		nt.			Speci	fication	Clause	
Refer	ence Photo	s	Yes attached	/ No	Othe	r		
Item	Descriptio	n		Unit		Quantity	Arrival Date	Note
1		Sieve and	alvsis		EN	5000	10-09-2023	
2		Classifica		1	VI3	5000	10-09-2023	
3		roctor &		1	KI3	5000	10 09 2023	1
4		LL& P.L	& PI	1	M3	5000	10-09-2023	1
5		C.B.F	1	1	EN/	10000	10-09-2023	1
Comm	nents by:				1	Comments by:		
			he results found is and accepted.					
					OVAL S	TATUS		
Organ	isation	Name	_	and the second se	gn		Date	A-AWC-R
Contra	actor	Cu	issan	20	C. I	- veteros		
QA/Q	c*	Ho	issan		4	- Jeteras	1	
GARB	**							
Emplo	overs sentative							

** Alignment / Bridges: Culvert Only

and the second second	الهينة تللم	The second			SYSTEM BE
AL-MOSTAFA	COMPANY		Designer	Company	к.к
	TS	AL-MOSTAFA COMPANY	AL-MOSTAFA COMPANY	AL-MOSTAFA COMPANY	AL-MOSTAFA COMPANY Designer Company

Contractor Company	AL-MOSTAFA COMPANY			Designer Company				к.к			
Issued by	Name	Sign		Date			Time				
Contractor	Mostafa Thabet	0	" to it is	12-09-2023							
Received by	1	1	Las	đ	62	a	00	MM	44	+++++++++++++++++++++++++++++++++++++++	6,45
ER	[MAR	10.0 520	E.W.	0.7	12	45	2033		
CODE-1	S1 to S21 Station Reference	-	D1 to S Depot Refer	-		F	or Kilom		XX Note t only Sta	rt Km	s use
CODE - Z			Work Activ			_		_		-	
CODE-3		-	Sub Element of	PILLIVIL	*			_			
	and the second se	distant and the second second	e 1 Only (Package ST RESULTS ARE A				EVIEW	-	_	-	-

CODE-1	\$1 to \$21	D1 to 53	Kp XXX Note
	Station Reference	Depot Reference	For Kilometer point only Start Km is used
CODE - Z		Work Activity	
CODE-3		Sub Element of Activity	

	THE FOL	LOWING TEST RESULTS A	RE ATTACHED FOR REVIEW	
Descriptio	on of Test Materials		Soil (A-1-a)	
Location o	of Test	5	K.P (524)	
Item	Specification	Test Requirement	Test Result Attachment	Remarks
1	ASTM D 75	Aggregate sampling	According to specification	
2	ASTM C 136	Sieve Analysis	According to specification	
3	ASTM D 1440	Passing sieve #200	4.65	
4	ASTM D 4318	Atterberg limit	N.P	
5	ASTM D 2974	Moisture content	7.10	
6	ASTM D 1557	Madified proctor	2.23	
7	ASTM D 1883	C.B.R	93.4	

Comments by:	Comments by:	

Organisation	Name	Sign	Date	A-AWC-R
Contractor	Cultiekas	Cult vienes		A
Designer	Hassan	1072/ 2003		A
GARB *		1		
Employers Representative				

Electric Express Train - HSR

From El Ain El Sokhna City To El Alamain - MATROUH

Section - 7 From FOKA To MARSA MATROUH

From Station 504+000 To Station 568+177

Opreating tap

Al Tawkol Central Lab

PARTICLE SIZE DISTRIBUTION OF SOIL

TESTING DATE:	10-09-2023	bode	ZONE	524+500	525+000
LOCATION	K.P (524+750)	TTON SUE BALLATTO	Material	SUB B	ALLAST
NAME COMPANY	Al Musiafa	June and Berrye (1)	QUANTITY	5000 M	

visual inspection test

Gradient test

gradation of bulk mat	erials		1.1.1	SAMPLE W	EIGHT (gm)	4140	6.000	gm	1.1	table classify	
siovo size	2 -	1.5 *	π ⁿ	3/4 *	1/2 *	3/8 *	#4	PASS		soil classify	
Mass retained (g)	0.0	1254.0	4775.0	4523.0	6850.0	6960.0	5070.0	12054.0	CLASS	A-1-a	
umulative Retained (g)	0.0	1264.0	6029.0	10552.0	17462.0	24363.0	29432.0		PRO	2.230	
Cumulative Retained %	0.0	3.0	14.5	25.4	41.9	58.7	70,9		WC	7.1	
Sumulative Passing %	100.0	97.0	66.5	74,6	58.1	413	29,00		CBR	93.40	
			-						LA	25,4	
									3.G	2.520	

oft material gradatic	n	1		WT.OF sample	500.00	gm
sleve size	#10	#40	#200			
imutative Retained (g)	150.00	320.00	420.00			
umulative Retained %	30.00	64.00	84.00			
umulative Passing %	76.00	35.00	16.00			

Seneral gradient

sieve size(in)	2 "	1.5 *	17	3/4 *	1/2 "	3/8 -	#4	# 10	# 40	# 200	1
sleve size(mm)	50.0	37.5	25.0	19.0	12.5	9.5	4.75	2.00	0.425	0.075	
umulative Passing %	100.0	B B	85.5	74.80	50,1	41.2	29.9	393	10.5	4.95	1
+		-						-		-	-
t	-	-	-		-			-			

ATTERBERG	LIQUID LIMIT (LL)	PLASTIC LIMIT (P.L.)	PLASTIC INDEX (PI.)
LIMTS	N.L.	N.P	N.PI

Contractor AHMED HA ENG EEI

Consultant Hassan 5301

Absorbtion & Aggregate specific gravity AASHTO-T85

TESTING DATE:	10/09/2023	code	Station	524+500	525+000
LOCATION	K.P (524+750)		Material	SUB B	LLAST
NAME COMPANY	Al Mostafa	(mos) SUB BALLAST (1)	QUANTITY	500	0 M

	Re	sults:-
Weight of dry sample after heating (A)	2490	gm
Weight of saturated sample in water (C)	1553	gm
Weight of saturated surface dry sample (B)	2540	gm
Weight of sample	2500	gm

Bulk specific gravity = A / (B-C)	2,523	
Bulk specific gravity (S.S.D) = B / (B-C)	2.573	
Apparent specific gravity = A /(A-C)	2.657	
Absorbation = (B-A)/A	2.008	%

Los Anglos Abrasion AASHTO-T96

Results:-

Weight of sample before test (gm)	Weight of sample after test (gm)	Abrasion ratio (%)
5000	3730	25.40

Lab. Engineer

Lab. Specialist Name : Sign :

Name : AHMED HALEEM Sign : (TING) Spilling

Consultant Engineer

Sign :

Hassa Name : 2017

Electric Express Train - HSR

From El Ain El Sokhna City To El Alamein - MATROUH

Section - 7 From FOKA TO MARSA MATHOUH

From Station 504+000 To Station 566+177

MODIFIED PROCTOR TEST ASTM D-1557

TESTING DATE:	11-09-202	3	Ģ	ode	ZC	INE	524	+500	525	+000
LOCATION	K.P (524+7	50)	1. 16.00	DALLAST	Mat	erial		SUB B	ALLAST	-
NAME COMPANY	Al Mostati		must sug	BALLAD		NTITY	1	500	00 M	_
Weight of empty mo	lat:	5620.0		1	M	AX Dry Den	aity		2.20	
Maid Volume:		2124.0]	H	ster contest	156		7.1%	
trial no c		1		2		3	1			5
Wr. Of Mold+ wer w	dl)0	176.0	304	630.0	107	00,0	10	615	-16	465
WT. WET SOIL	44	50.0	48	10.0	540	NP.07	404	05.0	45	65.0
Wt. Density	1	095	2.	265	L	192	1.3	152	2.	290
Tare Nu.	ié	n	1	1	,		4	6	1	
Tare wil	513	53.1	56.4	53.2	55.2	51.6	53.2	56.1	55,1	\$3.3
Wr. Of wet soil & to	re ista	150.0	150.0	150.0	150.0	196,0	156.0	150.0	150.0	190.

Dry Density	20	60	2,1	156	2.2	33	2.1	60	28	778
AV.Water content %	33	P4	5.1	156	7.1	\$	8.5	64	10.	Ph-
Water content %	3.0%	3.1%	5.1%	5.0%	7,2%	7.0%	9:075	8.7%	10.5%	19.05
Wt. Of dry sail	93.9	44.0	89,1	92.2	88.5	90.1	88.8	86.4	85.7	\$\$,0
Wt. Of water	2.8	2.9	4.5	4.6	6,3	6.5	8.0	7.5	0.0	8.6
Wr. Of dry mil & ture	347,2	147,1	145.5	145,4	143.65	143.79	142,0	142,5	141.0	141.3
The of the last of the last	1.0001	1.54LIF	3.58.0	L'anti	130.0	15070	1590.00	134.9	15070	1904

Consultant 2.72

California Bearing Ratio TEST

Testing Date :	12/9/2023	Code	FROM STA :	5241500	525+000
Location :	K.P (524+750)		: Material	SUB B	ALLAST
Company Name	Al Mostata	(mos) SUB BALLAST(1)	Layer Thickness	54	DOIM

-: Test Results

Compaction % for Mold	
Neild No.	- 1
Madd Val.(cm ²)	2129
Maid WT. (pm)	5314
Meld WT Wee WT. (gm)	10355
Wat WT. (gm)	SHITE
Wet Density (g/cm ²)	2.394
Dry Dunity (g/cm ²)	2.238
Process Density (g/cm ³)	2,231
Comportion %	10.5

Musiture Ratio After Compac	ted Mold
Tare No.	15
Tare WT. (pro)	.8
Tara WT +Wet WT. (gm)	150
Tare WT -Drs WT (gm)	143,8
Water WT. (grs).	6.2
Dry WT. (gai)	83.5
Multilare Content %	7.8

Swelling	
Mold No.	1
Date	12/9/2023
fatial fieight (man)	1.00
Final Height (mm)	6.00
Difference	0.00
Sample Height (1914)	120
Swelling Ratio %	8.00%

Loading Reading :

Peateration (mu)	9.64	1.27	1.91	1.54	3.18	3.80	4.45	5,00	6.40
Load Reading (Kg)	138	240	435	753	UNIS	1340	1675	2581	2758
Lond (KN)	1.1	2.2	3.5	6.8	9.0	12.1	15.J	18.8	24.8

Calculations :-

Pentersitian	Load.	Standard Load	CBR	Mold - Compaction	Compaction	CBB.
(mm)	(Kn)	(06)	1763	151	(75)	190 عند (سية 190
2.50	6.80	13.4	51.9%		104	50.7%
5.00	18.77	20.0	13.7%	102.3	100	33.4%

Consultant Engineer Nume: Hasta 2013 51 Sign

Contractive Foreyattant	6	and the part	Contaction	silanije i sanij Dongr	n +
PI	ate Load	l Test Resul	ts		
Al Mustafa					
524+820	To	524+920		Statist	523+901
21/3/2023					
-1.5					
	Pl At Mustafa 524+820 21/3/2023	Plate Load Al Mustafa 524+820 To 21/3/2023	Plate Load Test Resul	Contractive Foregations Plate Load Test Results Al Mustafa 524+820 To 524+920 21/3/2023	Contractive Foregation Contractive Foregation Contractive Foregation Contractive Foregation Plate Load Test Results At Mustafa 524+820 To 524+920 21/3/2023

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter fit.

The load is applied to a circular rigid sized bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the rest.

The diameter D of the plate is generally 0.30 m. For very coarse grained main/fail else plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load slep the settlement must come to a noticeable and (< 0.02 mm/minute). After the maximum load is reached the unicading procedure can begin, After that, the place is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic teck

Lánding	Lmi	Inst	Span	Did i-	Dial 2	Digital	Sets 1	Sect. 3	501,3	ATE-
Nage No.	Her	KN	MN/MZ	1000	nser	yrns-	anny	inst	1005	000
0.000	0.0	0.000	0.00	14.92	13.45		0.006	0.000		0.000
0.000	2,4	0,707	10.01	14,80	13.40		0.120	0.050		11.085
2.000	18.81	5.652	11.08	14.40	13.15		0.520	0.300		0,410
0.086	37.7	11.304	0.16	14.02	12.95		0.900	0.500		0.700
4.000	58.9	17.663	0.25	08.61	12.85		1.120	0.600		0.86
5,000	17.7	23,315	0.33	13.55	12.70		1.370	0.750		1.06
4.000	48.9	29.673	0.42	13.35	12.60		1.570	0.850		1.21
7.000	117.8	35,325	0.50	13.10	12.50		1.829	0.950	1.1	1.38
8,000	58.9	17.663	0.25	13.15	12.58		1.770	0.870		1.32
9,000	29.4	8.831	0.12	13.25	12.65		1.670	0.800		1.23
9,000	7.4	0.707.	0.01	13,85	13.02		1.070	0,430		0.75
10.000	2.4	0.707	0.01	13.85	13.02		1.070	0.430		0.75
11,000	18.8	5.652	0.08	13,60	12.85		1.320	0.600		0.96
12.000	37.7	11.304	0.16	13.40	12.75		1.520	0.700		1.11
13,000	58.9	17.663	0.25	13,30	12.70	1.00	1.620	0.750		1.18
14.000	77.7	23.315	0.33	13.15	12.65		1.770	0.800		1.28
15.000	98,9	29,673	0.42	13.00	12.55		1.920	0.900		1.41

	-		Δ5	Δm	
8.7 n	0,35	1.05688			
0.3 10	0.15	11.66375	0.39313	8.2	
0.701	0.35	1.31278	0.14776		
11.301	0.15	1.17002	1.11.141.10	0.2	
10 (mm)	300				
Est	114.47		-		
F#1	115.22	100			
Steel Squal	9.87005				

Selfer1	2.75	

	F 0.75 . D . do / ds
-E1	+ deformation modulus
.40	= fould increment
di.	= addisment increment.
0	= diameter of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max} .

The basis of the given equation is Bourninesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = hand.
at = authermonit
D = plannature of the paint

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diame	ler =	300mn
The provide of the second seco		

Loading	Lord	daint.	Stra	Dial 3	Dail 2	teat (Sill 1	500.1	Sitt: 5	Arg
Stage No.	Bar	6.9	MMM2	nin.			- 80	min	mm	- (100
0.000	0.0	0.000	0.00	20,00	20,00		0.400	0.000		0.000
1.000	21	0.707	0.01	19.94	19.90		0.060	0.100		0,050
2.000	17.1	5.652	0.08	19.62	19.80		0.180	0.209		0,190
0.080	34.2	11.304	0.16	19.55	19.72		0.450	0.280		0,365
4.006	53.3	17.663	0.25	19,36	19.61	-	0.640	0.198		0.515
5.000	70.5	23.315	0,33	19,19	19.52	1	0.810	0.480		0,645
6.000	89.8	29,673	0,42	18.96	(9,40		1,040	0.500		0,820
7.000	105.8	35,325	0,50	18.76	19,31		1.240	0.690		0,965
8:000	53.4	17.663	0.25	18.84	19,38		1.160	0.620		0.890
9,000	26.7	11.831	19.12	18.94	19.49		1.060	0.519		0.785
9,000	2,1	0,707	0.61	19.18	19.60		0.820	0.400		0.610
10.000	21	0.707	6.61	19.18	19.60		0,820	0.400		0.619
11.000	17.1	5.652	0.08	19:14	19.56	-	0.860	0.440		0.650
12.009	34.2	11.304	0.16	19.05	19.50		0.950	1.500		0.725
13,000	43,3	17.663	0,25	18.95	19,46		1,050	0.540		0.745
14,000	70.5	23.315	0.33	18.88	19.41	-	1.120	0.590	-	0.855
15,040	89.8	29.673	0.42	18.78	19.36	1	1.220	0.640		11.430

	_		15	Arr
$-11.7~\bar{m}_{\rm F}$	6.35	0.69313	11.35	6.2
11.3 0	1,15	0.34313	11.35	1.4
8.7ø	0.35	8.87167	0.18166	0.2
6.302	0.15	94.0	1.18166	1 1.2
D (mm)	300			-
kı,	128.57			1
Eng	247.71			
Ares Sigmi	LITINS		-	-

	$F_1=0.77=D=dar/dx$
<i>P.</i> ,	= deformation modulus
Đ,	= load increment

D: = settlement increment

b = diamater of line,plate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max} .

. .

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter O.

The hard is applied to a circular rigid steel bearing place by a hydroulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F + land da + gantiernañe H = Gannelai în ma patie

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.50 m and D = 0.762 m are used

The load is applied in 8 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reacted the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a rolter usually serve as counterweight for the hydraulic jack

Diameter = 300mm

Looke	List	Lind	Series-	Dial I	Dial 2	Dial 3	Set.1	-Set 1	44.3	Avg. Sen.
Slep-Sa.	Bar	RN	MNIME	man	- 885	INT	- 1888	- 1880 -	0.0	- 1000
0.000	0.0	0.000	0:00	20.00	20.00		1.004	0.000		0.000
1.000	21	0,707	0.01	19.94	19.96		0.060	0.040		0.050
2,000	17.1	5,652	0.08	19,81	19.88		0.190	0.120		0,155
0.080	34.2	11.304	0.10	19.61	19.81	_	0.396	0,190		6,290
4.000	\$3.3	17.663	0.25	19.35	19.72		0.650	0.280		0,465
5.000	70.5	23.345	0.33	19.20	19.68		0.800	0.320		0.560
6.000	89.8	29,673	0.42	19,05	19.62		0.950	0.380		0.665
7.000	106.8	35,325	0.50	18,90	19,58		1.100	0.420		0,760
8.008	53,4	17.663	0.25	18.95	19.63		1.050	0.370		0,710
9.090	.26.7	8.831	0.12	19.06	19.69		0.940	0.310		0.625
9.000	2.1	0.707	0.01	19.28	19.79		0.720	0.210		0.465
10.000	2.1	0.707	0.01	19,28	19.79		0.726	0.210		0,465
11.000	17.1	5.652	0.08	19.24	19.77		0.760	0.230		0.495
12.000	34.2	11.304	0.16	19.16	19.76	-	0.840	0.240		0.540
13,000	53.3	17,663	0,25	19,10	19.72		0.906	0.280		0.590
14,000	70.5	23,315	0.33	19.05	19,65		0.950	0.340		0,645
15.000	89.N	29,673	0.42	18.98	19.60	-	1.020	0.400		0,710

		_ ¥	AS	A#
41.7 ci	6.35	0.58187		
0.5 m	9.15	0.27313	11.311675	0.2
1.702	0.35	0.65944	0.13444	9.2
0.301	11.15	0.525	1.1.1444	
D (min)	300		-	
Ex.	145.75		100	
Eu.	334.71			
trea (Sq. in)	Linus.		-	

	_	_	_
Ev2(Ev1	7.10		

-	K 0.75 D Ad AL
È.	= tlaformation modulus
0.	= load increment
Di	= sattlement increment
D	- diamains of the plane, generally 0.32 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max} .

The load is applied to a circular rigid steel hearing plate by a hydraulic jack in several steps. The solthement under each load step is recorded. The following electric shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.782 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 immiminute). After the miximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter =	300mm
L'HARDELET -	JUDINI

Leader	Land	Area	Siteria	(fiai)	Deal 2	itul 7	Set	Set 2	Seri. 3	4+9
Singe No.	Bar	6.9	AIN/H2	-	no	am		0111	mo	Sett.
0.000	0.0	0.000	0.00	26.00	20.00		0.000	8.000		0.000
1.000	2.1	0.707	0.01	19,95	19,87		0,050	0.130		0.090
2.000	17,1	3.652	0.08	19,55	19,61		0,450	0,390		0.420
0.080	34.3	11.304	11.16	19.10	19.40		0.900	0,600		1.751
4,000	53.3	17.663	11.25	18.85	19.10	1.2	L150	1.900		1.025
5,000	70.5	23.315	0.33	18.66	18.98		1.340	1.020		1.180
6.000	89.8	29,673	0.42	18.46	18.82		1,540	1.180		1.360
7.000	196.8	35.325	0.50	18.25	18.66		L.750	1.340		1.545
8.000	53.4	17.663	0,25	18.33	18.74		1.676	1.260		1.463
9.000	26.7	8.831	0.12	18.42	18.82		1.580	1.180		1.38
9.000	2.1	0.707	0.01	18,69	19.03		1.310	0.970		1.140
10.000	7.1	0.707	10.01	18,69	19.03		1.310	n,970		1.140
11.000	17.1	5.652	0.08	18.64	19.04		1.368	1.000		1.18
12.000	34.2	11.304	1.16	18.55	18.93	-	1.450	1.070		1.200
13.000	53,3	17,663	0.25	18.44	18.85		1.560	1.150		1.355
14.000	70.5	23.315	0.33	18.36	18,77		1.640	1.230		1.435
15.000	89.8	29.673	0.42	18.26	18.70		1.740	1.300	1	1.520

	-	. 6.	45	48	
0.7 σ ₀	0,35	1,19813	9.48937		
11.3 m	B.15	8.79875	9.4843/	0.2	
4.703	0.15	1,45389	0.23388	0.2	
R.30,	0.15	1.22	0.23368	0.2	
D (mis)	300				
D ₁	91,95	-			
EN:	192.40			100	
iner Squar	1.07065				

Reality	1.01-		
---------	-------	--	--

	E. 6.75 D As / As
E_1^*	= deformation modulus
0.	+ load increment
D_{π}	= settlament increment

p. - diameter of the plate, generally 0:30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max}

ŝ

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recurded. The following sketch shows the principle of the test.

F = label dr.a.settlimient D = dramster of the plane

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 5 load increments of equal size, Under each load step the sottlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an exceptor or a roller usually serve as counterweight for the hydraulic jack

Diameter =	300mm
Diameter =	- 30

distant.	~~~~		_	_		_			_	
landing	Loud	Load	Street	(Hel)	Diei 1	(Nai 2	Set.	Sen/2	Ser Ch	Aug. Sett.
Suge No.	Ber	KN	MOV/M2			-9189	1941	-999	-948	
0,000	0.0	0,000	00.0	20.00	20.00		0,000	0.000		0,000
1.000	2.1	0.767	0.01	19.75	19.95		0.250	0.050		0.15
2.000	17.1	5.652	80.0	14.15	19,65		0.850	0.350		0.60
0.060	34,2	11.304	0.16	18.75	19.40		1.250	0.600		0.925
4.000	53.3	17.663	6,25	18.42	19.15		1.580	0.856		1.215
5.000	70.5	23.315	0.33	18.15	19.03		1.850	0.978		140
6.000	8.98	29,673	0.42	17.92	18-85		2.090	1.150		1.61
7.000	106.8	35.325	0.50	17.68	18.71		2.320	1.290		1.805
8.000	53.4	17.663	0.25	17.75	18.80		2.250	1,200		1.725
9.000	26.7	H.831	6,12	17,85	18.90		2.150	1.100		1.625
9.000	.2.1	0.707	6.01	18.15	19.12		1.850	0.880		1.365
10.000	2.1	0.707	0.01	18.15	19.12		1.850	0.820		1.365
11:000	17.1	5.652	0,08	18.07	19.06		1.930	10.940		1,435
12.000	34.2	11.304	0.16	18,02	19.00	-	1.980	1.000		1.49
13.000	53.3	17.663	0.25	17.87	18.91	-	3.130	1.090		1.61
14.000	70.5	23.315	0.33	17.77	18.85		2.230	1.150		1.69
15.000	89.8	29,673	0.42	17.65	18.78		1.350	1.220		1.785

-			Δ5	Ast.	
0.7 vi	0.35	1.44875	-		
8.3 m	0.15	1,55438	0.56437	6.2	
B.7et	0.35	17000		0.2	
Ø.3a1	4.15	1.395911	19.2061	9.1	
D (100m)	300				
Eu.	79,73				
Ex;	118.34				
heres / Signit	0.07665				

	E 11.75 - D Ad 7 A.
μ.,	* deformation madulu
σ.	= load increment
Ø.+	- settlement increment
	and the second sec

p = diameter of the state, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max} .

Owner Compositions	Contraction Chandlert	J		Centary	i disali inser	Alimanti -
0	PI	ate Load	Test Resul	15		
Company Name	المصطفى					
Location	524+820	To	524+900		Staint	524+860
Taste Date	16-04-2023					
Layer level	P.S.G + 0.5					
DUIPMENT AND TE	ST PROCEDURE :-					

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

2 = 1000 14 = Additionent 17 = Manufact of the plate

The diameter *D* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *D* = 0.60 m and *D* = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unbading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

Diameter -	300mm

Linking	-lined	losi.	Reveal	0411	APINE 2	Dui 3	Seit.1	5mi.2	Seet. J	Arg.
Stage No.	Bar	KN	608/042	The	1007	Inel	e	itest.	100	1940
0.000	0.0	0.000	0,00	20,00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.88	19,90	1.000	0.120	0.100		0.110
2.000	17.1	5.652	8.08	19.40	19.65		0.600	0.350		0.475
0.080	34.2	11.304	0.16	19,15	19.30	-	0,850	0.700		0.775
4.000	53.3	17.663	0,25	18.82	14,12		1,180	0,280		1.030
5.000	70,5	23.315	0.33	18.70	18.90		1,300	1.100		1.200
6,000	89.8	29.673	0.42	18.42	18:70		1.580	1.300		1.440
7.096	106.8	35.325	0.50	18.30	18.69		1.700	1.400		1.550
8,000	53.4	17.663	0,25	18.40	18,70		1,600	1,300		1,450
-9,000	26.7	8.831	0,12	18.60	18,80	2	1,400	1.200		1.300
9.000	2.1	0.707	0.01	18.70	19.00	1.5	1.300	1.000		1.150
10.000	21	11.707	0.01	18.70	19.00		1.300	1.000		1.150
11.000	17.1	5.652	0,68	18,65	18.95		1.350	1.050		1.200
12,000	34,2	11.304	0,16	18.60	18,90		1.400	1.100		1,250
13.000	513	17.663	8.25	18.45	18.80	-	1,550	1.200		1.375
14.009	78.5	23.315	6.33	18.40	18.75		1.690	1.250		1.425
15.000	89.8	29.673	8,42	18.32	18.02		1.689	1.380		1:530

			35	30	
0.7 aj	0.35	1.34375	0.60625		
6.5 0,	0.15	1.7375	WANNUS	6.2	
6.74z	11.35	1.44833	8.19833	9.2	
-8.1ez	0,15	1.25001	0.19033		
D (mm)	309				
Ety	74.21	1			
Ev1	226.90				
tres (Speci	0.07065				

	$E_{\rm T}=0.71 D {\rm Arr} = {\rm Ar}$
Γ.	= daformation modulus
n.	- inad increment
D.	= sattlement increment
	The second se

21 - manutar of the plate, generally 0.30 m

MN/M2 0.10 0.30 0.50 0.20 0.40 0.60 0.00 0.005 0.201 0.401 0.601 Sett. 0.800 + 1,000 1.200 1.400 1.600 1,800

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

1

Deare Fromilitar	Tostmatis Consultant	1		Lonucu	ngtanga kangar Otom	Najari Mala Mata
	P)	ate Load	Test Results	14		-
Company Name	AL MOSTAFA	1.00		_	A.	_
Location	524+500	To	524+580		Station	524+528
Taste Date	9-09-2023					
Layer level	P.S.G +0.50					
DUITMENT AND TES	T PROCEDURE :-					

The had is applied to a circular rigid steel hearing plate by a hydraulic jack in several vieps. The settlement under each load step is recorded. The following skotch shows the principle of the test.

.F = load -to * summers -tr = thereafter of the passi

The diameter *D* of the plate is generally 0.10 m. For very coarse grained material also plates with diameter *D* = 0.60 m and *D* = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable and (< 0.02 mm/minule). After the maximum load is reacted the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an exceeder of a roller usually serve as counterweight for the hydraulic jack.

Diameter = 300	mm
----------------	----

JUCKL	Stronger	-			_	-		-	-	
Tenting	Int	Loral	Street	Dia 1	Dial 1	3063	Selli)	560,2	Sell.,3	Vergi Seat
Stage No.	Bite	KN	MS/NZ	Run.	mus	GHD	inter	pro	imm	1940
0,000	0.0	0.000	0.00	20,00	20.00	-	0.000	0,000		0.000
1.000	2.1	0;707	6.01	19.50	19.75		0.200	9.250		0.325
2.000	17.1	5,652	0.08	19.60	19.55		0.400	16.450		0.425
0,050	34,2	11.304	0.10	19,25	19.26		0.750	6.740		11.745
4,000	53,3	17:663	0.25	18.50	19.05		1.200	0.950		1.075
5,000	70,5	23.315	0.33	18.55	18.95		1,450	1.050		1,250
6,000	89,8	29.673	0.42	18,40	18,80	_	1.600	1.200		1,400
7.000	106.8	35.325	0.50	18,05	18.72		1.950	1.280		1.615
8,000	53,4	17.663	0.25	18.10	18,76		1.900	1.240		1.570
9,000	26.7	8,831	0.12	18.18	18.89		1.820	1.119		1.465
9,000	2,1	0,707	0,01	18.31	19.00		1.690	1.000		1.345
26.000	2.1	0,707	0.01	18.31	19.00		1.690	1.000		1.345
11.000	17.1	5,652	0.88	18.30	18,99		1.700	1.610		1.355
12.000	34.2	11.304	0.16	18.22	18.95		1.780	1.050		1.415
13,000	53.3	17.663	0.25	18.16	18,86		1.840	1.140		1.490
14,000	70,5	23,315	11.33	18.14	DR.RT		1.860	1.200		1.530
15.000	89.8	29.673	0.42	18.06	18.71		1.940	1.290		1.615

		- 6	45	30	
0.7 m.	11.35	1.21168	h chine		
0.3 m	0.15	0.705	0.50688	0.2	
0.7#2	0.35	1.54889	n reter	0,2	
0.3mj	0.15	1,365	0.18389		
D (mm)	300				
Eyr	88.78				
En:	244.71				
weil Sumi	0.17905				

	E, = 1.15 - D + Aa / As
E.	= deformation modulus
Ds:	= load increment
D.	= sattlement increment

ii = diameter of the plate, generally 0.30 m.

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max} .

A Discon Discontinue	Contractor Consultant			Consector	og hange av each	Nipell ZJane 77,
	Pl	ate Load	Test Results	_		
Company Name	AL MOSTAFA.					
Location	524÷500	To	524+580		Stalind	524+540
Taste Date	9-09-2023					
Layer level	P.S.G +0.50					
DUIPMENT AND TE						

The load is applied to a circular rigid steel hearing plate by a hydraulic jack in several steps. The settlement onder each load step is recorded. The following sketch shows the principle of the test.

-# = lead. _D = settlement D = simmpar of my plain.

The diameter *D* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *D* = 0.60 m and *D* = 0.762 m are asset

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable and (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

Linding	Linet	had	Ster	finit I.	Watz.	-Dial A	5HL 1	Sec. 2	Sei1. 3	Aig. 5(0).
Stage No.	diar.	8.Ś	MININE	-1009	- 1000	ani.	ited.	int		-11111
0.000	0.0	0.000	0.00	20,00	20.00	1.1	0.000	10.000		0.000
1.000	2.1	0.707	19.0	19.85	19.79	100	0.150	0.210		0.180
2,000	17.1	5,652	0.08	19.63	19.57		0.370	0.430		0.499
9,980	34.2	11.304	0.16	19.27	19.28		0.730	0.720		0.725
4.000	53.3	17,663	0.25	18.85	19.06		1,150	0.940		1.045
5.000	70.5	23.315	0.33	18.50	18.99		1.500	1.010		1.255
6.000	89.8	29,673	0.42	18.35	18.85		1.650	1,150		1.490
7.000	106.8	35.325	0.50	18.07	18.70		1.930	1.300		1,615
8.000	53.4	17.663	0.25	18.12	18.76		1.880	1.240		1.560
9.000	26.7	8.831	0.12	18.17	18.90		1.830	1.100		1.465
9.000	2.1	0,707.	0.01	18.33	19.02		1.670	0.980		1.125
141.000	2.1	0.707	D.01	18.33	19.02	-	1.670	0.980		1.325
11.000	17.1	5.652	0.08	18.32	18.99		1.680	1.010		1.345
12.000	34.2	11.304	0.16	18.25	18.93		1.750	1.070		1.410
13.000	53.3	17.663	0.25	18.17	18.84	T	1.830	1.160		1,495
14.000	70.5	23.315	11.33	18.10	18.80	-	1.900	1.200		1.550
15.000	89.8	29.673	11.42	18.05	18.70		1.950	1.300		1.625

	5.000	1.15	15	M	
0.7 m	1.35	1.21188		0.1	
0.3 01	0.15	9,68439	0.5275		
8.7d;	8.35	1.56667	0.20166	6.2	
11.3o;	8.15	1.365	0.200765	-9.2	
D (mm)	380				
Kar	8531				
the .	223.14				
Atsu (Squar)	0.07065				

-	1	- 0.75 - D dat + da
	Ë,	= deformation modulos
1	25	= had increment
1	Dx.	- sattlement increment
	0	- diameter of the phile, general

y 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max} .

	Lab. Specialist	
Name :		

Sign :

Consultant Engineer Name : Abdosta Sign :

Dominician Criminiana	1		Comarythe	Denzi	Alad Al
PI	ate Load	Test Results	_		
AL MOSTAFA			1000		
524+500	To	5244580		Station	524+564
9-09-2023			_		
P.S.G +0.50					
	Commean Commitant Pl AL MOSTAFA 524+500 9-09-2023	Plate Load T AL MOSTAFA 524+500 To 9-09-2023	Plate Load Test Results AL MOSTAFA 524+500 To 524+580 9-09-2023 To 524+580	Plate Load Test Results AL MOSTAFA 524+500 To 524+580 To 524+580 To	Doministic Disease Disease Plate Load Test Results AL MOSTAPA. Station 524+500 To 524+580 Station 9-09-2023 Station Station Station

The tond is applied to a circular rigid steel bearing plate by a hydraulle juck in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

P = Kod or = authemeni 17 = countrie of the utite.

The diameter *D* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *D* = 0.60 m and *D* = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the activement must come to a milicivable and (< 0.02 mm/minutir). After the maximum load is reached the unloading procedure can begin. After that, the plate is related in 5 steps. A loaded truck, an excevator or a milior usually serve as counterweight for the hydraulic jack

Diameter = 3	00	mm
--------------	----	----

i ording.	Least	Lund	Stress	Ded 1	Dal 2	Dial 3	nett 1	549,2	Seg. 3	Atts: Sett:
Stage No.	Har	8.9	MN/M2	mmi	umi	mii	otes	inni	-	HE
0.000	9,0	000.0	0.00	20.00	20.00		0.000	0.000		0.000
1,000	2,1	0.707	0.01	19.87	19,80		0.130	0.200		0.165
2,000	17.4	5.652	0.08	19.50	19.59		0.500	0.410		0.455
0.080	34.2	11.304	0.16	19.20	19.32		0.800	0.680		0.740
4,000	53.3	17.663	0.25	18.80	19,08		1.200	0.920		1.960
5.000	70.5	23.315	0.33	18.51	18.93		1.490	1.070		1.280
6.000	89.5	29.673	0.42	18.25	18.87		1.750	1.130		1.440
7,000	106.8	35.325	0.50	18.04	18.62		1.960	1.389		1.670
8,000	53.4	17.663	0.25	18.12	18,77		1.890	1,230		1.555
9,000	26.7	8,831	0.12	18.17	18.93		1,830	1.070		1,450
-9.000	2.1	0.787	0.01	18.35	19.05		1.650	0.950		1.300
10.000	2.1	0.707	0.01	18.35	19.05		1.650	0.950		1.300
11.000	17.1	5,652	0.08	18.33	18.99		1,670	1.010		1.340
12.000	34.1	11.304	0.16	18.22	18.95		1.780	1.050		1.415
13,000	53.3	17.663	0.25	18,18	18.83		1,820	1.170		1,495
14.000	70.5	23.315	0.33	18.13	18.78		1.870	1.220		1.545
15,000	89.H	29.673	0.4Z	18.08	18.70	-	1.920	1.300		1.510

		- A	AS	3.4
0.7 pr	0.35	1.23875		
0.3 m	0.15	0.78438	9.20431	
0.7a	0.35	1.55944	0.17944	1.
0.34	11.15	1.38	10.1 (.Y968	Mol.
D (mm)	300		1	inger 4
Evi	\$4,21		410	
E.	294,78			1 (V)
Area (Siling	9.97965		4	~985.
-			*	
E12/EVT	.7.94			1 (8)

	F = 0.71 - D - da / A+
A.,	· deformation modulus
Ds	= load locrement.
D,	= saitforwert introment
p	= diameter of the plate, generally 0.30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

Lab, Specialist Lab. Engineer **Consultant Engineer** Name : Name : Name : Abdosen Sign : Sign : Sign :

العمل الريكزى وقع (١)

.

Ormer Consultant	Contractor Consultant	H	E Een	lendur (Jassie)	-
	Ph	ite Load '	Test Results	-	
Company Name	AL MOSTAFA				
Location	524+580	To	524+660	Station	524+585
Taste Dale	9-09-2023				
Layer level	P.S.G +0.50				
UIPMENT AND TE	ST PROCEDURE :-				

The lond is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

7 = kraij -5c = kontinenter gr = planestic of the plate

The diameter *P* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *D* = 0.80 m and *D* = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an exceptor or a roller usually serve as counterweight for the hydraulic jack

Diameter =	300mm

Luning	Last	Laut	Sime-	rital I	Infat 2	Dial N	Sitt. I	Sec.2	Sett 3	AVE
Singl The	Bar	65	MIN/012		rite	ittin	imi	in .	mo	Seit,
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	10.0	19.85	19,76		0.150	11.2.40		6.195
2.000	17.1	5,652	0.09	19.62	19.52		0.380	0.486		6,430
0.080	34.2	11.304	0.16	19.34	19.29	1	0.660	0.718		0.685
4,000	59.3	17.663	0.25	19.00	19,09	-	1.000	1.916		0.958
5,000	70.5	23,315	0.33	18.89	18.93		1.110	1.070		1.090
6,000	89,8	29,673	0.42	18.55	18.86		1.450	1.140		1.295
7.000	106.8	35,325	0.50	18.44	18.70	100	1.560	1.300		1.434
8.000	53.4	17.663	0.15	18.49	18.82		1.510	1.180		1.345
9.000	26.7	83831	0.12	18.56	18.92		1.440	1.080		1.260
9,000	2.1	0.707	0.01	18.69	19,09		1.310	B.910		LH
10,000	2.1	1.707	0.01	19.69	19,09		1.310	D.910		1.111
11.000	17.1	5.4.52	0.05	18.47	19.05		1.330	8.950	1	1.140
12,000	34.2	11,304	0.16	19.62	19.01		1.380	0.990		1.185
13,000	\$3.3	17.663	0.25	18.55	18.92	1	1.450	1.050		1:265
14.000	70,5	23.315	0.33	18.51	18.84		1,490	1.160	1	1:325
15,000	89.8	29.673	0.42	19.48	18.72	-	1.520	1.280		1.400

		3	AS	Δm	
11.7 di	0.35	1.17688		6.2	
0.3 m	0.15	0.65313	0.52375	-0.2	
0.7mj	0.35	1.34167	0.17.166	0.2	
fl.3n1	0.15	1.17	0.17190		
D(mm)	300				
En	NS.WI				
Etz	262.14		-	1	
Area (Seaul	ANNIE.			-	

	E. = 0.73 + D = Ao. 1 As
E.	= deformation modulus
Ds-	# load incriment
De-	= sottiement increment
10	= diameter of the piate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

العمل الركزى والمرداء

Owner Darouthan	Contractor Dissolitati	ALL AND		Contaiclay	(Joshija Agenta) Dana	ALANT ST
	Pl	ate Load	Fest Results			
Company Name	AL MOSTAFA					
Location	524+580	To	524+660		Statler	524+60
Taste Date	9-09-2023					
Layer level	P.S.G +0.50					
DIPMENT AND TE	ST PROCEDURE : -					

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

Finder

dare settlement) The structure of the plate

"Ya •

The diameter *D* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *D* = 0.60 m and *D* = 0.762 m are used

The load is upplied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is resched the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excevator or a roller usually serve as counterweight for the hydraulic jack

iameter =	300mm	1					_			
bastilit	Lust	Luni	Street.	Dist1	Dist.L	(Int) I	Neifi 6	541.5	mil.7	http://www.
Singe Sin	Bac	KK.	MATM1	1111	-000			(mail)		- part-
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.009
1.040	2.1	0.707	0.01	19,85	19,76		0,150	0,220		0.185
2.009	17.1	5.652	0.09	19.61	19.55		0,390	0.450		0,420
0.080	34.2	11,304	0.16	19:33	19.32		0.670	0.680		0.675
4.009	53.3	17.063	11.25	19.02	19.12		0,980	0.880		0,930
5.000	70.5	23.315	0.33	18,92	18,95		1,050	1.050		1,065
6.000	89.8	29.673	0.42	18:57	15.67		1,430	1.130		1,280
7.000	196.8	35.325	0.50	18,45	18.74		1,550	1.290		1.420
8,000	53.4	17.663	0.25	18.49	18,83		1.510	1.170		1.340
9.000	26.7	H.831	0.12	18,57	18,95		L,430	1.050		1.240
9.000	2.1	0.707	0.01	18,70	19.12		1,300	0.880		1,090
10.000	2.1	0.707	0.01	18.70	19.12		1.300	0.880	-	1,090
T1.000	17.1	5.652	0,08	18.67	19.07		1,330	0.030	-	1/130
12.000	34.2	11.304	0,16	18.63	19.00	1	1.370	1.900	-	1.185
13.000	53.1	17.663	0,25	18.50	18.93		1.500	1.070		1.285
34,000	70.5	23,315	0,33	18,47	18.85		1.530	1.150		1.340
15,000	6.99	29,673	0.42	18,42	18.77	-	1.580	1.230		1.465

D

20.0

		- 5	45	54	
0.7 ±1.	0.35	1,1575	0.51437	0.2 0.2	
0.3 mj	0.15	0.64313	0.51457	- 6.4	
0.703	0.35	1,35111			
11.3m	0.15	107	0.18444	9.4	
D (mm)	500				
Eq.	87.48				
6.12	243.88				
Area I Squall	0.07614				

		 _
dezdert.	1.75	

	E. + 9.75 - 10 da / da
\tilde{I}_{1}	= deformation modulus
0s	- load increment
D_{2}	= settlement increment
11	- dismeter of the plate, generally 0,30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

	Lab. Specialist	
Name :		

Sign :

Consultant Engineer Aldaha Name : Sign : 🧹

Synter Dominan	Contestant Coundinat	H		Company	ijiliigi konsti Ovar	Alerta A
L	Pk	ate Load	Fest Results			-
Company Name	AL MOSTAFA					
Location	524+580	To	5241660		Smithe	524+620
Taste Date	9-09-2023					
Layer level	P.S.G +0.50					
OUIPMENT AND TE						

The load is applied to a circular rigid steel hearing plate by a hydraulic jack in several steps. The suitlement under each load step is recorded. The following sketch shows the principle of the test-

3 = land Ar = settlement Ar = discourse of the plane

The diameter *D* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *P* = 0.00 m and *P* = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable emil (< 0.92 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plane is reloaded in 5 steps. A loaded linuck, an expanator or a rollor usually serve as counterweight for the hydraulic jack.

Diameter =	300mm
	1

Leading	Lond	Lord	Stress	niai 2	Did 2	Trial 3	Sett.1	Sett. 2	Sen.2	ATE
Stage No.	Bar	88	'MN/M2	onia	mini		min	pito	11111	1680g
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		6.000
1.000	2.1	0.707	0.01	19.90	19.80		0.100	0.200		0.150
2.000	17.1	5,652	0.08	19.65	19.58		0.350	0.420		0.385
0.080	34.2	11,304	0.16	19,38	19.38		0.620	0.620		0.620
4,000	53,3	17.663	0.25	19.07	19,18		0.930	0.820		0.875
5,000	70.5	23.315	0.33	18.94	18.99		1.060	1,019		1.035
6.000	89.8	29.673	0.42	18.65	18.90		1.350	1.100		1.225
7.000	106.8	35.325	0.50	18.47	18.78		1.530	1.220		1375
8,000	53,4	17.663	0.25	18.52	18.83		1.480	1.170		1.325
9,000	26.7	B.831	0.12	18.59	18.96		1.410	1.040		1,225
9,000	21	0,707	0.01	18.75	19.16		1.250	0.840		1.045
10.000	2.1	0.707	0.01	18.75	19.16		1.250	-0.840		1.045
11.000	17.1	5.652	0.08	18,70	19.10		1.300	0.900	1	1,100
12.000	34.2	11,304	11.16	18.65	19.04		1.350	0.960	_	1.155
13.000	53.3	17.663	0.25	18.55	18.93		1,450	1.070		1.260
14.000	70.5	23,315	0.33	18.48	18.85		1.520	1.150	1	1.335
15,000	8.08	29.673	0.42	18.43	18,79	-	1.570	1.210		1.390

	_	S	45	40	
0.7 n,	8.35	1.09375		40	
0,3 04	6.15	0.59063	0.50313	0.2	
11.741	6.35	1.39722	0.19222	0,3	
11.301	0.15	1.15501	11.19222	11,2	
D (mm)	300				
EVI	82,44				
Evi	234.11				
Aria (S. m)	0.07065				

	R. = 11.73 H dr /.3s.
E,	= deformation modulus
D_{2}	= lisad increment
De	- kattlansent Incromont
D	= rilamster of the plain, generally 0.30 m

MN/M2 0.30 0.60 0.10 0.20 0.40 0.50 0.00 0.000 0.200 0.400 0.600 Sett. 0.800 1.000 1.200 3.400 3.600

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

Lab. Specialist Name : Sign :

Consultant Engineer Name : che Sign :

State of the Designation	Fonteseter Consultant			Contarta	gingi amanı Omu	Man Pite
[Pla	te Load	Test Results			
Company Name	AL MOSTAFA					
Location	524+580	To	524+660		Sailna	524+640
Taste Date	9-09-2023					
Layer level	P.S.G+0.50					
DUIPMENT AND TE	ST PROCEDURE :-					

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test,

F 1044 wittle If a planning of the at

The diameter D of the plate is generally 0.30 m. For very course grained material also plates with diameter D = 0.60 m and P = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the petitement must come to a noticeable and (< 0.02 mm/minule). After the maximum load is reacted the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter =	300mm

			-	_	-	_		-	-	
Loading	Load .	Last	Stress	Dist i	Dpi2	dias 5	Self. E	Sen. 2	Reft_3	Avg.
Stope Bri.	Bar	KN	45/542	ншь	idue		- IMD	1995		-10111
0.000	0.0	0.000	0,00	20,00	20.00		0.000	0.000		0,000
1.009	2.1	0.707	0,01	19.85	19.83		0,150	0,170		0.160
2.000	17.1	5.65Z	0,08	19.63	19.61	1	0.370	0.390		0.380
6.088	34.2	11,304	0,16	19.35	19.34	1	0.550	0.560		0.655
4.000	53.3	17.663	11,25	19.17	19,12		0,830	9.880		0.655
5.000	70.5	23,315	11,33	18.98	18.94		1.020	1.960	1.1	1.040
6.009	8.98	29.673	0.4Z	18,68	18,86		1.320	1,140		1,230
7.000	106.8	35,325	0.50	18.46	18.78		1.540	1,220		1,300
3.000	53.4	17.663	0.25	18,52	18.84		1,480	1,160		1.320
9.000	267	8-831	0.12	18.61	18.99		1_390	1.010		1.200
9.000	2.1	4.787	0.01	18.72	19,12		1.280	0.880		1.080
18.000	2.1	0.707	11.01	18.72	19.12	1	1.280	0.880		1.080
11.008	17.1	5.652	0.08	18.68	19,08		1.320	0.920		1.120
12.000	34.2	11:384	0.16	18.62	19.04		1.380	0.960		1.170
13.000	51.3	17.663	0.25	18.55	18.94	-	1.450	1,060		1.255
14.000	70.5	23.315	0.33	18.49	18.86		1.510	1.140		1.325
15.000	89.8	29.673	8.42	18.45	18.80		1.550	1.200		1.375

			35	der.	
8.7 11	P.15	1.09875	II biens		
130	0.15	0.62063	0.47813	-6.3	
6.701	0.35	1.33611			
0.3oL	0.15	1.10	0.17611	4.2	
D (cami)	300			-	
Es.	94.02			-	
Eg	255.5.1			-	
Artis Sugar	1.01065		-		

- illumoter of the plate, generally 0.30 m

MN/M2 0.00 0.10 0.20 0.30 0.40 0.50 0.000 0.60 0.290 0.400 Sett. 0.500 0.800 1.000 1,200 1,400 1.600

 Lab. Specialist
 Lab. Engineer
 Consultant Engineer

 Name :
 Name :
 Name :

 Sign :
 Sign :
 Sign :

ن الرجري إلما 11

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Dway Constant	Coursear Consulant	1		Cielard a		1.41441 7.3446.50
	PI	ate Load	Test Results			
Company Name	AL MOSTAFA					
Location	524+660	To	524+740		Station	524+66
Taste Date	8-09-2023					
Layer level	P.S.G +0.50					
	T PROCEDURE :-					

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = tood is = settlement is = simmar at too plane

The diameter D of the plate is generally 0.36 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load slep the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

Diameter = 300mm

The second second	and the second second						_			
Ending	Loni	Lost	Stress	ithi t	Dial 2	Dial 1	Spat. 1	50.3	Set 1	Bell:
Stage We.	Bar	sh-	MN/MZ	- 1006	wite	ane .	itte	UTTO		
0.080	9.0	0.000	5.60	20.00	20.00		0.000	0.000		0.000
1.000	2.1	8.707	0.01	19.86	19.85		0.140	0.150		0.145
2.000	17.1	5.652	0.08	19,71	19.60		0.290	0.400		0.345
0,080	34.2	11.304	0.16	19,47	19.30		0.530	0.700		0.615
-4.000	53.3	17.663	0.25	19,30	19.10		0.790	0.900	-	0.800
5,000	70.5	23.315	0.33	19,10	18,93	0000	0.900	1.070		0.985
6.000	89.8	29.673	0.42	18,95	19.80		1.050	1.200		1.125
7.000	106.8	35.325	0.50	18.R1	18.73		1.190	1.270		1.230
8,0910	53.4	17.663	0.25	18.83	18.75		1.170	1.250		1.210
9,000	26.7	8.831	0.12	18,90	18.81		1.100	1.190		1.145
9.008	2.1	0.707	0.01	18,91	18,93		1.020	1.070		1.045
10.000	2.1	0.707	0.01	18.98	18.93		1.020	1,070		1.045
11.000-	121	5.652	0.08	18.97	18.92	_	1.030	1.080		1.055
12.000	34.2	11.304	0.10	18.93	18.80		1.070	1,140		1.105
13.000	53.3	17.663	0.25	18,90	19.90		1.100	1.200		1.150
14.000	70.5	23.315	0.33	18.88	18.76		1.120	1.240		1.180
15.000	89.8	29.673	0.42	15.84	18,72		1.160	1.280		1.220

	_	S 3	A5	Ac	
0.7 m	0.35	1.03313	0,45188		
930	1,15	0.58125	0/45199	-0.2	
0.70	8.35	1.18889	6.12389	0.2	
11.307	1.15	1.065	11.12389	-0.4	
D (mmi)	300				
E.v.	99,59				
Ev	363.23			1	
(reid Spin)	9,87885			-	

	$E_{+} = 0.75$ $B = 4 \text{ or } 7.4 \text{ or }$
Ε,	= deformation modulus.
Dar	= land increment
ρ.	= settlement increment.
D	= diameter of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max} .

Lab. Specialist					
Name :					
Sign :					

Lab. Engineer Name : Sign : المعمن المرسطري رشم، (١)

Consultant Engineer Name : hale Sign :

-Owner C(moultant	Contractor Secondari	H		Creards	in and a second	alperti Adattavi
	Pl	ate Load 1	Fest Results	;		
Company Name	AL MOSTAFA					
Location	524+660	To	524+740		Staffini	\$24+69
Taste Date	8-09-2023					
Layer level	P.S.G +0.50					
OUIPMENT AND TEST	TPROCEDURE : -					

The hand is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

2 = taat is a pettoment is = discuster of the plate

The diameter *n* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *D* = 0.50 m and *D* = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavetor or a roller usually surve as counterweight for the hydraulic tack

Diameter = 300mm

Louis	Loui	1-1	Sirver	0613	Diel)	Dista	San 1	See. 2		Arg. Seit
riage Wit-	Ilar	- 65	MR/M2	1001		UNREY.	- Annie	1194	per-	-19813
0.000	0.0	9,000	0.00	20.00	20.00		0.000	0.000		0.000
1,900	2.1	0.707	0.01	19.89	(9,92	-	0.110	0.080		0.095
2.000	17.1	5,652	0.08	19.73	19.63		0.270	0.370		0.320
0.080	34.2	11.304	0.16	19,45	19.36		0.550	0,640		0.595
4.000	53,3	17.663	0.25	19,32	19.14		0.680	0,860		0.770
5.000	70.5	23,315	0.33	19.13	18.95		0,870	1.050		0.950
-6.000	89.8	29.673	0.42	18.97	18.84		1.030	1.160		1.095
7,000	106.8	35,325	0.50	18,80	18,70		1.200	1.300		1,250
8.000	53.4	17.663	0.25	18,85	18.77		1.150	1,230	_	1.190
9,000	26,7	8,831	0.12	18.92	18.83		1.080	1.170		1.125
9.000	2.1	0.707	0.01	18,97	18.94		1.030	1,060		1.045
10.000	2,1	0,707	0.01	18,97	18.94		1.030	1,060		1.045
11.000	17.1	5,652	0.08	18,95	18.93		1.050	1,070		1.000
12.000	34.2	11.304	0.16	18,92	18.87		1.080	1,130		1.105
13.000	53.3	17,663	0.25	18.90	18.82		1,100	1,180		1.140
14,000	70.5	23.315	0.33	18,87	18.75		1.130	1,250		1,190
15.000	89.8	29.673	0.42	18.81	18.70		1.190	1,300		1.245

			45	Åπ.	
0.7 m	0.35	0.99938	-		
12.3 m	0.15	0.35063	0,39875	0.2	
1h.7m2	0.35	1.20222			
11.301	0.15	LIJ75	0.12722	0.2	
D (mm)	300				
Et.	112,85	-			
Ev2	353,72				
Arta E Squit	RETES				

	E = 0.72 + 11 - 307 / 2x
R,	= deformation modulus
Ds	= load increment
De	= settlement increment
p.	= diameter of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max} .

Consultant Engineer Name : Abdoden Sign :

Duney Consultant	Positization OrneoLan.	1		Contactor	Stady -	Nacional Distance
E	Pl	ate Load	Test Results	1		-
Company Name	AL MOSTAFA.					
Location	524+660	To	524+740		Statist	524+72
Taste Date	8-09-2023 P.S.G +0.50					
Layer level						

The load is applied to a circular rigid steel hearing plate by a hydraulic jack in several steas. The settlement under each load step is recorded. The following sketch shows the principle of the test.

P = taes is = settlisesent D = tameviar al tire plets

The diameter *D* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *D* = 0.60 m and *D* = 0.762 m are used

The load is applied in 6 last increments of equal size. Under each load step the settlement must come to a noticeable and (< 0.02 mm/minute). After the maximum toad is reached the unloading procedure can begin. After that, the plate is released in 5 steps. A loaded truck, an exceptor or a rollor usually serve as counterweight for the hydraulic jack

Diameter =	300mm
------------	-------

Loging	Duit	Lunf	Sires	0.01	Dial J	Dist	Sett. (Set 2	501.7	Avg.
Auge No.	Har	KN_	715/742			itter.				1000
9.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.92	19.90		0.080	0,100		0.090
2.000	17.1	5.652	80.0	19.74	19.59		0.260	0.410		1.315
-0.080-	34.2	11.304	0.16	19.50	19.28	-	0.500	0.720		0.610
4.000	53.3	17.663	0.25	19,25	19.16		0.750	0.840		0.795
5.000	70.5	23.315	0.33	19.17	[8.9]		0.830	1.090		0.960
6.008	89.8	29.673	0.42	18.94	18.81	1.1	1.060.	1.190		1.125
7,000	106.8	35.325	0.50	18.70	18.68	_	1300	1.320		1310
9,000	53.4	17.663	0.25	18,80	18.75		1.200	1.250		1.225
9,000	26.7	8.831	0.12	18,90	18,80		1.100	1.700		1,150
9.000	2.1	0.707	0.01	19,05	18.94		0.950	1.060		1.005
10.000	2.1	0.707	0.01	19.05	18.94		0,950	1.060		1.005
11.000	17.1	5.652	80.0	18,98	18.90		1,020	1.100		1.060
12.000	34.2	11.304	0.16	18,90	18,85		1,100	1.150		1,125
13.000	53.3	17.663	0.25	18,81	18.82		1.190	1,180		1.185
14.000	70.5	23.315	0.33	18,82	18.73		1,180	1.270		1,225
15.000	89.8	29,673	0.42	18:74	18.70	-	1.260	1.300		1.280

		. 7	45	Arr	
0.7 m	0.35	0.96313	0.3677		
0.3 m	0.15	0.57553	0.3875	6,2	
D,70%	0.35	1.23722	0.12222	0.2	
11,36.	0.15	1.11500	0.12222		
D (mm)	300				
En	116,13				
50	368,20	100			
Area 150.00	0.07065				

	E. = 675 - D - da / As
K_{γ}	· deformation modulus
Ds	= load increment
$\mathcal{D}_{\mathcal{S}}$	+ actilement increment
p.	= diamoint of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

Lab. Specialist Name : Sign :

Consultant Engineer Sign : Abbola Name :

Straces, D Owner Cressilins	Contrast=Counting			Formation	(Januar Agreek) (Janu	Rhadt All
E	Pla	ne Load '	Fest Results			
Company Name	AL MOSTAFA			-	-	
Location [524+740	To	524+820		Station	52,4+7(4
Taste Date	7-09-2023					
	P.S.G +0.50					
Layer level	P.S.G +0.50					

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following shetch shows the principle of the test.

e - last de - materieret de - diamatere al the glatestade d

The diameter p of the plate is generally 0.30 m. For very coarse grained material also plates with diameter p = 0.60 m and p = 0.762 m and used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded include, an excavator or a roller usually serve as counterweight for the hydraulic pick.

Diameter = 300

Loading	1-1	Last	Stren	mait	DuitT	Dial T	Sett.1	mil. 2	Set 1	Avg.
Stary Sur	Bar	365	BANAT	inii	imi			ineri.	100	
0,000	0,0	0.000	3.00	20.00	20.00		8.000	0.000		0,000
1.000	2.1	0.707	0.01	19.92	19.95		0.060	0,050		0.065
2,000	17.1	5.652	6.08	19.80	19.87		0.200	0.130		0.165
6,680	34.2	11.304	8.16	19.60	10,80		0.400	0.200		0.300
4.000	53.3	17.063	0.25	19.32	19.70		0.690	0.300	1	0,490
5,000	70.5	23.315	0.33	19.20	19.65		0.600	0,350		0.575
6,000	89.8	29.673	0.42	19.85	19.60		0.950	0.400		0.675
7,000	106.8	35.325	0.50	18.91	19,59		1.090	0.410		0,750
8,000	53.4	17.063	0.29	18.96	14.65		1.040	0,350		0,695
9.000	26.7	8.831	0.12	19.07	19,70	-	0.930	0.300		0.615
9.000	2.1	0.707	0.01	19.28	19.79		0.720	0,210		0.465
10.000	2.1	8.707	0.01	19.28	19,79		0.720	0,210	_	9.465
11.000	17.1	5.652	0.08	19.26	19.78	-	0.740	0,220		0.480
12.000	34.2	11.304	0.16	19.15	19.75		0.850	0,250		0.550
13.000	53.3	17.663	0.25	19.10	19.70		0.900	0,300		0,600
14.000	70.5	23.315	0.33	19.04	19,65		0,960	0,350		0,655
15.000	89.8	29.673	0.42	18.96	19.5%		1.040	0,420		0.730

	-	2 - A 1	48	30	
11.7 0	4,35	0.60937	0.32625	0.2	
6.3	û.is	0.28512	1.32025	0.2	
0.701	0,38	0.67167	0.19679	9.2	
0.301	84.6	0.495	0.17967		
D (mm)	300				
Eyy	137.03			-	
Ere	151.72			-	
Ina (Spec)	Darton's	-			

	H0.77 - 10 - do / 0+
Ĕ,	= deformation modulus
bs	= load increment
Ds-	= settlement increment
p.	= diameter of the plate, generally 0.30 m

MN/M2 0.30 0.50 0.60 0.20 0.40 0.10 0.00 0.000 0,100 0.200 Sett. 0.300 0,430 . 0.500 0.600 0.300 . 0.800

Consultant Engineer Lab. Specialist Lab. Engineer I Sign : Abdordu Name : Name : Sign : Sign :

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max} .

المعمن المرينكري وقيم (١)

Constraint Consultrue	Contractor Comolition			Contactor	alaigi s _{asabi} Duna	ALAN AN
E	pla	ne Load	Test Results			
Company Name	AL MOSTAFA					
Location	524+740	To	524+820		Similian	524+730
Taste Date	7-09-2023					
Layer level	P.S.G +0.50					
	ST PROCEDURE :-					

The load is applied to a elecular rigid steel hearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

3 = Radi A = assessment R = discreter of Sio plate

The diameter *D* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *D* = 0.60 m and *D* = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable and (< 0.02 mm/minute), After the maximum load is reached the unineding procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an exceptor or a roller usually serve as counterweight for the hydraulic tack.

Diameter =	300mm
TO THE REPORT OF THE PARTY OF T	~~~

Louding	Lant.	Luif	Sire	Bid+	filal Z	Bist.Y	Sell, U	SHL7	Seri 1	Aig.
Stepl-No.	Bar	SS	MS/M2	101	100		-	inte	-1100	
0.000	0.0	0.000	18.00	20.00	20.00	-	0.000	0.000		0,000
1.900	2.1	0.707	10.0	19,90	19.92		6,100	0.080		0,090
2.000	17.1	5.652	0.09	19.70	19.85		0,300	0.150		0,225
0.080	34.2	11.304	0.16	19.52	19.78		0.480	0.220		0.350
4.000	53.3	17.66.1	0.25	19,32	19.65	-	0.680	0_320		0.500
5.000	70.5	23.315	0.33	19.16	19.64		0.820	0.360		0.590
6.000	89.8	29.673	0.42	19,02	19,60	1	0,980	0,400		-0.690
7.000	106.8	35.325	0,50	18.88	19,55		1.120	0.450		0.785
8.000	53.4	17.663	0.25	15.97	19.65		1,030	0,350		0.690
-9,000	26.7	8.831	0.12	19.10	19.72		0,900	0.280		0.590
9:000	2.1	0,707	0.01	19,30	19.80		0,780	0,200		0.450
10.000	2.1	0.707	0.01	19,30	19,80		0.700	0,200		0.450
11.000	17.1	5.652	0.68	19.25	19.77		0.750	0.230		0.490
12,000	34.2	11.304	0,16	19.16	19.74		0.840	0.260		0.550
13.000	53.3	17.663	0.25	19.06	14.70	-	0.940	0,300		0.620
14:000	70.5	23,315	0,33	19.00	19,66	-	1.000	0.340		0.670
15.000	89.8	29,673	0.42	18.92	19,59		1.080	0.416		0.745

	100		45	Arr	
0.7 01	0.35	11.60687		4.4	
0.3 4,	8,15	0.33438	0.3725	0.2	
0.701	0.35	0.68667		11.2	
0.3n ₁	ñ.15	11.53	0,15066		
D (mm)	300			-	
B.g.	105,14				
Erz	287.24				
metigan	6.07845				

1	- 1.15 · D · Ar / As
к,	· deformation modulus
<i>Ds</i>	= toad increment
174	- settlement increment
p	- diameter of the plate, generally 0.30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist Name : Sign :

Consultant Engineer Name : Sign : Abde fue

٩

4

Contractor Constituent			Creansa	Owne	Namino,
Pla	ite Load	Test Results			_
AL MOSTAFA					
524+740	To	524+820		Station	5241800
7-09-2023			_		
P.S.G +0.50					
	Pla AL MOSTAFA 524+740 7-09-2023	Plate Load AL MOSTAFA 524+740 To 7-09-2023 P.S.G +0.50	Plate Load Test Results AL MOSTAFA 524+740 To 524+820 7-09-2023	Plate Load Test Results AL MOSTAFA 524+740 To 7-09-2023	Plate Load Test Results AL MOSTAFA 524+740 To 524+820 summer 7-09-2023

The head is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each head step is revorded. The following sketch shows the principle of the test.

. Frensler de 4 settlement D = diamater of stra plana

The diameter *D* of the plate is generally 0.30 m. For very coarse grained material also plates with diameter *H* = 0.60 m and *H* = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable and (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is releaded in 5 steps. A loaded trock, an exceedator or a roller usually serve as counterweight for the hydraulic jack

Diameter =	300mm
------------	-------

Londing	1.00a	Loui	Strees	0(4)	Did 1	Dial 2	SHET	50.2	Seit -N	Ave.
Storge No.	Du	RN	MINIMU	me	(mix	and a		ann	Hant	
0.090	0.0	0.000	0,00	20,00	20.00		0.000	0,000		0,000
1.000	2,1	0.707	0.01	19.97	19.98		0.030	0.020		0.02
2.000	17.1	5.652	0.08	19,03	19.88		0.170	0.120		0.143
0.080	34.2	13.304	0.36	19,50	19.75		0.500	0.250		0.37
4,000	53.3	17,663	0.25	19,30	19.67		0.700	0.330		0.51
5,000	70.5	23.315	0.33	19,15	19.64		0.850	0.368		0.605
6.000	89.8	29.673	0.42	19.00	19.58		1.000	0.420		0.710
7.000	106.8	35.325	0,50	18,85	19.52		1.150	0.480		0.815
8.000	53.A	17,603	0,25	18.90	19,60		1.100	0.400		0.75(
9.800	26.7	8.831	0.12	19.00	19.72		1.000	0.280		0.640
9.000	.2.1	0.707	0.01	19.20	19,80		0.800	0.200		0.500
10.000	2.1	0.707	10.01	19.20	19,80		0.800	0.200		0.500
11.000	17.1	5.052	80.0	19.18	19.70		0.820	0.300		D.560
12.000	34.2	11.304	11.16	19.10	19.65		0.960	0.350		0.625
13.000	53.3	17.663	8.25	19,06	19.57		0,940	0.430		0.685
14.000	70.5	23.315	0.33	19.00	19.52		1.000	0.480		0.740
15.000	89.8	29.673	0.42	18.92	19.45		1.080	0.550		0.815

_		5	48	der .	
0.7.0	8.35	0,61813		8,2	
11.3 mi	9.15	4.54625	0.27188		
11.7eg	11.35	0.75667		0.2	
0,3a:	11.15	0.62001	0.13666		
Ti (mm)	.504		1.0		
Fre	165.52		1		
The	.129.28				
Area (.Sq.m)	1147065				

	E 11.75 B (107 / 1)
Ē,	= deformation modulu
Ūs.	= joad increment
D.	= settlemont increment
	and the second sec

7 = diameter of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

Lab. Specialist Lab. Engineer ſ **Consultant Engineer** Name : Sign : Abdsdw Name : Sign : Sign : العس الركرى رقم (1)

CONTERN ADDRESS OF	Cruracur Quuillaar	H		Cimareire	iatings, speeds) Over	(الجريد (الجمعة)
	Pla	ate Load	Test Results	_		-
Company Name	AL MOSTAFA					
Location	524+740	To	524+820		Shailoo	524+815
Taste Date	7-09-2023					
Layer level	P.S.G =0.50					
DUIPMENT AND TH	ST PROCEDURE : -					

The load is applied to a circular rigid steel bearing plate by a bydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F > load Ar = militizenes) .B = stansmer of the pinne

The diameter D of the plate is generally 0.10 m. For very coarse grained material also plates with diameter P = 0.60 m and P = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable and (< 0.02 mm/minute), After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavalor or a roller usually serve as counterweight for the hydraulic jack.

Diameter =	300	ma
------------	-----	----

Luning	Lisad.	Loni	Streis	piet 7	Dial 2	Tial 2	Sen. 1	50.2	90.5	Aug
Stage We	llar	us	MN/M2	mis	ma	dres	stim	aliti	tien	min
0.000	0.0	0,000	11.00	20.00	20.00	1	0.000	0.400		0.000
1.000	2.1	0.707	0.01	19.97	19.96		0.030	0.040		11.035
2,000	17.1	5.652	11.08	19.80	19,80		0.200	0.200		11.200
0,080	34.2	11.304	6.16	10.50	19.55		0.500	0,450		16,475
4,000	53.3	17.663	0.15	19.25	19.31		0.750	0.690		16.720
5,000	70.5	23.315	0.33	19.05	19.12		0.950	0.880		16,915
6.000	89.R	29,673	0.42	18.84	18.93		1.160	1.070		LIB
7.008	106.8	35.325	4.30	18.62	18.60		1.380	1,400		1,390
8.000	53.4	17.663	0.25	18.72	18.68		1.280	1.320		1,300
9.000	26.7	8.831	@12	18.80	18.90		1.200	1.100		1.150
0.000	2.1	0.707	0.01	18,93	19.87		1.070	0.9.10		1.000
10,000	2.1	0.707	0.01	18.93	19.07		1.070	0.930		1.000
11.000	17.1	5,652	0.08	18.92	19.04		080.0	0.960		1.020
12,000	34.2	11.304	0.16	18.88	18.90		1.120	1.100		1.110
13.000	53.3	17.663	0.25	18.82	18.82		1.180	1.180		1.180
14.000	70.5	23.315	0.33	18.75	18,74		1.250	1,260		1.255
15.000	89.8	29.673	0.42	18.70	18.66		1.300	1.340		1.320

			:45	50	
B.7-m	6.35	0.87038	0.43375	0.2	
0,3 04	6.15	0.44063	0.43375		
0.701	0.35	1.20944	0.22944	0.2	
11.361	9.15	1.04	0.22344		
D (mm)	.300-				
BV,	105,25				
EV.	196,13				
in stand	0.09065				

	E, # 1. 15 h 30 / 30
F.	= deformation modulus
Ds	= load increment
DI	= settinment increment
D	# diamater of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max} .

-			Vi	the same same		2	1		t,	1		ī	a4400 3		1
Den Ces	iliant.	1	C.	artuiter Ce	-		-	ENTRA	LAR	1	Desarrier	_	Quer:		-
						Plate	Load	Tes	Re	sulis			Care.		Rist
Compan	y Nan	ne				_	OSTAL	_		SHILLS.	1		100		
the second se	tion		-	524 +			To		524 -	900	1 1	ties	-	1 100	
Taste	Date					28-1	09-2023	1	44.			-		121-	
Laye	r level				SU	-	LLAST		-		-			1	
E	GUIP	MENT	AND	TEST		_			-		-				
			-				-	-	-		_	-	-	-	_
The dia	used on The	or the pu	m is gen	enally 0.30	Im Fory	w/y com	na graine	d maieri	el also	photon with di	ameler D = 0.80	i m and I	0 = 0.762	m are usi	ed .
		nil proces	durt can	oquel sus begin. Af	L Unidiar a Ipy Bhail, I	na prate	t step the is reload. for the h	10 11 5 11	805.AI	contect truck	oticeable and i an excavator o	a 0.02 min a roher	nimimula usually s	After the enve as co	- maxe
	100mm	-	-		-	-	_		_		_			_	
Name and	1-1	1-4	Seres	Star 1	Desit	Ded 2	541.1	See. 2	541.2	Arg		1		AT	1.0
000.0	0.0	6.000	0.06		-	-	int .	-	-	-	850	8.35	843625	2.55667	
1.000	21	0,707	0.01	26.00	20.00	-	0.010	0.000	-	0.000	83.01	6.15	0.47938		-
1,000	17.4	5.632	0.06	19.80	19.60	-	0.210	0.405	-	B.300	0.74	0.15	1.025	6.173	9.2
0.050	34.2	11.304	0.16	19.57	1845		0.410	0.600	-	0.505	D (ever)	380	1425		-
6.000	513	17.663	0.25	13.40	15.20		0.600	6.800	-	0.700	En	120.00	-		-
3 Deet	70.5	13315	0.31	19.30	18.92		0.700	1.060		0.850	Eq.	257.14	-	-	_
6.000	.87.4	28,473	8.42	19.10	16.80		0.500	1.200		1.020	Arme (No.mi	-	1		-
7.000	TOA.8	13.321	8.50	45.00	18.54		1.000	1.600	_	1.230	-	_	-		
8,000	574	17.863	0.25	18.02	78.55	-	0.980	1.450	-	1.215	1404	2.04		1.00	
0.000	24.7	8.831	8.12	14 00	160	-	0.520	1.390	-	1.155					
10.000	11	0.707	0.01	19.38	18.81	-	9,820	1.100	-	1.005	-	r 8.15 -		144	1
11 ARD	17.1	5457	6.00	19.37	38.80	-	0.810	1.200	-	1.015	8.		netion me		1
12.000	36.2	11.304	0.16	19 10	1877	-	0.900	1.230	-	1.065	0.		ti mineri		
11.000	51.5	17.663	0.25	18.05	14.56		9.950	1310	1	1.145	De.	-	nari inco	-	
14.000	10.5	23 314	9.11	19.02	18.58		11.070	1410		1,100	μ	- 846	er of the	plain, gan	maily 0
15.000	14.5	29.67			18.52		0.990		-	1.235					
n inclu	10.00		- Martin			it tigaer ba									
				-		-		WN/M			4	-	•		
	1.1			-		1		_							
	1.1		-							1.8.1	1111	1.1	-		1
						1		-			1.1.1	-			1
Soft	0.77						~					-	-		-
W1.	-								-		-			-	-
	-					-		_		_				_	_
		_			_		_	-	-	-		-		_	_
	-								-	_					
-	Lab.3	iperialist	-	7		-	Lab	Lingham	-	7	-	-Te	multiant &	in this man	-
Name	-					Name		MED HA	LEEM		N	Ame :	1. m	FRA	3+6
							1	1.2	lit						
Sign :						Sign	1 1	P.D.			1	ilgn :		lent	9
							1							F	48

Scanned by CamScanner
avacin i	and an			Constantion	C-24			(INTRA	LLAS	1	Linevie	-	low-	-	-
	-	-	-			Plat	e Loa			esults		-	1.1		22.0
Com	any Na	ame			-	_	IOSTA			Longitto -	-		1		~
	cation		_	524 -	760		To		524	+ 900		ing in	nie-	1 624	-865
Ta	ste Dat	e				1-	10-2023	3	-		-	-		1 6	-
Lay	er leve	4	-		SU	BBA	LLAST	F +0.90	-		-				
1.00	EOUT	MENT	LAND	TEST	_	_	_		-						
			_			-			-			-	-	_	-
The di	anda p	of the pla	the its gev	eally 0.2	tim For	very cos	res grain	et enviore	al dese	putei with	diameter D = 0.1	50 m and	D=0.76	E m ans w	bea
kied is appl	led in \$ k	oud more	ments of	equal siz	. Under	secti las	d stip the	sellem	ni mu	Si come in A	noticeable and	1- n m m		-	-
load is rea	acted the	unitedin	g proced	lump cuan b	ingin Alt	er mai, u	he plane is maneight f	FEIGACIAN	d in il s	Maps A load	ed truck, an exc	avision of	a roller	multy se	CV8.45
eter =	300mm	-		-	-	Lound	in state and state	or the life	Car anillo	. Juca				-	
Sauling.	Last	1-1	termi	timite.	David 1	There's	-	Ser	50.1	140	-	-	1	L	-
Sugar Sec.	1.4	15	-	-	-	-	-		-		87.	6.35	# 64582	M	- 44
6.800	0.0	0.000	0.00	20.06	20.00	-	0.000	0,000	-	9.000	83.01	0.15	D 2964R	434475	0.2
1.000	21	10707	6.81	16.66	18.97		0.040	n.om		0.015	R.Tay	8.35	0.57278		1.00
2.000	171	5852	10.00	19.78	19.88	1.11	0.220	0,129		8.170	0.5m,			9 16777	0.2
0.080	342	11,254	0.16	10.39	19.78		0.410	0.228		0.315	D (map)	276	1000		
4.005	55.5	17481	A.25	15.40	19.62	-	0.003 9	0.340		0.490	En	129-03			0
5.000	76.5	28.473	0.31	18.21	11.50	-	0.770	in smith	-	0,635	EX,	168.11	-		
7.6400	106.0	81.525	0.42	10.12	19.84	-	0.850	n Sray	-	0.721	Area Squee	A 87945			
8.000	53.4	17.443	0.25	19.00	18.41	-	0.840	0 630		0 805	Tim.		-	-	
1.000	26.7	4.821	8.17	19.14	19.40	-	6.860	0.520	-	0.765	EVERYI .	7.85	-		
\$ 000	1.1	0.707	0.01	18.54	14.61		0.600	8.390		6.525					
10.0496	2.)	10.785	0 81	19.34	19.61		0.544	8.350		0.525	1	r. + 11 75 -	Q- 47	41	(C)
11.040	17.1	1457	1.01	19 22	19.55	100	0.581	11.130	-	0.365	4	- delivity	alion mod	bius	
12,800	28.2	11,204	6.14	1621	16.52		8750	0.100	1	8.615	De .	- food in	CONVERSE.		
11.900	53.3	17.842	4.23	16.14	14.87.	-	0.844	11.500	-	246.0	0.	- Letter			
13.000	41.4	22,315	9.42	18.00	19.41		0.840	0.530	-	0.785	н	+ GLANNIG	et of the p	itti, gira	vally 0.
- 14	-		and the second second			tion be	A BREAK	0.429		9,400					
					222			10.000		-					
			-			-		11							-
	-						_	_	_			-			
	-	_				-			-			_		-	
-	_				-	-				_		-	_		-
	-		-			-				_			_		
	-								-			-		_	
	1.1						-		-	-	-	-	-	_	
			1			-			-	-	-				_
	-					-			-			-	-		-
-	Lais Spen	tieffeit	_		1	_	1.4.5								_
Name :	1.1.1					1	Lah Eng		-			Cons	ultant Eng	piseer	_
A COMPANY OF						Nami	NHM	DHALE	EM.		Nas	ne: 7	+ + sich	Re	1-6

1

				1.10.1				_		T	Cimility		Trayram	10	
Chant	Centralization			Centificite	Consilier	_	1	_	ALLAN		Contine	-	-		
	-					_	te Lo	_	SIR	esults			1		-
Com	pany N	ame			100	ALI	MOST	AFA	-		-	-	alta.	1 /100	
L	ocation	1-		524	+ 760		To	-	\$24	+ 900	-	-		1	
	ste Da					-	-09-202	la de la deservación de	_		-				-
	yer lev		-		S	UB BA	LLAS	T +0.9	0		_				
	FOU	PLIPN	TAN	TEST	PRO	CEDU	RE :-				-	_		-	-
	Lance .	-					sta stale	mit mater	ini aisu	plates with	diametin D = 0.8	Si m and	11 - 0.710	7 m am 10	et
		_			_	_	id step th	-	ient.mo		nolicoable end , an excelation c		- testing in the	A ADD TO	C TRANK
-	300mm		-	-		-	-	-	-			-	_		-
Linding	Lud	Level	line	1mm	Dail	DMT	NR/F	Sec.1	Set 1	A spi Rett	-	-	1	14	jl.rr
Sugi No.	j.ar	0.5	-	-	-	-	inte	-10	min	-	0.7 04	0.15	1.05	17.26	10.Z
0.009	0.0	0.000	0.00	20.00	20.00		0.000	000.0	1.1	0.000	130.	115	1.22333		1.1
1.000	7.1	0.707	0.0T	19.97	18.93	-	6.430	16.076	-	0.050	1.70	4.15	1.855	111663	02
2.000	17.1	5.652	0.00	18.53	19.51	-	0.460	0.490	-	0.476	D (mat)	300	1		-
0.080	24.2	101.11	D.16	19.46	19.24	-	0.590	0.768	-	0.675	Ev	123.00			
4.000	\$3.2	17.663	0.25	19.78	18.95		8.620	1.050	-	0.835	En	207.33	-		
5.000	10.5	23,315	0.31	14.76	18.76	-	0.910	1.240	-	0.940	Arna (Sprat	0.07043			-
6.000	89.8	29.673	0.42	19.26	18.ST	-	0.740	1.490	-	1.115	Dome of the	-	· .		
7.000	105.5	35.325	0.50	15.21	18,12		0.790	1.680	-	1.205	Detto 1	L11	-		
11.0000	63.4	17,663	0.35	19.22	38.37	_	0.780	1.630	-	1.185				-	
9 000	26.7	8.831	0.12	19.24	18.19	-	0.760	1,610	-	1.035					
9.008	2.1	0.707	9.01	19:36	18.57		0.640	1,430	-	1.035	1 4	·-##	p - Ja /	41	
10.000	2.1	0.707	0.01	19.35	18.57	-	0.610	1.840	-	3.045	ε,	- deform	tim med	Reins	
13.000	17.1	5 852	0.16	19.32	18.52		0.660	1.480	-	1.070	De	e iond ins			
12,000	34.2	11.304	0.25	10.31	18 42	-	0.030	1.580		1.135	<i>0</i> +	* cettion			
13.000	52.3	23.315	0.11	19.28	18.30	-	0.720	1.707		1.210	ø	A Diamain	er al line p	iait, gune	uity 0.3
14.000	70.5	10.672	0.42	19.21	18.25	1	0.700	1.730	100	1.270					
15.000	89.2	gaara	17.0	heritumi	Ty+ Is=0.	spile Real	****	- and	0.3 et	-					
+ cautor -							6	07/641							
						1.1		-0	-				1.1		26
								17							1
	1.1.				-	_		-			-		-	-	
	-	1.1.1			-	-			-	-	-	1	-	-	-
	1		-		-		-	-	-	-	-	-	-	-	-
	-			. L.	1.5	-		1.0			-			-	-
					1			1.11		1		-	- 2	din la	-
1.00			-		1.1				-			1.1			-
	-		-	-	T			1			1.2		-	1	
		-	-	-	-				_		í l	Cenu	Hant Engl	iner	-
	Lab. Speci	a Gut			1	-	Lals Engl				New	. 4	ant	R.g.	1
Name :					1	ame :	AHME	Band	W.		Nam	e. /	undel.	1. 1	-

				antinetter C	10.00		- En	CENTRA	LAR		Compress	-			
Dent	-	-	-	and action of	and comments	Dist		-			California	-		-	- 3404 1
-		-	-				Loa		t Res	suits	-	-		1 miles	5
	any Na	me	-	104	100	ALM	OSTA	FA				-	- 1	124-8	-
	cation	-	-	524 +	760		To		524 4	900	4 4	.9412		(main	-
	te Date						09-202	-	_	-	-			_	
	er leve	-		Const.		-	LLAST	+0.90							
	FOILI	MEN	LAND	TEST	PROC	EMDE	E	-			-		_		
The di	ameter D	bi the pla	to is ger	erally D.3	om For	utry com	rse graine	d materi	ni niso ;	plates with dia	meller () = 0.50	m and D	- is 787 1	m are use	st
lond is app meched th	læd in fill Wilload	ad increa	monte pl dure car	equal size begin. Al	n Winder i Ner Ohat, i	Pin pistin	i step pro Is reinedi Tor Ney h	ni in 5.si	eps. Al	i come le a no madeil iruck, a	niceable end (- in excavator or	0.02 mm e roller L	Voniouna) aunaity sa	After tha rys as co	maxima
cter =	300mm	-								_		-		-	
Landing	imi.	(Line)	Trans	Dui)	06/2	0113	Bet V	sių 7	10.1	Arg		1	- b	AS	An
Stage No.	Ret	13	MATH	-	-	- 240	-	+		-	8.7 m	4.15	0.82375	831125	0.2
0.000	0.0	0.000	00.0	20.00	20.00		10.000	0.000	_	0.000	43 4	ê.15	8.4825	-	-
1.000	21	0,707	0.01	19.07	10.83		0.010	0.170	_	0.)00-	0.3 ₇₆	6.35	1.16087	8.18667	9,2
2.000	17.1	\$ 657	R DM	19.78	19.54	-	0,100	0.420	-	0.360	83.42	815	0.58	-	-
0.080	34.2	11.204	0.16	19.61	15.18		0,190	0.010	-	0,500	(A (mon)	Jame and	-	-	
4.000	51.1	17.663	0.25	19.50	15.08		0.500	0,920	-	0.710	En,	131.87	-	-	_
6.000	105	23.315	0.31	18.40	18.87		0.600	4.130	-	0.845	Evy	ENTINY .	-	-	_
7.000	106.0	13.321	9.50	13.12	18.52		0.730	1.250	-	0.090	Arra (Seat	example:			
8.000	33.4	17.661	0.25	15.16	18.54	-	0,840	1.460	-	1.150	R-Davi	1.00	1	-	1
8.000	16.7	ARTI	0.12	18.15	18.64	-	0.510	1.360	+	0.005	- Bridgers	141		-	
9.000	2.1	10707	10.01	18.30	18.80	-	0.700	1.200	-	0.050					
10.000	7.1	6.707	0.01	19.30	18.80	-	0.700	1.200	-	8.959	1	E 1112	D - 60	140	I
17.009	17.1	52.22	10.00	19.20	18.79	1	0.770	1.210	-	0.005	D.	- defium	nation ma	éuluta	
12.000	142	11.204	0.16	1928	18.70		0.760	1.300	-	1.010	D.	÷ Isanii II	-		
13.000	133	17.861	0.25	10.22	18.60		6.780	1.400		1.090	D.	+ +=131m	ments incom	arriers .	
14.000	70.5	23.313	0.21	18.20	18.30		6.800	1.500		1.150	p	+ diama	ter of the	piere, pro	erally a
15.000	114	29.873	0.42	15.12	18.13	1	0.840	1.570	1	1.225					
A second	-	12.239	and y	aren 1720	P4 160			MANAG		_		-		_	
	-				-				_						
-	-		_		-	-	-					-		-	-
1,7	-		_	1			-	-	-				_		
_	Lab Spe	vialler		1		È	Late L	- bylizeer	-	E		Cu	man and a	Linginets	_
Name:						Name		MEDHA	LEEM			ame c	Years	FR.	9-6
Sign ;						Sign		Part of			5	igu z		Ting	er

				1.00			1	Part		-	area.	-			`
Linear .	Committeet	-		Ingravities	Comultana	1.11	-	CANTRA	LIAR	-		-		-10-12	7
-		-	-		_	Plate	e Loa			snlts	Candidate		-	1.10	7.
	pany Na	910	-	1		AL M	OSTA	FA	1. 1.1	Suns	-	_			
_	ocation	-		524+	760	-	To		574	+ 900					~
	isie Date				-	1.1	0 2023	-	303	+ 900	- 1	the state	-	fite	186
Li	iver leve	_		1.1	SU	BRAI	LACT		-	-	-				
	-	EOUIP	MEN	TAND	TEST	PROC	EDUD	E.	-		_				
The	diameter D	of the sta	to in an				dutre in	antes .	-		(-			
-		and but	ne is ger	torally 0.3	0 m For	VETY EAS	til grave	d maket	il also	plates with d	liameter 0 = 0.1	to m and	D - 0 162	I M ATO LAS	-
	carse and the	muoadin	9 proced	lune can b	egin: Ally	er that, th	w plate is	relucion	5 W 1 1 1	teps. A inade	diruch, en esc	+ S EE mi	a roller a	L After IV	i film
eler =	300mm	-			-	COUNTS	rwinght	or the by	diama in the	(Nich		1100			-
Landing	i and	1.000	Sume	Duti .	inte I		-	-	-		_				-
94 9 54	Au-	KN	NNNU	-	Pul7	Digity	Sen. I	Seil	ber i	- 11E			. 1-	44	-
0.000	0.0	0.900	0.00	20.00	20.00	-	0.600	0.000	-	-	41 41	8.8	8.51003	R. BASSER	8.0
1.000	2.1	0.707	0.01	19.87	13.87	-	0.130	0.000	-	0.906	8.5 m	815	9451		-
2,000	17.)	5.652	2.75	19.63	19.72	-	0,370	0.230	-	0.120	8.74	8.85	0.86832		14
0.080	34.2	11.304	0.16	19,4E	19.57	1	0.540	0.430		0.485	D formal	-6-13	9.82	-	
4.000	52.3	17-663	0.25	19.30	19.42	1	0.700	0.580	-	0.640	Et.	TON-25			-
5.000	70.5	23.315	0.31	19.16	19-25		0.860	0.750	1	0.805	EQ.	787.33		-	-
6.000	65.6	29.673	0.48	19.02	15.14		0.860	0.600		0.920	Arrow (Signal	-			-
1.000	105.8	32.352	10.50	18.96	19.01		1,100	0,990		1.045		-			
8.000	51.4	17.663	41.25	18.92	19.05	-	1.080	0.050		1.015	Extens	246			
9.000	2.1	8.821	0.12	19,00	19.18	-	1.000	0.820		0.910	1.00	_			
10.900	-	0.707	9.01 R.0)	19.10	19.30	-	0.900	0.798	-	0.900	_				
11.000	-	3,652	0.08	10.00	19.30	-	0.000	0.700	-	0.600		F. + 8.75	11 - 110	F.84	1
12.000	_	11.304	0.16	15.05	19.22	-	0.950	0.710	-	0.810			AND IN CASE	Giuluit	
13,000	51.3	17.661	0.25	19 00	19.15	-	1.000	0.850	+	0.925	0.	- Ised in	crowned insure	1	
14.000	70.5	23,315	0.33	18.96	19.09		1,040	0.910	-	0.975	D. 10			planter, gerre	
15.000	in the second second	25.675	0.42	18.90	15.03		1,104	0.970		1.035				person (perso	and.
in calcu	nivîn dê se	10012	usonity t	1ken fism	the inad	span be	ween 6.3	7	10.7 :	Trans.					
	100					÷		MN/M2							
	-										BAL)				~
		_	_	-			1.1			-					
					1						_				-
				-		-	-	-	-						-
				-		-	_	_							
						-				- 10					
		-	-				-	-	-	-	1			_	-
		-			-			-	-		-		_		2
	u				1							1			
	Lah Spe	cialist	_	1		-	Lab.Es	shurie	_	1	-	-	de la f	-	2
Name			-	•			- 4.5	1.7.	-	-			nitan En		de la
NOTIF.						Name :	AHW	ED HALL	-		Na	me: /	10 2354	11	1
Sign :						Sigu	N	1 and 1			SL	gn :		1: July	-

1				5	44 .1	and a	الغرب	- t -	1 m			-	-	daright :	-
2	-			anticharrow I	Care Nant	1	1	FREEMA	6.6.88		Francis		0 		-
-	-					Plate	e Loa	d Tes	l Re	esults				-	
Com	any Na	me	-		-	AL M	OSTA	FA					·	1.14	0
Comp	cation			524 +	500	-	Ta		524	+ 640	-	54	-	874	. 891
	te Date				-	28-	09 202	3	-		_		-	~	-
	er leve		-		SU	B BAI	LLAST	+0.00			_				
	_	MENO	AND	TEST	PROC	EDUR	11.				_				
-	-							-	-			-	-		-
The die	motor D	ni iha pia	ien je Ginu	neality 0.3	0 m Tari	nery Enn	ne graine	di materi	al atto	plates with d	Slamator D + D	66 m and	P = 1 75	2 47 47 1 12	ned.
nd to appli ced is real	ed in 6 Li chos like	and increa	mots of g procest	equal size	e Unders egin Año	er Hiad, ih	d sing the m plate to oweight to	reforded	11151	APPL A LOAM	noticeable and id truck an evo	(+ 0 07 m availar of	en anticipation de la constante de la constante La constante de la constante de	I Aller P	ar 1014 1 174 115
ler e	200mm						_		_	_	-	-			-
tilling.	Louit	1.000	-	TRUE	0.417	Pela	1.04		\$+0.1	4-18 5-11				19	
tuge No.	Des	69	-	(MA)	-	in the	-	and a	-	-	4.7 01	A 15	0.315	8.866NT	8.Ì
6,000	0.0	0.000	0.00	20.00	20.00	-	0.000	8.000	-	O INHO	8.3 0	4.45	0.355		
1.000	2.1	0.707	0.01	19.04	19.97		0.020	0.010	-	0.025	8.54		0.60	0.17722	8.2
2.000	47.1	5.652	0.04	19.84	1975	-	0.420	0.258	-	0.345	Diami	3/10			
0.060	142	17.583	0.25	19.75	19.56		0.250	0.000	-	0.570	EN	16450	-		
5.000	53.3	23.315	0.23	19.11	1924		1 540	0.766		0.660	Ev,	251.82	-		1
6.000	80.5	30.073	0.42	19.04	10.01		0.000	11.930	-	0.795	Area Section				
7.000	100.8	35.325	0.50	19.20	18.00	-	0.800	1.100	-	0.050			-	-	
1.000	33.4	17.663	0.25	19.20	19.01		0.740	0.970		0,855	P-D-WH	10	-		
9.000	20.7	8.831	0.12	15.31	19.10		0.899	0.900		8.795		_			
s 850	2.7	6.707	0.01	19.48	19.30		10.520	Q.7mi		0.610	-	-	-		
10.000	2.1	0.701	0.01	19.18	19.30	1.1	0.520	0.700	-	6.010		6,-171-	-		
11.000	12.1	3.652	0.08	19.44	19.76	_	8.540	0,749	-	0.050	e,		offent mus	a'nu	
12.000	34.2	11,301	0.16	19.53	15,20	-	0.870	0.999	-	0.735	p. Di	- trail in	and parent	Common Color	
13-800	52.3	17.663	0.25	19.28	10.13	-	0.720	0.870	-	0.795	0				nality 6
14.000	70.5	23,315		19.24	29,05	-	0.700	0.950	-	10.03.0					
15.000 celculate	89.8	29.672	0.42	10.36	19.00	LUDO DE			10.7 #						
CHICLARD	on an w	a de ain	distantly :					MIN/MIZ							
YE	-		11			0.07		1.420			1.01	-			
	1 1	-		-	1	-		-	-		-	-	-	-	-
	-	-		-			1.2	-	-						
144	-		-		-	10.1	-	1.1				-			_
			-	-	-							_	-	-	_
			1			1.1		-	1				-		-
	A	1			1.00	-	-			-					_
		-	-		-		1.1	-	-1			_			
			-	-	-	10.11	-	1	-		1.1		÷	_	
	-	-	-	-	-	-		_	_	1	-	Tana	ullanti E.A.	einert	-
-	Lab. Sp			1		-	Lah Bo	1.1.1.1		1	-	-	/ == HE		7=4
Names						Name:	AUM	ED HALL	EM		Na	me: /		Ensel	
River's						Sign :	1	1 tot	-		50	an.	1	144	ŝ.
Sign :							11	fiat	11				-		

1		1		inter-	he and		-			-1 -7		-		-	-
iterer D	in the second		D	nineine S	_	-		CENTRA		1.1	Contentine		Owner		74
-						Plate	2 Load	1 Tes	t Re	sults					
Compa	ny Na	nie				AL M	OSTAI	7A			1			12	~
	ation			524 +	500		To	-	524	+ 640		500	inter la constantina de	524	1.595
Tast	e Date					28-	09-2023	1	-		- '	-	-		-
	er level	_	_	-	SU	BBAI	LAST	+0.96	-		-				
		MENT	AND	TEST	_				-	-	-				
-	DOCTOR NO.	ATACALLA	2 Miles	Lint.	Labe	L DUO	-		-				-		-
The dis	metor D	of the pla	te is gem	erally 0.3	m.For	ery coa	se graim	d maleri	al alto	places with d	lemoier D = D 6	0 m and	D=0.76	I m bro us	ed.
ioad is real	ched share	Unicading	i procedi I procedi	nguai sin um can b	, Under J ogin. Afte	r Ihal, ih	t slop the re pinia is rweight fo	related	11055	trps. A loade	neilceable end i d muck, an exc	a D.02 mi	núminute a roller u	g Merth sually sa	e mast
	100mm		-	-			_			_					
Loging	Let	5488	Shreniji	11611	Det 2	Dul i	Sen i	148-2	Set? 1	Arg.	-			- 65	41
Stage Mr.	8=	OKN_	APRIMA .	-	-	he	-	inn	intr.	-	10.7 m	6.35	6.973	0.35375	
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000	12.5 10.	615	6.62125	-	100
1.000	2.1	0.707	0.01	19.92	19.97	-	0.080	0.930		0.055	0.701	8.35	1.54389	6,78895	19.0
2.000	17.1	3.652	0.08	19.60	19.70	-	0.400	0.300	-	0.350	0.502	8.15	2.355	-	
1.000	31.2	17.863	0.16	19.75	19.43	_	0,750	0.570	-	0.690	[] (mm)	100	-	-	-
5.000	70.5	21 315	0.13	38.70	19.45	-	1.100	0.350		1.015	EN	228.24	-	-	
6.000	87.8	29.673	0.42	18.50	19,13	-	1,509	0.130	-	1.985	fire the state	1.8785	-		_
7,000	105.8	36,325	0.50	18.25	18.90	-	1.750	1.100	-	1.425	1944 (94 MI	alanasi.	1		
1.600	53.4	17 663	0.25	13.30	19.03		1.700	0.570	-	1,315	Detti	10			1
5.000	26.7	114.8	0.12	15.03	19.06		1.570	0.940		1.255			-		
9.000	21	0.707	0.01	16.62	12.11		1.300	D.890		1.125					
10.000	2.1	0.707	.0.01	18.6Z	19.11		1.380	0.890		1.135		Gedra-	D dar i	dr .	
41.000	171	5.652	0.00	顶口	19.10		1.590	0.900		1.145	5,	+ deform	alien med	Suing	
12,000	34.2	11301	D.IE	18 50	12.06		1.500	0.920		1.210	D+	- fisad by	crimini		
13,000	11.3	17.667	-	19,46	18.05	_	1.600	0.950		1.275	01	in pattless	nent histe		
34.000	78.5	23.315	-	18.30	10.03	-	1.700	0,970	-	1,335	.0	- diamet	its of this p	aitis, gene	mily 0.3
15.000	59.0	29.671	0.42	18.25	19.00	100	1.750	1.000	_	1.375					
is calcula		60.2× 10.5			n Ehe Kand	201		MN/M		-					
	- 1.0			1.1		0-3	1.1			1.1.1	L L L		8		
			-	1	-	11	-	1	-	111		-	-	-	-
	-	-	10	-	- 2-	-	++	-	-	1 1 1	1		-	-	-
	- 10	-		-	+ 1	17	-	-	-		1 1 1	-			-
	- 104		-	-	-			-	-	1.1	-	-	_		-
		-	-		10.1				-	-	5.4.0				-
	-	100	100	-	-	1		_	-1-		-1			_	_
			1.00	1.0	1-1	100	-1-1	1.4	1		1		_		-
	(60 -		-			1					n		-		
1	_	secialist.		1			Lab/E	ni fuitri e		1	1	Conte	ultiet Err	dinime.	_
Name	-		-			Name	1	EDHAL	ETA)	-	10	me . 7	A ante	L Re	10
(reality)						(Failer	all'	01	ine	-			1.000.00	E Res	
Sign;						Stewa	2/1	inter	1		SI	te :	1	1119	
							12	EFG	17.				1	Se tra	

dias	-	-	-	at raise a	1000		mak	-		5 3	12 mar	distan.			
ITempe C	ans driant	-		Construction of	Consideration	-		ELVISA	LAN	-	Construction	1.1		-4-1-	
1.		-	-	_	-	Plat	e Loa	d Tres	t Re	stille	i' unrifi. mi	-	· here	-	740
_	any Na	ime	-		100	AL.M	OSTA	FA		Suita	-	-		-	
_	cation	-	-	524 +	500		To		524	+ 640	-	-	_		>
	te Date	the second se			1997	1.1	0-2023		964	+ 040	-	34	Sin .	524	-571
	er leve				SU	TH HA	11 467		-	_	-			-	~
_	EOUT	MEN	LAND	TEST	PROC	EDUB	Et.	Think	-		_				
The di	ameter D	of the ph	ANI IS DOG				-	-	-		_	-			
and in case		-	_	and and	d m t bl	herA cost	ttë graine	d materi	ai atso	plains with	diameter D + D.	60 mi amil.	D = 0,787	-	ad
load is rea	ichied the	Minimación	NUMBER OF	equal sign	. Under	Mach Nas	d siep the	artiinme	ril mag	of come to a	noticeable and				
_			a process	Sere can n	-on An	COLUMN D	te plate ta rendons te	reloader	in 5 a	lipt. A ines	noticeable and of truck, an exc	avaine im	B rollar b	Aller the	é maxi
	200 million		-			-		- carde	ar and mic	Jacz'		_	_		
Locia	Les	Load	- times-	Xibia	Tim 2	1944	- 100 1	Sec. 7 1	Lari.2	Ast	-				
0.000	-		801142	-	-	ini.	-	-	-	20	12	-		<i>i</i> 4.	4
1 100	0.0	1.000	0.00	20.09	20.00		0.000	0.000		0.090	474	0.15	4.925	6.23186	0.2
2.000	17.1	11.707	0.01	19.60	19.67		0.246	0.130		0.165	1.TR.	8.15	871513	-	_
0.060	34.2	3.652	0.64	19.43	19.52	-	0.578	0.410		852.0	0.30	0.15	1.00	6.135	87
4.000	511	17.881	0.16	19.21	19.31	-	0.790	0.650		0.740	D (com)	100			-
5.000	70.5	73.315	0.12	19.07	19.21		0,910	0.790		0.860	Ety.	11.35	-		-
6.900	85.8	29.571	0.42	18.00	19.08	-	1.100	0,920	_	1.010	Ev.	533.54			-
7.000	106.8	35.325	0.50	18.60	16.80	-	1.190	1.010	-	1.100	Armi/Squi	A.m.		-	
1.000	53.4	47 663	0.25	18.65	11.01	-	1,490	1.200	-	1.500				-	
9.000	26.7		112	16.81	18.89	-	1.190	1.170	-	1.200	Everena	1.87	-		
1.000	2.1	0707	16.01	18.95	18.97	-	1.010	1.020	-	1.150					
10.000	2.1	0.701	6.01	18.95	18.97		1.056	1.030	-	1.040	-		-	-	
11.000	17.1	528.6	0.08	18.91	38.94		1.090	1.060	-	1.075	6	* datayou	_	1.000	
12.000	342	11.304	9.15	18.21	14.92	-	1.179	1.080		4.129	17,-	Alload in		and.	
33.000	53.3	17 663		18.74	38.88	-	1.250	3.120		1.190	01			-	
15.000	78.5	21.313	-	18.69	18.85	_	1.520	1.159		1.215	ð			ante, gente	my a.
	85.8	26.673	8.42	18.62	18.82		1.380	1.140		1.255					
cecuteo	(A) 40 40	0.7+64	Damily D	iken from	the load	mpan be	timerry D.3	17. max 1819	88.7 #	Phil I					
	10.1		1.64			14	1	MN/M2							
								17					•		~
14	-		-	-				-	-		-	-		_	_
4.4	×	2	-	+ + +	-	-	-	-	1	1.17	1.1			_	
44			1	1.1	11	1.1	1.1		1	1.1.4					
			-	Th	1.1	21				CL.				-	-
				1.0	11.1		-	1	1	1.1.1					-
34		-	_	1	11	-		-	-		-	-	-	_	_
6.0	-	-	-	10		-	-	-	-		-				_
	-			1.7						1	111-1-				
	Lah. Spe	cialist	-	1		-	Lik Be	-	-	1	-	-	-	Real Providence	-
Name :		-				New		ED HALE	THE	-	-		diam En	FRA	3-1
						Name	2	01	DO.		Ne	ine; /	12.110		77
Sign :						Sign :	1	100 m			5	gei		1:215	
						1	X	1.	Υ.,						
							1.00	1000	- 1 . No						

Scanned by CamScanner

-	XX	1		-	
Press Freeshart	Canada In Canadiana	13	NEPAL LAR	Castoria	
	Pl	ate Load	Test Resul	ls	
Company Name	AL	MOSTAF/			
Location	524 + G10	To	524 + 70	10	Tame Mil-194
Taste Date	2	8-09-2023			0
Layer level	SUB B	ALLAST +	0.90		
FOUPMENT	AND TEST PROCED	IRE : .			

The diameter D of the plain it generally 0.30 m. For very coses grained material also places with diameter D = 0.40 m and D = 0.711 m are as

The load is applied in 8 load increments of equal size. Under such load step the settlement must come to 4 noticeable and to 0.02 a load is reacted the unloading procedum can begin. After that, the plate is releaded in 5 steps. A loaded must, an exceeder or counterweight for the hydrivatic jack 68 M to or a rolling county serves as

Louisval	Land	Lond	Seni	ERM F	THILE	-Biai 3	50.1	See. 3	540.2	Art
Rage No.	Bar	- 84	MININA	-	- 100	-	interio.	-	-	-
0.000	0.0	0.000	0.00	20.00	20.00	1	0.000	0.000		6,00
1.000	2.1	0.707	0.01	18.95	19.95	-	0.040	0.050	1	0.04
2.000	17.1	5.652	0.08)9.90	19.64	_	0.100	0.360		0.23
0.040	34.2	11.394	0.16	18.80	18.32	-	0.200	0.680		0.44
4.000	\$3.2	17.663	0.25	18.75	18.67		0.250	D.930		0.59
5.006	79.5	21.315	0.35	19,70	18.80		0.100	1.200	1	0.75
8.000	89.8	28.577	9.42	18.81	18.80		0.390	1.400		0.89
7,000	105.9	13.375	0.50	19.50	18.43		0.500	1.570		1.03
8.000	\$2.4	17.662	0.25	19.61	18.58		0.375	3.420	1.1	0.83
9.000	26.7	8.833	012	19.68	19.71		0.320	1.290		0.80
9.000	2.1	0.707	0.01	19.72	14.95		0.290	1.020		0.65
10,000	2.5	0,707	0.03	19.72	18.98	1	0.250	1.020	1.00	0.65
11.000	17.1	5.652	9.05	19.69	18.91	1	0.319	1.070		9,69
12.000	24.2	11.104	0.16	19.64	18-81	1	0.360	1.190		0.77
13.000	533	17.963	0.25	19.60	1873	1	0.400	1.270		0.83
14.000	10.5	23,315	0.33	19.57	18.59	1	0.430	1,410		0.92
15.000	85.6	25.813	0.42	19,55	28.45	-	0.470	1.559		1.01

			2.0	- 14
87	1.15	4.272.9	1	
150,	815	4 12 873	+ 1141)	
8.74,	# 25	3.84	1.1.1	
0.3m	210	\$73	8.21	42
D (ann)	366			-
Bry I	125-64			-
85	214.25			
inte 1 Time of	a syntax		-	-

Bratvi.	173	
_		

0	8.+071- D: At / At
۴.,	+ detropostor tracking
Oh.	+ lost according
a.	-

Chairs	Ce form	-		Contrarias	Convellant	-		CDITU	_			1	-		
	-	-			-	Plat	elna		-	esults	Cantarela	*			9.44
Com	pany N	ame	-	-	-		IOST/	the second second	SUR	esuits	-	-			
	ocation		-	524	+ 640	ALL N		1A	-			_	1.1	1	5
	ste Dat	_	-	264	Deo	-	To-10-202	_	524	+ 760	-	50	i enter	\$34.	m
_	yer lev	-	-		-		LLAS		_	-	-			~	~
			TAND	TTER				+0.90							
	-	EMEN		-				_							
The d	tempter L	al the pt	allo ili gan	nervity 0.3	IS m For	very coa	rse grain	nd mater	ai sici	plates with	diameter D = 0	60 m and	D+0.76	I mare an	-
Call is any	ind to 6	oad incre	ments of	and and sold	a Destruction	in the second			3.7		noticeable and ed buck, an en	_			_
_		-		2		counte	rendigite i	or the by	drauik	cleck	to truck, arrain	cavelor or	a miller i	recently sim	Ve pi
ter =	300mm		-	-		-	-		_		-		-		-
Suger Nu.	ing .	Lond Ser	NUMBER OF	Dist.r.	1002	iDial 2.	Set	Set 2	541.3	Avg.	1			44	-46
0.008	0.0	0 100	0.00	20.00	20.00	-		m	-		27.41	8.10	8261	0.08438	
1.000	2.1	0,707	0.01	15.55	19.97		0.000	0,800	-	0.000	43 .	A LS	0.1(19)1	a large	
2.000	17.1	5.652	0.05	31.97	19.54	-	0.010	0.930		8.020	1502	8.55	841187	0.12545	82
0.000	342	11.303	0.16	13.65	19.00	-	0,120	0.120		0.015	1010	0.15	# 24.501		_
4.000	50.5	17.661	8.25	19.80	18.82	-	0.200	0.180		0.190	D (mm)	300	-	-	-
5,000	70.5	23.715	6.23	19.72	12.74		0.200	0.240		0.270	£9, £9,	244.87	-	-	_
6.000	87.8	28.673	0,47	19.58	10.68	-	B.410	8370		0.365	Arraiten	Sumai	-		_
7.000	106.8	35.115	6.30	19.51	19.60		D.490	0.400		8.443	Tour de		1		
8.000	52.4	17.663	1.25	19.56	19.64		0.440	9.366	-	0.400	- Better	1.00	1		
9.000	26,7	8.831	8.12	19.64	19.71		0.300	0.290		0.325			-	_	
9.000	2.1	0707	0.01	15.78	19.85		0.220	0,150		0.185					
10.000	2,1	0.707	0.01	19.79	19.85	-	0.220	0.150		0.185		E. + 8.75 -	0.36 1		
12.000	34.2	5.632	10.08	19.70	19.81	-	0.300	0.170		0.235	e,	* ileiomi	dun ned	104	
13 000	513	17.663	0.16	19.65	15.87		0.350	0.190		0.270	.01	- toid in			
14.000	70.5	21.315	0.13	19.50	19.76	-	G AIRD	0.240		0.320	Di		-		
15,000	89.8	29.673	0.42	18.45	10.01	-	0.500	0.290	-	0.395	0	s diamite	er så tens pr	um, g	19.63
f Isik/eu/tala					The Lord	train her	0.550	0.190		0.470					
						alan or			10.7 0	rer.					
	÷.,		X m			1.14		IN/MZ							
	-		-	-	-		_	_	_	_					
	-				100		-		-	1.1					
	1	_		-	-	15	-		-	-			_	_	_
		1.1				-	-			-			_	-	- 1
	-	_	-	_		- 1.			-		-		-		-
17	-			-		1.11		_		-		-		_	-
1.38	-				-	1.1		_						-	
71			-		-	-	-	_	_	1.00					
-	-		-	-				-	_	_	-				-
	Lab Spec	salist			1		Lab Eng	inter i	1.2			Circuid	hant Engin	and a	
Vame :						Name:	AHME	O HALES	M		Nan		· Ant - F	1 12 2	\$
Sign :						Sign :	h	Sert	De l				4	anet	
						side :	14	· ·			Sig	a :	1	112 1	

1		4			-	-	M		4 -					•
and the				E-YE AL	1.00		-		-14-1				12.41	47 I
Change Corns	diam'	-	Sar	Inche Ce	_	21	-	NTRAL I		Geniumer	2	-	-	hemation
-		-		_	_		_		Results	-	-			
Campar	_	10			_	ML MC	DSTAF/		11. 10.		-	_	-	2
Locs		-		524 + 1	140	_	Ta	5	24 + 760		Faire	1	(sum	5)
	Date	-	-	_	-	_	9.2023			-				
	level	1		- D. D. C. C.	_	_	LAST +	0.90						
E	onte	MENT	AND T	FEST	ROCI	PUR	Ro-		_			_		1
The diam	eler D e	it the plan	n in gene	aty 0.30	m. Fer v	rry coart	te grained	material	else plates with a	famote D + 0.00	mand n	- 0 767	m are Line	1
	-	_	-	_	_				n ment come to a :		A 44	-		
ed is react	hed ites i	micading	rocudu	The start for	min. After	COMP. THE	e plato in r	alonded.	in 5 steps. A loads	nd thick, an exca	Value or A	nolier 43	Subly san	WE 25
r+ 3	DGmm			-	_	COMPLEX	rweight for	ine idu	anus lina		-	-	_	_
anting	Leni	Lent	Similar	These 1	mae I	-		1.2.4	1 AM	-		-		_
m'n.	An	5.0	MINAR	~		and a	-	Mit 1	tes 1 tes	87 0	6.15		15	60
0.006	0.0	0.000	0.00	20.00	20.00		0.000	0.010	0.000	83 8	815	0.94042	9.35562	80.
000.1	2,1	0.707	0.01	19.98	19.97	-	0.020	0.030	0.025	8.7.	9:35	1.79187		-
2.008	17.1	5.652	15,00	19.75	19.50		0.230	11.500	8,375	0.30,	218	1.91	R IGINI	02
0.640	342	11.301	0.16	19.62	1513		0.380	0.850	0.615	D (mm)	ant	1		
4.000	53.3	17.603	0.25	18.52	18.92	_	0.480	3 080	8.760	EN	125.54			
5.000	70.5	21.715	0.33	19.43	1840		0.550	1.400	0.075	Exp	267.71			
6.000	89.8	20.623	0.42	19.37	18.46		0.030	1.540	1.095	Ame 1 Sq.	0 0 7 4 6 5	1		_
7.000	106,A	35.325	0.50	19:20	18:50	1	0.800	1.760	1.250	_	_	_		
9.000	53.4	17.665	0,25	10,29	18.33	-	0.710	1.670	1.190	PARTI	1.24		1	1
9,000	267	0.707	0.12	19.43	48.37	-	0.570	1.030	1.00					
38,000	2.1	0.707	0.01	19,51	18.59	-	0 470	1.420	-	-	-	-		-
11.000	47.1	5 652	9.08	19.52		-	0.470	1.410	-	-	£,-8.15	-	141	1
12.000	342	11.204	-	19.48		-	0.520	-	-	E.				
13.000	53.4	17.663	-	19.44		-	0.500	-		E. Dr		entern in	ie i	
14,000	70.5	21.315	0 33	-	-	-	0.600	-	-	0				manually to 20 in
15.000	69.8						0.680		0 1.250				in france 2	
a palaciai	07 12 1	nd 2 × 30	e cercaty	Nikers Pis	in the lo	ed span	Dativeiri D	S of parts	md 0.7 m	•				
								MN/N	12					
	-	-	-			14		-	no.	Der .	_		-	_
	-			iii pa						444		ч.		-
	-	_	-	-	-	-	-			-	-	-	_	_
	45		-			-	111	12	1111			-		
3. 3	h			-	-		111	-	-		-	-	-	
	-			-	- 2	-	-	1.11	-				-	-
	8 -		-	-	-		1.		1		-			-
	-	-	-		-			-			_	-	_	
	(m)	-			1.00	_	-		1.1.1		_	-		_
200	Lah.3	Specialisi					Lab	Engine		-		Comoliti	ni Enganes	
Name :						N	-	1000	VALEEM	-	_		sef 1	2-3-6
								10	P Jie		Name :	1.	ner j	act
Sign ;						51	en:	m			Sign :		his	43
						2	112	1	14					
							15 11	4						

21

Scanned by CamScanner

100.0	a	-		minuted (-	apr.	CENTRA	_	T	Cantartin	-	11-11-1	3	۲
Owne	and at	-		successive of	- Ministration	-	1			lin	President of	-			~
-	-	-	_	_	_	-	e Loa		a Ki	suits	-	-	1		
Comp	any Na	me	_		-	AL M	OSTA	FA.			-	-	-	1 10	-
Lo	cation	_		524 +	640	_	To		524	+ 760	-	34		1 (824	-695
Tas	ste Date					_	0-2023		_		_				
Lay	er leve	-			SU	B BAI	LLAST	+0.90		-	_				
	EQUIP	MENT	AND	TEST	PROC	EDUR	E:-	1.1							
The di	under D	of the pla	til is gen	milyan	om For	wrycom	rse graine	d malert	ni elso	planes with	diamoter D = 0	tina m 08	I7 = 0.76	t in one lin	bed
ined is app	lind in 8 lo school the	uniciaciim	g proceed	equal size	n, Under e egin, Aftr	er that, th	i sing the replace is ready to	reinadim	5 m 5 s	Sope. A load	noticeable end ind muck, an exc	(= 0.02 m availat or	a roller s). After the	e ma Na P
Ser =	300mm	1								-	-				
Looks	-	4.000	form.	2	1949.2	1944 3	Sell, 1	Sen 2	Sett. 4	Atg.				45	50
fragi No.		8.5	-	-	-	-	-	-	-	-	-0.7 e,	0.15	1.01582	0.34667	8.2
0.006	8.6	0.900	0.00	20.96	10.00	_	0.000	0.000		000.0	6.3.0,	0.15	0.54875	_	_
1.0(0	2.1	0.707	0.01	19.85	15.90	_	0.150	0100	-	251.0	8.7e,	0.25	1.08036	# 14855	8.2
2.000	31.1	5452	0.05	15.63	1960	-	0.370	0.409	-	0.365	4.30,	0.15	0.02		-
0.040	312	(1.50)	0.14	15.41	18.40	-	0.590	0.600	-	0.595	D (mm)	906	-	-	-
4.500	313	17.643	0.75	19.72	19.21		0.780	0.790		0.785	Ev,	125.72		-	-
5.000	10.5	25.515	6.33	10.10	19.04	-	0.900	0.960		0.930	Eve Ame i Seem		-	-	-
7 000	106.8	35.325	0.50	16.90	28.80	-	1.100	1.200		1.150	Aug 1 September 1	E.erena			
1,000	53.0	17.661	0.25	12.94	18.85	-	1.068	1.150		1.105	242/241	2.16		-	
8.000	26.7	8.835	0.12	19.04	16.96	-	0.960	1.100		1.030	114010	1.11	-		
\$.000	2.1	0.701	0.61	19.17	15.41		0.830	0 840	-	0.860					
10.000	2.1	11 787	19.471	19.17	19.11		0.810	0.010		0.800		475 -	U- At J	31	
11,000	47.1	4.612	0.04	18 15	19 07		0.850	0.930		0.890	π,	· delorm	ation mod	Live	
12,000	142	11.104	0.16	18.13	18.97		D.870	1.030		0.950	p.,	« lund im	-		
13.000	113	17.663	0.25	19.00	14.95		0.920	1.070	- 1	268.0	17.4	- settlers	eri incren	Hold .	
14.000	70.5	25.815	-	19.00	18.87	-	1.000	1.130		1,005	IJ	n diamina	it of the p	ule, genes	419 D.
15.000	44.4	25.672		18.97	18.81		1.040	1.190		1.135					
Fig CarCold	tion in a		formally 6	stan from	Bie ited	ayard a				diana -					
	24					-		MN/M2				10			
	-				-				-			-			-
	-		-	2.2	1.1			-	_			_			
	-		_	-	12	-					1111				4
	2.2										_				
	-		-						-			-			-
					-		-			-	-	-	-		-
	-			-	-	-	-	_	-		-		-		-
	-	_	_		-							_	_		_
_	Lats Sp	-ciality		1		-	Lak Be	alianer:	-			Lonn	irani Eogli	1111	-
Name						Nami :		EDHALE	TM		Nam	7	anef	RAJ.	k.
							X	84	F		1940	. /	1	wet	
Signt						Sign:	141	~			5łg	1 × 1	15	12	

-	KK	J.		and and	. guige	1
Con da	Carrieta Demitari	1 00	MTRALLAD	Castantar	0	Funt
	PI	ate Load	Test Results			
Company Name	AL	MOSTAFA		-	~	
Location	524 + 640	To	524 + 760		Set.	\$24-685
Taste Date		1-10-2023		_		0
Laver level	SUB I	BALLAST +				
EQUIPMENT	AND TEST PROCED	URE :-				

The diameter D of the plate is generally 1.10 m. For very coarse grained insterial also plates with diameter D = 0.81 m and D = 0.751 m are used

The load is applied in 8 load increments of equal size. Under each load step the settlement must come to a reliceable and (< 0.02 meanmaile). After the meanmaile load in reached the Uniceding procedure can begin. After that, the plan is reloaded in 5 steps. A loaded truck, an escave or a roller usually serve as counterweight for the hydraufic jack.

(and/og						-		-	_	1 10 1	-	-	-	-		-
_	Land	Land	See.	real t	2966.2	Dul 1	100.1	64.1	50.3	Arg.		-	_		AV.	
Saple	-	8.0	INNAF		1	-	-	1	-	-		IT es	0.25	·0.735	8 1025	
11.000	0.0	0.900	0.00	20.00	50.00	-	0.000	0.000	1.1	8,009		13.41	015	84123	1.21	1.1
1.895	2.1	0.707	0.01	19.85	18.95		8,050	0,050	1.54	0.859		8.7mg	0.15	9.84278	0.16270	
2,000	17.1	5.652	0.08	18.70	19.86	J	0.300	6.140		0.320		1.34	815	879		1
0.090	34.2	11.306	0_16	19.60	18.52	1.1	0.400	0.490		0.440	D	(mini)	305			
4.000	52.3	17.863	0.25	19.57	19.30		0.410	0 700		0.565		Er,	13842			
5.090	70.5	23.315	0.12	19.15	19.70		0.650	0.800		0.725		Eng	276.45			
8.000	89.8	25.873	9.42	19.25	19.07	1	0.750	0.950		9.840	40	w159.80			-	
7.000	106.8	35 225	0.50	19.15	12.53		0.850	1.079		0.950	_	-		-		
1.000	53.4	17865	0.25	19.16	16.50	-	0.620	1.020		0.920	1	11.8.1	1			
5 DRW	26.7	8.831	0.12	19.21	19.04		0.790	0.940	-	0.875	-	-			-	
9 000	14	a.m/	8.01	19.33	19.15		0.570	0.850		D.760						
10.007	2.1	0,707	0.01	19.23	19.15		8.670	0.650	1	0.760	E	-	F. + 875	D 30	1.8.	
11.000	17.5	5652	0.00	15.32	13.14	-	0.680	0.860	-	0.770	-	π.	- determ	when min	a.A.a	
12.000	342	11.304	816	19.25	15.07		8.740	0.930	-	0.835		De		chemory		
13.000	53.3	17.843	0.25	18.11	15.01		0.750	0.050	-	028.0		D.		and here	-	
14.000	70.5	23.315	12.0	18.58	18.95	-	8.820	1.050	-	0.915						-
15.000	13.5	25.671	0.42	19.15	18.51	-	0.850	1.090	-	0.570						
	-		-			-	-	MN/M3			-			-		1
-			-			-		MN,7M3			-	-				
-		4						LAN, MA								
-		-									_					
		-		1			Left. \$2	diserr		1	_		Card	uctum En	_	
-		-				Name 1 Sign :	Left. \$2	diamr ED HALI		3	_	Na	Card		_	1-1-1

مشروع: أعمال الجسر الترابى والاعمال الصناعية لمشروع القطار الكهربائى السريع (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح محضر تحديد مسافة نقل (الأتربة)

أنه في يوم الأحد الموافق 2023/9/10 وبناءاً على طلب شركة المصطفى للمقاولات لتحديد مسافة نقل الأتربة من محجر (المصرية) على طريق وادي النطرون العلمين للمشروع المذكور أعلاه تم زيارة المحجر من قبل :

المهندس / حسن عبدالسلام سليمان مهندس جيولوجي مكتب دخالد قنديل
المهندس / مصطفى محمد ثابت مدير مشروع شركة المصطفى للمقاولات

وتبين أن المحجر على مسافة 302.5 كم من منتصف قطاع شركة المصطفى للمقاولات

N 30° 33' 19.7" E 29° 45' 06.7"

وعلى ذلك تم التوقيع,,,

CUSile .2

إحداثي المحجر:

in any my my server 1

مشروع: أعمال الجسر الترابى والاعمال الصناعية لمشروع القطار الكهربائى السريع (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح محضر تحديد مسافة نقل (طبقة التأسيس) أنه في يوم الأحد الموافق 10/9/2023 وبناءاً على طلب شركة المصطفى للمقاولات لتحديد مسافة نقل طبقة التأسيس للمشروع المذكور أعلاه تم زيارة الكسارة من قبل : 1. المهندس / أحمد أبوزيد معيد مين مهندس جيولوجي مكتب د.خالد قنديل 2. المهندس / مصطفى محمد ثابت مدير مشروع شركة المصطفى للمقاولات

وتبين أن الكسارة على مسافة 83 كم من منتصف قطاع شركة المصطفى للمقاولات

إحداثى الكسارة :

N 36° 38' 33" E 29° 42' 28"

وعلى ذلك تم التوقيع,,

مشروع: أعمال الجسر الترابى والاعمال الصناعية لمشروع القطار الكهربائى السريع (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح محضر تحديد مسافة نقل (طبقة الأساس)

أنه في يوم الأحد الموافق 2023/9/10 وبناءاً على طلب شركة المصطفى للمقاولات لتحديد مسافة نقل طبقة الأساس للمشروع المذكور أعلاه تم زيارة الكسارة من قبل :

مهندس جيولوجي مكتب د خالد قنديل 1. المهندس / عبدالله سامي مدير مشروع شركة المصطفى للمقاولات 2. المهندس / مصطفى محمد ثابت

وتبين أن الكسارة على مسافة 233 كم من منتصف قطاع شركة المصطفى للمقاولات

إحداثى الكسارة:

E 29° 42' 28"

N 36° 38' 33"

وعلى ذلك تم التوقيع,,,

