

للطرق والكباري المنطقة الخامسة – (غرب الدلتا)

السيد المهندس / رئيس قطاع التنفيذ والمناطق

تحية طيبة. وبعد،،

بالإحالة إلى مشروع القطار السريع (العين السخنه- العاصمه الإدارية - برج العرب مرسی مطروح)

نتشرف بأن نرفق لسيادتكم طيه المقايسات المعدلة للقطاعات الأتية:

اولاً: القطاع السابع (فوكه / مطروح):

الإتجاه	التكلفة	الشر كة	الطول	ä	المساف	م
، ۾ حب	(مليون)	اسرحه	(کم)	إلى	من	
الاتجاهين	7.223	شركة المصطفى للمقاولات	0.12	525+000	524+880	1

برجاء من سيادتكم التفضل بالاحاطه والتوجيه بالازم

وتفضلوا بقبول فائق الأحترام والتقدير،،

رنيس الإدارة المركزية

المنطقة الخامسة عربك ادالتا

الاهاني محمد محمود طاء الا عمرد مهدي

مشروع القطار الكهربائي السريع

المقايسة المعدلة لبنود الاعمال بعد التفاوض بتاريخ 18/12/2023 للقطاع السابع (فوكه - مطروح) - شركة المصطفى للمقاولات (أحمد مصطفى عبدالمحسن) القطاع من المحطة 524+880 إلى المحطة 520+500 (مرحلة الحفر وتشكيل الجسور والتأسيس والأساس والخرسانة)

ليند	بيان الأعمال	الوحدة	الكمية	الفنة	الاجمالي
	اعمال الازالة و التطهير				
1	بالمثر المسطح اعسال تطهير الموقع من الاشجار والمذور علت و المخلفات في مناطق الخلتا ذات الطبيعة الزراعية الكليفة والتخلص منها بالمقلب العمومية تمهيدا لاعمال الوقع المساحي لكامل حدود المشروع طبقا للشروط والمواصفات و تطيعات المهندس المشرف.	م2	6,000.16	5.00	30,000.82
	اعمال الحفر				
2	يأمشر المقعب اعمل هنر باستخدام المعدات المركةيكية في الذرية المتداسكة عدا الذرية الصخرية (باستخدام البلدوزر) وتسرية السطح بالات النسوية والرش بالميزاء الاصوابة الرسولية الرسولية المعادرة والسف المهد المعدد الاصوابة الرسولية المعادرة والدن المعدد المعدد المعدد والمدارس المعددة والمدارس المعددة والمدارس المعددة والمدارس المعددة والمدارس المعددة والمدارس المعددة والمدارس المعدد المعددة والمدارس المعددة والمدارسة المعددة والمدارسة المعدد المع	3	2,200.00	30.50	67,100.00
	اعمال الردم				
3	يائيش المكعب اعسال توريد وتشغيل اترية مساهة الدرم و مطابغة المواصفات والتشغيل باستخدام الانسوية بسطه لا يزيد عن 50 سم حتى مصوب -2 متر و بسمك لا يزيد عن 50 سم لاستكمات المسلوب -2 متر و بسمك لا يزيد عن 50 سم لاستكمات المسلوب المسلو	3,	10,531.71	101.40	1,067,915.75
	علاوة مسافة النقل 302.5 كم	م3	10,531.71	450.75	4,747,169.86
	علاوة تحصيل رسوم الكارئة والموازين طبقا للانحة الشركة الوطنية	م3	10,531.71	13.00	136,912.28
	طبقات الاساس				
4	أيشن (المكسب اعمل قرويد وفرق طبقة للسيس (preparet Subgrade) من الاحجار الصابة للمترجة ناتج كميسر الكمترات والصابة للمواصلات والصيل جميس المسابق المسابقة للمترجة بناتج كميسر الكمترات والمسابقة عن 25 % والتوج المواصلات والمسابقة بالمتحسس من 25 % والا يقل معامل المراحة لم التحميل من 30 % والا يزيد الإمتحساس من 55 % والا يقل معامل المراحة لوح التحميل من 30 مراحة بالمتحدد المتحدد ا	30	980.00	146.40	143,472.00
	قيمة مادة محجرية بمشتملاتها		980.00	161.00	157,780.00
	علاوة مسافة النقل 83 كم		980.00	81.90	80,262.00
	علاوة تحصيل رسوم الكارتة والموازين طبقا للانحة الشركة الوطنية		980.00	25.00	24,500.00
4	بالنتر الدكعب أصال ترزيد وفرض طبقة اسلس من الاحجار العسلية المنترجة نتاج تكسير الكسارات والمطابقة للمواصفات وأقصى حجم للحبينات ما بين 31.6 مم ألى 04 مر والا فزير تدبية لي 20 من 31.6 مراكز والإنتراطات الخاصة بالمنتوج ولا كل نسبة تحمل كاليفورنيا عن 50 % والا بؤيد المنتصاص عا 50 % وراثم بالمنتوب من 15 % وراثم مامل المرزية (272) من تقرير تحديد التصوية المحديثة على أن لا بؤير بسك الطبقة بحد تنام النصك عن 20 مراكز من المنتوب المحديثة المرزية والمنتوب المحديثة على أن لا بؤير بسك الطبقة بحد تنام النصك عن 20 مراثم بالمباية الإصراف المحديثة المستبدة والمربة والمحدث المجراء التجارب المحديثة والمحديثة على أن لا بؤير بسك المحديثة على من 20 ألى) من الكتابة المحديثة والقد تتما إمراء التجارب المحديثة والمحديث المحديثة والمحديث المحديث والمديد يجمع مشملات خيا المواصفات القنية للمخروع وتنازير الاستثماري وتعليمات المهادس المسترث يتما وتتساب علارة 2,7 جنيه كل 1 كم بالزيادة أو النتصان	3,	710.00	151.30	107,423.00
	قيمة مادة محجرية بمشتملاتها		710.00	175.00	124,250.00
	علاوة مسافة النقل 233 كم		710.00	276.90	196,599.00
	علاوة تحصيل رسوم الكارتة والموازين طبقا للانحة الشركة الوطنية		710.00	25.00	17,750.00
	البلاطات الخرسانية				
5	بالمنتر المسطح اعدال قررية وحسب خرسانة عادية سعك 15 سم لحماية الاقتاف والديول الجانبية تتكون من 0.8 من دولوميت مقدر ج 2.4 م.3 دراس حرق الإضافات المؤلفات الاستشاري (فيبر + سوكا) علي أن يكون السن نظيف وصفيول الراص فحالي من الشوائف والطقة والأملاح والمواد الغربية مع وضع أو مر المقارات مسلك في مطابعات الإستشاري المؤلفات المؤلفا		600	457.00	274,200.00
5	بالشنر المكتب اعتمال توريد وصب خرساته عادية لفندات العمايات والميول الجانبية تتكون من 5.8 ولم سن درلوميت متدرج + 4.0 ور و رمل حرش والانسافات المبتل	م3	18.00	2665.2	47,973.60
	الاجمالي				7,223,308.30

سبعة للأبين ومانتان وكلاقة وعشرون الفأ وثلاثمانة وثمانية جنيها وثلاثون قرشا لاغير

مدير المشريع المالك م البرله المالك

يعتمد رنيس الادارة المركزية منطقة غرب الدلتا

عميد مهندس ا

" هانی محمد مد

مدير المشروع المقاول 585.979.597: vp. 4

مدير عام المشروعات والأسل ما محمد حسني فياض

محضر استلام موقع

مشروع: أعمال الجسر الترابي والاعمال الصناعية لمسار القطار الكهرباني السريع الخط الأول (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح (مرحلة الحفر وتشكيل الجسور والتأسيس والأساس والخرسانة) لتنفيذ المسافة من الكم 524+880 الى الكم 500+525 بطول 0.12 كم

> تَنْفَيدْ: شركة المصطفى للمقاولات "أحمد مصطفى عبدالمحسن" إشراف: المنطقة الخامسة _ منطقة غرب الدلتا

> > طبقاً للعقد رقم (2024/2023/926) بتاريخ: 02/01/2024

إنه في يوم الخميس الموافق 2024/01/02 اجتمع كل من:-

مدير عام المشروعات - الهيئة العامة للطرق والكبارى

1- السيد المهندس / محمد حسنى فياض

مهندس العملية - الهيئة العامة للطرق والكبارى

2- السيد المهندس /إبراهيم عبد الله الحناوي

مدير مشروع - شركة المصطفى للمقاولات

3- السيد المهندس / مصطفى محمد ثابت

وذلك للمرور على مسار العملية المذكورة عاليه لاستلام الموقع :-وقد تبين أن الموقع خالياً من العوائق الظاهرية ويسمح بالبدء في التنفيذ وبناء عليه يعتبر تاريخ 2024/01/02 هو تاريخ استلام الموقع وبدء الأعمال بالعملية.

واقفل المحضر على ذلك ووقع الحضور

التوقيعات المركاب

رئيس الإدارة المركزية منطقة غرب الدلتا

الاسكندرية مرسي مطروح

عميد مهندس / الهاني مصد مصود طه ال

قائمة الكميات الواردة بالمستخلص جاري (1)

مشروع: أعمال الجسر الترابى والاعمال الصناعية لمسار القطار الكهربائى السريع الخط الأول (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح (مرحلة الحفر وتشكيل الجسور والتأسيس والأساس والخرسانة) لتنفيذ المسافة من الكم 524+880 الى الكم 500+525 بطول 0.12 كم

رقم البند و بيانه: (1-1) أعمال تطهير الموقع من الاشجار و المزروعات و المخلفات

تنفيذ: شركة المصطفى للمقاولات

0.0 م2

مقدار العمل السابق:

		الابعاد (متر)	كيلومتري	الموقع ال	
الكمية	ورض	طول ال	الى	من	بيان الاعمال بالمقايسة
1298.00	32.4	5 40	524+920	524+880	القطاع الأول
1298.0	0	(² p)	ة المستخلص الحالية (, الكميات خلال فتر	اجمالي
1298.0	0 🥂		الكلـي (م²)	الاجمالي	

مهندس الهيئة

مهندس الاستشاري

مكتب د/خالد قنديل

م/خالد فوزي

مهندس الاستشاري

مکتب XYZ

م / محمد خليل

MARIE

مهندس الشركة

م / مصطفي ثابت

It if

قائمة الكميات الواردة بالمستخلص جاري (1)

مشروع: أعمال الجسر الترابي والاعمال الصناعية لمسار القطار الكهربائي السريع الخط الأول (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح (مرحلة الحفر وتشكيل الجسور والتأسيس والأساس والخرسانة) لتنفيذ المسافة من الكم العلمين - مطروح) قطاع فوكة مطروح (مرحلة الحفر وتشكيل الجسور والتأسيس والأساس والخرسانة) لتنفيذ المسافة من الكم 20.10 بطول 2.12 كم

رقم البند و بيانه : (1-3) أعمال توريد و تشغيل اتربة صالحة للردم مطابقة للمواصفات

تنفيذ: شركة المصطفي للمقاولات

0.0 م

مقدار العمل السابق:

3 (1)	()	الابعاد	لكيلومتري	الموقع ا	
الكمية	احة المقطع	طول	الى	من	بيان الاعمال بالمقايسة
3162.60	79.07	40	524+920	524+880	القطاع الأول
3162.60		بة (م³)	ة المستخلص الحالي	ا لى الكميات خلال فتر	
3162.60			ر الكلـي (م³)	الاجمالي	

مهندس الهيئة

م/ إبراهيم العناوى

مهندس الاستشاري

مكتب د/خالد قنديل

م/خالد فوزي

00 65

مهندس الاستشاري

مکتب XYZ

م / محمد خليل

dese

مهندس الشركة

م / مصطفي ثابت

= Vite

قائمة كميات بالمستخلص جاري (1)

مشروع: أعمال الجسر الترابي والاعمال الصناعية لمسار القطار الكهربائي السريع الخط الأول (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح (مرحلة الحفر وتشكيل الجسور والتأسيس والأساس والخرسانة) لتنفيذ المسافة من الكم 880+524 إلى الكم 525+000 بطول 0.12 كم

رقم البند و بيانه : (1-3) علاوة مسافة النقل 302.5 كم

علاوة مسافة النقل

تنفيذ: شركة المصطفى للمقاولات

30

0

مقدار العمل السابق:

	الكمية	بيان بالكميات
	3162.60	لكمية طبقاً لقوائم الكميات
3162.60	ترة المستخلص الحالية (م3)	ا بعمالي الكميات خلال ف
3162.60	ي الكلي (م³)	الاحماك

مهندس الهينة العامة للطرق والكباري م/ إبر اهيم الحناوكي

مهندس الإستشاري مكتب د/خالد قنديل

C.CVI CC

مهندس الإستشاري (xyz) م / محمد خليل

مهندس الشركة

قائمة كميات بالمستخلص جارى (1)

مشروع: أعمال الجسر الترابي والاعمال الصناعية لمسار القطار الكهربائي السريع الخط الأول (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح (مرحلة الحفر وتشكيل الجسور والتأسيس والأساس والخرسانة) لتنفيذ المسافة من الكم 880+524 الى الكم 525+520 الى الكم 0.12 بطول 0.12 كم

رقم البند و بيانه : (1-3) رسوم الكارتة والموازين طبقاً للمادة(36) من الشروط العامة والمواصفات طبقاً لما جاء بالقائمة الموحدة لاسعار الطرق لاعمال طبقة الأتربة

الكارتات والموازين

تـنفيـذ: شركة المصطفي للمقاولات

30

0

مقدار العمل السابق:

	الكمية	بيان بالكميات
	3162.60	الكمية طبقاً لقوائم الكميات
3162.60	خلص الحالية (م3)	اجمالي الكميات خلال فترة المست
3162.60	(3°)	الاجمالي الكلي

مهندس الهيئة

مهندس الاستشاري مكتب د / خالد قنديل

مکتب د / حالد ف

م / خالد فوزي

c.TZIV a

مهندس الاستشاري مكتب XYZ

م / محمد خلیل

م مجمد حسن محد عليل مهندس الشركة

م/ مصطفي ثابت

cope

قائمة الكميات الواردة بالمستخلص جاري (1)

مشروع: أعمال الجسر الترابي والاعمال الصناعية لمسار القطار الكهربائي السريع الخط الأول (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح (مرحلة الحفر وتشكيل الجسور والتأسيس والأساس والخرسانة) لتنفيذ المسافة من الكم 880+524 الى الكم 525+000 بطول 0.12 كم

رقم البند و بيانه : (4-1) أعمال توريد و فرش طبقة تأسيس (Prepared subgrade)

تنفيذ: شركة المصطفى للمقاولات

30 0.0 مقدار العمل السابق:

	الابعاد (متر)		لكيلومتري	الموقع ا	
الكمية	مساحة المقطع	طول	الى	من	بيان الاعمال بالمقايسة
160.80	80 8.04 20 524+900	524+900	-900 524+880	القطاع الأول	
160.80		(³ م) ة	ة المستخلص الحاليا	لي الكميات خلال فتر	اجماإ
160.80			، الكلـي (م³)	الاجمالي	

مهندس الهيئة م / إبراهيم الحناوي مهندس الاستشاري

مكتب د/خالد قنديل

م/خالد فوزي

مهندس الاستشاري

مكتب XYZ

م / محمد خليل

delpi2

مهندس الشركة

مشروع: أعمال الجسر الترابي والاعمال الصناعية لمسار القطار الكهربائي السريع الخط الأول (العين السخنة - العاصمة الادارية - العلمين -مطروح) قطاع فوكة مطروح (مرحلة الحفر وتشكيل الجسور والتأسيس والأساس والخرسانة) لتنفيذ المسافة من الكم 800+524 الى الكم 525+000 بطول 0.12 كم

رقم البند و بيانه: (1-4) علاوة مسافة النقل 83 كم

علاوة مسافة النقل

تنفيذ : شركة المصطفي للمقاولات

30

0

مقدار العمل السابق:

	الكمية	بيان بالكميات
	160.80	كمية طبقاً لقوائم الكميات
160.80	فترة المستخلص الحالية (م3)	اجمالي الكميات خلال ا
160.80	لـي الك <i>لي</i> (م³)	الاجمال

مهندس الهيئة العامة الطرق والكجاري م/ ابراهم المخلوي

مهندس الإستشاري مكتب د/خالد قنديل

م/خالد فوزي گرامگرا

مهندس الإستشاري (xyz) م / محمد خليل

delpré

مهندس الشركة م / مصطفي ثابت

قائمة كميات بالمستخلص جارى (1)

مشروع: أعمال الجسر الترابي والاعمال الصناعية لمسار القطار الكهربائي السريع الخط الأول (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح (مرحلة الحفر وتشكيل الجسور والتأسيس والأساس والخرسانة) لتنفيذ الدارية - العلمين - مطروح) قطاع فوكة مطروح (مرحلة الحفر وتشكيل الجسور والتأسيس والأساس والخرسانة) لتنفيذ

رقم البند و بيانه : (1-4) رسوم الكارتة والموازين طبقاً للمادة(36) من الشروط العامة والمواصفات طبقاً لما جاء بالقائمة الموحدة لاسعار الطرق لاعمال طبقة التأسيس

الكارتات والموازين

تنفيذ: شركة المصطفى للمقاولات

30

C

مقدار العمل السابق:

	الكمية	بيان بالكميات
	160.80	الكمية طبقاً لقوائم الكميات
160.80		اجمالي الكميات خلال فترة المستخلص الحالية (م3)
160.80		الاجمالي الكلي (م³)

مهندس الهيئة

مهندس الاستشاري مكتب د / خالد قنديل

م / خالد فوزي

C 5 8/1/ CC

مهندس الاستشاري مكتب XYZ

م/محمد خليل

Jul prz

مهندس الشركة

م/ مصطفى ثابت

- ligher

قائمة الكميات الواردة بالمستخلص جاري (1)

مشروع: أعمال الجسر الترابي والاعمال الصناعية لمسار القطار الكهربائي السريع الخط الأول (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح (مرحلة الحفر وتشكيل الجسور والتأسيس والأساس والخرسانة) لتنفيذ المسافة من الكم 880+524 إلى الكم 525+000 بطول 0.12 كم

رقم البند و بيانه : (2-4) أعمال توريد و فرش طبقة الأساس

تنفيذ: شركة المصطفى للمقاولات

30 0.0 مقدار العمل السابق:

	(متر)	"	لكيلومتري	الموقع ا	
الكمية	مساحة المقطع	طول	الى	من	بيان الاعمال بالمقايسة
117.00	5.85	20	524+900	524+880	القطاع الأول
117.00		(م ³)	ة المستخلص الحاليا	ي الكميات خلال فتر	اجما
117.00			, الكلـي (م³)	الاجمالي	

م/إبراهيم الحناوي

مهندس الاستشاري مكتب د/خالد قنديل

م/خالد فوزي

مهندس الاستشاري

مكتب XYZ

م / محمد خليل

del Fr &

مهندس الشركة

م/ مصطفي ثابت col pl

قائمة كميات بالمستخلص جاري (1)

مشروع: أعمال الجسر الترابي والاعمال الصناعية لمسار القطار الكهربائي السريع الخط الأول (العين السخنة - العاصمة الادارية - العلمين -مطروح) قطاع فوكة مطروح (مرحلة الحفر وتشكيل الجسور والتأسيس والأساس والخرسانة) لتنفيذ المسافة من الكم 880+524 الى الكم 525+000 بطول 0.12 كم

رقم البند و بيانه : (2-4) علاوة مسافة النقل 233 كم

علاوة مسافة النقل

تنفيذ: شركة المصطفى للمقاولات

30

مقدار العمل السابق:

	الكمية	بيان بالكميات
	117.00	لكمية طبقاً لقوائم الكميات
117.00	ستخلص الحالية (م3)	اجمالي الكميات خلال فترة الد
117.00	127	الاجمالي ال

مهندس الهينة العامة هندس الهيالطرق (الكباري الطرق (الكباري المالكباري المالكباري)

مهندس الإستشاري مكتب د/خالد قنديل

م / خالد فوزي

C.C. 1/cc

مهندس الإستشاري (XYZ) م / محمد خليل

Mprz

مهندس الشركة

قائمة كميات بالمستخلص جارى (1)

مشروع: أعمال الجسر الترابي والاعمال الصناعية لمسار القطار الكهربائي السربيع الخط الأول (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح (مرحلة الحفر وتشكيل الجسور والتأسيس والأساس والخرسانة) لتنفيذ المسافة من الكم 880+524 الى الكم 525+000 بطول 0.12 كم

رقم البند و بيانه: (2-4) رسوم الكارتة والموازين طبقاً للمادة(36) من الشروط العامة والمواصفات طبقاً لما جاء بالقائمة الموحدة لاسعار الطرق لاعمال طبقة الأساس

الكارتات والموازين

تنفيذ: شركة المصطفي للمقاولات

30

مقدار العمل السابق:

	الكمية	بيان بالكميات
	117.00	لكمية طبقاً لقوائم الكميات
117.00	ل فترة المستخلص الحالية (م3)	اجمالي الكميات خلال
117.00	مالـي الك <i>لي</i> (م³)	الاجد

مهندس الاستشاري مكتب د/خالد قنديل

م / خالد فوزي کمرکم

مهندس الاستشاري مكتب XYZ

م / محمد خليل

MPZ

م/ مصطفي ثابت

Contractor Company	AL-MOSTAFA CON	MPANY		Desi	gner C	ompa	mpany		K.K		
Issued by	Name	Sign Date		Time							
Contractor	MOSTAFA THABET	Kostaly Thubel		26-02-2023							
Received by				d	12	G	DD	MM	VY	HH	MM
ER.			MIR	S24	E.W	D.T	26	me	2023		

tube t	51 to 521 Station Reference	D1 to 53 Depat Reference	For Kilometer point only Start Kin is used
C00E-Z		Work Activity	
COOK-3		Sub Element of Activity	

Descr	iption of Ma	terials	REPLACEMENT FILL					ATERI	AL RESI	JLTS	
			From	TO							
			524+900	524+	920 F	ILL (-3	(m 00.8				
			524+880	524+880 524+920 FILL (-2.50 m)							
			524+880 524+920 FILL (-2,00 m)								
l month	ion to be Use	ar.	524+820	524+	920 F	ILL (-	1.75 m)				
rocati	ion to be use	ed.	524+820	524+	920 F	ILL (-	1.50 m)				
			524+820	524+	920 F	ILL (-	1,25 m)				
			524+800	524+	920 F	ILL (-	(m 00.1				
			524+800	524+	920 F	ILL (4).75 m)				
			524+800	524+	920 F	ILL (4	0.50 m)				
MAR	Approval No							Da	ite		
Suppl	ier Name										
Test Requirement					Specification		CI	Clause			
Reference Photos Y		Yes attach	ed / No	/ No Other							
item	Description	1		U	nit		Quantity	Arriva	al Date	Note	
1	5	ieve ana	alysis		M3	3	5000	26-02-2023			
2		lassifica			M3	3	5000	26-02-2023			
3	Pro	octor &	O.M.C		M	3	5000	26-02-2023			
4	1	L& P.L	& PI		M3	3	5000	26-02-2023			
5		C.B.F	₹		M:	3	10000	26-02-2023			
_	nents by:					-	Comments by:	:			
	iple has been UMA BADR L spec	AB) and		unded							
					APPRO	VALS	TATUS				
Organ		Name			Sign				Date		A-AWC-R
Contr	actor	4 distan	Albh SANY Abo		3/0	by Thurbel					
QA/Q	c*	Abda	Alberti SAI	KI	2	tod	Ship				
GARB											
Emplo	oyers esentative										

Contractor Company	AL-MOSTAFA CON	IPANY		Desi	gner C	ompa	ny	K.K			
transal by	Name	Sign		Date			Time				
Issued by Contractor	Mostafa Thabet	M5 to de Market 28-02-2023		3							
Received by				ET	C2	C3	DO	ММ	W	н	MM
ER.			STR	K.P 524	EW	0.1	25	02	7003		

CODE-1	51 to 521 Station Reference	DI to 53 Depot Reference	Kp XXX Note For Killometer point only Start Km is used
CODE-2		Work Activity	
CODE-3		Sub Element of Activity	

		NB: Package 1 Only (Pac	ckage 2 via Aconex)	
	THE FOL	LOWING TEST RESULTS A	RE ATTACHED FOR REVIEW	
Descrip	tion of Test Materials		Soil (A-1-b)	
Locatio	n of Test	K.P (524)		
Item	Specification	Test Requirement	Test Result Attachment	Remarks
1	ASTM D 75	Aggregate sampling	According to specification	
2	ASTM C 136	Sieve Analysis	According to specification	
3	ASTM D 1440	Passing sieve #200	13.2	
4	ASTM D 4318	Atterberg limit	N.P	
5	ASTM D 2974	Moisture content	6.3	
6	ASTM D 1557	Modified proctor	2.16	
7	ASTM D 1883	C.B.R	53.0	

Comments by:	Comments by:

	A	PPROVAL STATUS		
Organisation	Name	Sign	Date	A-AWC-R
Contractor	Mostale Trubel		A THE	Α
Designer	Hassan	2000	313	A
GARB *				
Employers Representative				

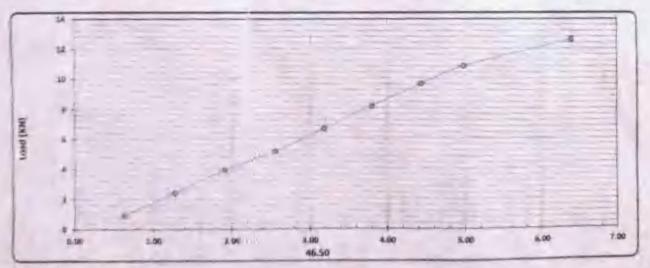
^{*} Alignment / Bridges: Culvert Only

AL Huby Central Las

California Bearing Ratio TEST

Testing Date	1/3/202023				
Location 1	K.P (524+800)	Code			
Company Name	AL Mustafu	MO (2)	FROM STA	Minga.	525+000

-: Test Results


Compaction % for Mold	
Motel No.	4.
Midd Vol. (cm ³)	2158
Mold WT. (gm)	6290
Moin WT. + Wes. WT. (gor)	5001
Was WT. (gm)	4921
Word Density (g/cin ¹)	7.280
(ky Density (g/cm²)	2.154
Precior Density (g/cmt ³)	2.140
Competion %	49.7

Torn No.	16
Tare WT. (got)	49.7
Toru WT. + Wet WT. (gm)	130
Tare WT. +(Bry WT. (gm)	144.1
3398	2.9
Any WII (gm)	104.4
Meisture Content %	5,9

Swelling	
Midd No.	1
Dian	1/3/2528/23
Sector Height (men)	5,00
Final Height from L	5.15
Interession	
Sample Height (mm)	120,06
twelling Matte To	0.1%

Loading Reading:

46.50	11.64	1.27	1.91	2.54	3.18	3,89	4.45	5.00	5,40
Load Reading (mm)	0.03	9.88	6.13	0.11	9.32	0,17	032	11.34	0.42
Lond (KN)	0,4	2.4	3.9	5.1	6.6	9.1	9.6	10.8	12.6

Calculations :-

Pratection	Load	Statistaril Load	CHR	Muld - Copporate	Competito	CBR
(mm)	(Na)	/Dej	1463	1,461	7%5	18 Spirite %
2.59	10.00	13.4	(K25)		Life	17.5%
5.00	1100	79.0	145.60	190		53,6%

Lab. Specialist

Vamo

Fideri

Fame:

Consultant Engineer

Name

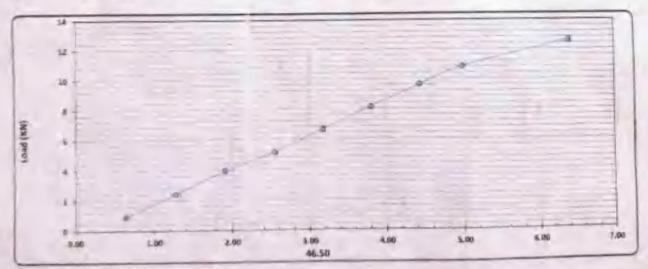
Sign

AL Nuby Central Lab

California Bearing Ratio TEST

-			
	Criste		
181	MO (2)	13+ m	125-1600

: Test Results


Compaction % for Mold	
Mold No.	1
Mod Vot. (cm ²)	1158
Mold WT. (gm)	4890
Seed WT, - Wet WT. (gm)	7851
Wet WT. (gas)	4921
Wei Density (g/cm²)	1.250
Dry Dravity (g/cm²)	3,854
Presint Density (g/cm²).	7.160
Competion %	98.7

There Plat.	180
Tare WT, (gm)	43,7
Then WT, - Wei WT, (gm)	150
Fare WT. + Dry WT, (gm)	1461
1046	5.9
Dry W.L.(gm)	196.4
Montare Control to	5,9

1 1
170/2/2013
3.00
5.65
4
126.00
0.1%

Loading Reading :

46,50	9.64	1.27	1.91	2.54	3.18	3.89	4.45	5,00	1.49
Lord Reading (mm)	1.03	0.00	6.13	141	9.22	0.27	0.32	0.86	6.42
Land (KN)	1.9	1.4	5,9	5.1	6.6	8.1	9.6	10:8	12.6

Calculations :-

h-marker 1	Lord	Interview Load	736	Muld - Compactor	Computer	CHR
Pentaration (mm)	(Na)	(16)	1269	1701	(%)	10年4年1
2.50	546	Eli,4	18,670	100	-	37,5%
5.00	10.60	28.0	90.09	100		51.0%

Lab. Specialist

Name :

Sign (

Same:

Consultant Engineer

Name

Sten

Electric Express Train - HSR From El Aln El Sokhas City To El Alemain - MATROUH Bection - T From FORA To MARIA MATROUH

From Station 604-000 To Station 568-177

Dipropring Lab

AL Nully Central Lab

PARTICLE SIZE DISTRIBUTION OF SOIL

TESTING DATE:	26-2-2023	Code			
LOCATION	K.P (524+800)	Acres 100	2016	524+500	825+000
NAME COMPANY	AL Mustafa	MO-LD.			

1-visual inspection test

2-Gradieni tret

A-gradation of bulk mate	rials			BAMPLEW	EIGHT (9)	2524	6,00	gm	table cla	
steve size	2	1.5	1	4/3	2/1	8/3	2.4	PASS		soli classify
Mass retained (g)	0.0	2215,0	2141.0	1907,0	2104.0	2201.0	2141.0	-		A-1-b
Currolative Statemed (g)	20	IMAN	4357,0	5344.0	8448.0	10649.0	12790,0		PRO	2.15
Cumulative Retained N.	28	A.B	CF.A	25.1	33.5	42.2	50.7		WC	6.30
Completive Passing %	100 1	91.2	82.7	74.8	WH.16	17.1	40.3		CBR	53%
Sanft meterial aradatio		1		WTOE	sample	500	1.00	um		

Communitive Present 15 54.60	12 06	364.70 73.34 26.66							
		-							
Simulative Passing % 34.61	65,00	36.68							
	_	articles.							
C-General gradient									
sieve size(in) 2	1.5	1	3/4	1/2	3/6	#4	# 10	#40	# 200
weve size(mm) 50.0	37.5	25.0	19.0	12.5	9.5	4.75	2.00	0.425	0.076
Gumulative Passing % 100.	90.2	82.7	74.3	AR. fi	67.0	49.2	18.7	33.6	13.7

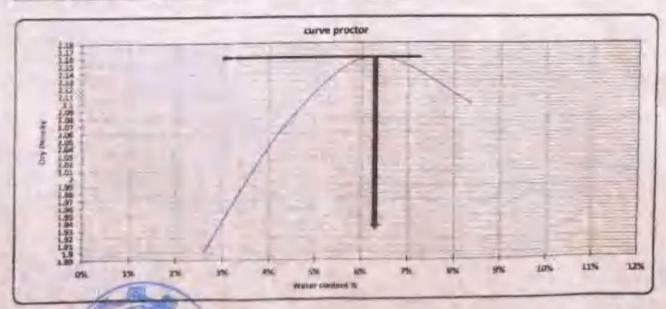
ATTERESTICS.	LIGHT LIMIT (CL.)	PLANTIC LIMIT (TILL)	STABLIC MINE BY
LIMTS	NP	N.P.	N.P

Consustant

From El Ain El Sokhna City To El Alamein - MATROUH Section - 7 From FOKA TO MARIA MATROUH

From Blatino 5044000 To Stallan Stalety

PROCTOR TEST


TESTING DATE:	100 4 100	-			
TESTING UNITE	26-2-2023	Gode			
LOCATION	K.P (524+800)	5000	zone	524+500	F3F-050
NAME COMPANY	AL Mustafa	MO (2)	-	3241990	525+000

6037.0
2) 93.0

MAX Dry Density	2,16
Water contest %	6.3

White me. I	1	1	3	4	
Wt. Of Mold+ wet soli	10145.0	10575.0	19865.0	10821	
WT. WETSON.	41(88.0	4538.0	4828.4	4784.0	
W.L. Deasity	1.953	2.158	2.2%	1.275	

Tare No.	20	18	73	1	10		п	20	-	-
Tare w.c.	60.9	77.7	41.5	42.6	43.3	46.7	46,3	60.3		_
W. Of wer soil & ture	150.0	350.0	190.0	150,0	150.0	150.0	150.0	150.0		
Wit Of dry soil & tare	146.7	143.1	145.5	145.6	143.7	1460	141.9	143.2		
Wit. Of water	3.3	0.9	4.5	4.4	6.3	6,0	A.I.	4.8		
Wit Of sire soil.	123.0	267.4	103.6	103.0	100.4	97.3	95.6	N2.9		
We give content %	2.7%	2,6%6	4.4%	4.3%	63%	6.2%	3.5%	8.2%		
AV.Water content %	2.6	1%	43	F56	6.3	1%	4,5	7%		
Dry Density	1.5	63	2,0	169	2.1	61	1.1	00		

Contractor

Consultant

Hassan

420

Contractor	AL-MOSTAFA COMPANY					ompa	ny	K.K			
Issued by	Name	Sign	Date			Time					
	MOSTAFA THABET	Mostile The	26-03-2023						1		
Received by				ti.	0	T3	DO	MM	YY	HH	MM
ER .			MIR	8.P 924	EW	0.1	26	10.3	2023		

CODE-T	51 to 521 Station Reference	DI to 53 Depot Reference	Kp XXX Note For Kilometer point only Start Km is used
CODE-2		Work Activity	
CODE - 3		Sub Element of Activity	

Descr	ription of Ma	aterials		REPL	ACEME	ENT FILL MA	ATERIAL RESU	JLTS
Locat	ion to be Us	524+900 524+920 FILL (-0.25 m) 524+880 524+920 FERMA 524+920 525+000 FILL (-3.00 m) 524+920 525+000 FILL (-2.50 m) 524+920 525+000 FILL (-2.00 m)						
MAR	Approval No	0					Date	
Suppl	lier Name							
Test F	Requiremen	t			Spec	ification	Clause	
Refer	ence Photos	s	Yes attache	d / No	Othe	er		
Item	Descriptio	scription		Unit Quantity		Quantity	Arrival Date	Note
1	5	Sieve and	alysis M3		M3	5000	26-03-2023	7.7.
2		Classifica	ation		M3	5000	26-03-2023	
3	Pr	octor &	O.M.C		M3	5000	26-03-2023	
4		LL& P.L	& PI		M3	5000	26-03-2023	
5		C.B.F	3		M3	10000	26-03-2023	
Comr	nents by:					Comments by:		
	UMA BADR I	AB) and	om fill materi the results for is and accepte	unded meet ed.		STATUS		
Organ	nisation	Name		5	ilgn		Date	A-AWC-R
	ntractor postale Trulet 100. Abdallah SAMS		et	Most.	the Thanksel			
QA/Q	c*	Abd	allah SA	M3	Mod	Shi-		
GARB	**							
Emple	oyers esentative						7/ 5	

Contractor Company	AL-MOSTAFA COMPANY			Designer Company			K.K				
Jesupal hu	Name	Sign		Date				Time			
Contractor Mostafa Thabet Mostafa Thabet		utet	28-03-2023								
Received by				11	12	B	DD	MM	77	H H	MM
ER			STR	1LP 520	E.W	-0.7	23	03	2023		

CODE 1	S1 to S21 Station Reference	D1 to 53 Depot Reference	Kp XXX Note For Kilometer point only Start Km is used
CODE - 2		Work Activity	
CUDE - 3		Sub Element of Activity	

		NB: Package 1 Only (Pac	ckage 2 via Aconex)	
	THE FOL	LOWING TEST RESULTS A	RE ATTACHED FOR REVIEW	
Description	on of Test Materials		Soil (A-1-a)	
Location	of Test		K.P (524)	
Item	Specification	Test Requirement	Test Result Attachment	Remarks
1	ASTM D 75	Aggregate sampling	According to specification	
2	ASTM C 136	Sieve Analysis	According to specification	
3	ASTM D 1440	Passing sieve #200	12.8	
4	ASTM D 4318	Atterberg limit	N,P	
5	ASTM D 2974	Moisture content	6.4	
6	ASTM D 1557	Modified practar	2.16	
7	ASTM D 1883	C.B.R	56.0	

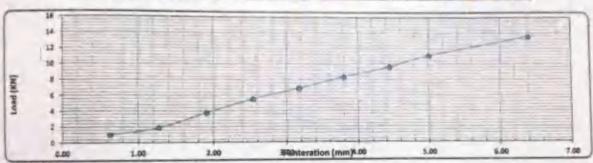
Comments by:	Comments by:

		APPROVAL STATUS		
Organisation	Name	Sign	Date	A-AWC-R
Contractor	Mostafu The Set			A
Designer	Hassan	257	2015	A
GARB *				
Employers Representative				1

^{*} Alignment / Bridges; Culvert Only

California Bearing Ratio TEST

·: Test Results	operate by	GOMAA BADE	RLAB			
NAME COMPANY	AL Moustafa	- Common or		241.00	125+008	
location	K.P524+800	-	ZONE	574+588	200.40v	
TESTING DATE	28/3/2023	600				


Compaction % for Mold	
Male No.	1
head Vol. (com?).	2617.6
Make Tippel	10444
Front W.L Wolf W.T. (grad)	20346
Wet WT. (gm)	4982
Wet Density (p. com?)	2.251
Dry Detailty (a)cm ²)	2,121
Proctor Density (a/cm²)	2.062
Compaction %	- 44

Mositure Ratio After Compac	ted Mold
Tare No.	- 4
Tara WT. (gor)	24,65
Tree WY. +Wes WY. (gra)	196,85
Ture WY. +Dry WY. fgm).	110.50
Wt. Of water	7.4
Dry WT. (gm)	124.5
Mohitnee Contest %	6.1

Swelling	
Mold No.	
Date	3
Enthal Helight (mast)	_
Flord Stalglet (mm)	-
Difference	1
Nample Hotghi (mm)	
Swelling Hatte 14	

Londing Reading ;

pentration	0.64	1.27	1.91	2.54	3.18	3.80	4.45	5.00	6.49
Load Reading (kg)	97,60	187.00	379.00	385.00			978,00		1376.00
Lead (KN)	1.0	1.8	3.7	11	6.1	83	9.6	11.0	13.5

Calculations : -

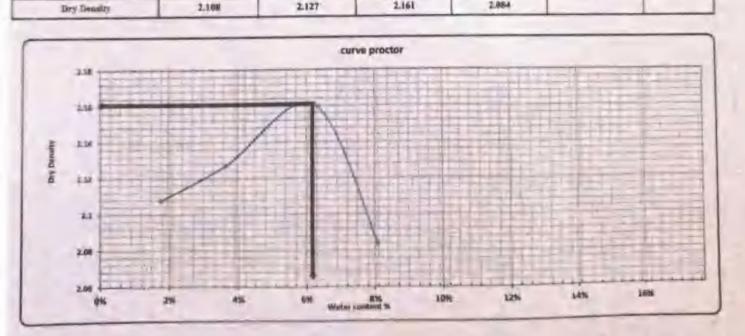
A STATE OF THE PARTY OF THE PAR						
Penteration	Load	Standard Load	CBR	Mold - Compaction	Campacins	CBR
(marri)	(Ka)	(lb)	(%)	(%)	(%)	% 100 hami sin
(000)	(Ma)	13.4	81/8%		1-0	41.7%
2.56	17.01	28.8	55.8%	98	100	56.0%

Lab. Specialist

المعمل المركزي شركة جمعه بدر نوح Canadiant Friday

Name

Sinn


From El Any El Boltons City To El Alamein - MATHOLIN Succion - I From FORA TO MARILA MATHOLIN

From Station Mid-1910 To Stellan Mile177

PROCTOR TEST

TESTING DATE		27/3/2023		30					1				
ocation	- 1	K.P524+800				201	HE.	524+500		525	1000		
NAME COMPANY	A	L Mousta	fa										
		opera	te by	GOM	AA BADER	LAB							
Weight of empty last	M=		1836-6			MA	X Dry Dem	ity		6.00			
Mold Valume	E.		2104.9	9		W	iter esistent	76		2,16			
trial no :			i.	2		-				_	_		-
Wt. Of Mald+ wet	Hon 7	216	M.A	4658.8		TÜF	76.0	10	D86				
WT. WIT SOIL	100	457	4.8			484	EB40.0 4750.0		0.0				
Wt. Density		2.1	49	3.3	209 2.299		2.3	2.257					
Tare No.		1	3	1	1	2	2	14	14				
Tarewt		25.34	3534	26.92	26.92	33.84	22.84	27	27				
Wit. Of wat sail & to	ire .	146.55	446.35	15%.66	15%.6A	146.34	14934	121.63	121-85				
Ws. Of dry sell & te	en!	340	TAN	333.76	152.76	133,25	183.25	11457	114.57				
Wt. Of wister		2.3	2.3	4.9	4,9	7.1	7.1	7.3	7.3				
Will Of dry sid		116.9	118.9	126,8	126.8	110.4	110.4	87.6	87.6				
Water content %		2.0%	2,0%	3,9%	3.9%	6.4%	6.4%	8.3%	83%				
AV, Preser contest*	%	2.0	1%	3.	9%.	6.	4%	8.	3%				
Dry Density		2.1	ON	2	127	1.	161	2.084				1	

Contractor

المعمل المركزي شركة جمعه بدرنوح Consultant

420

From Et Ain Et Sokhna City To Et Alemain - MATROUM

Section - 7 From FOKA To MARSA MATROUN

From Station Bis-opp To Station 5684177

PARTICLE SIZE DISTRIBUTION OF SOIL

TESTING DATE 26/3/2023 location K.P524+800		poder			1000	
		The same of the sa	ZONE	524+500	525+000	
NAME COMPANY	AL Moustafa	- Control		477.000	323-309	
1-visual inspection test	operate by	GOMAA BADER LAB				

2-Gradient test

A-gradation of bulk mat	erials			SAMPLE	WEIGHT [g]	330	15.06	gm		table classify
sieve size	2	1,5	1	4/3	2/1	8/3	#4	PASS		soil classify
Mans retained (g)	120.0	1880.0	3300.0	2000.0	5500.0	2520.0	4450.0			A-1-s
Cumulative Retained (g)	226.0	2100.0	SELECTOR OF	7600.0	13100.0	(entre tr	20270.0		PRO	2.161
Cumulative Retained %	0.7	0.4	16.9	23.0	38.9	67,8	673		WC	5.4
Dumulative Passing %	29.2	93.6	65.1	77.0	\$0.1	82.0	24.7		CBR	55,0%

9-soft material gradation	n			WT.OF sample		600.00		gm
sieve size	10	40	200					
Cumulative Retained (g).	69.60	170.00	355.00					
Cumulative Retained %	13,90	34.00	87,00					
Cumulative Passing %	14.20	06.00	33.00					

General gradient										
sieve size(in)	2	1.5	1.	3/4	1/2	3/0	#4	#10	# 40	# 200
sieve size(mm)	50.0	37.5	25.0	19.0	12.5	9.5	4.75	2.00	0.425	0.075
Cumulative Passing %	99.7	93.6	83.1	77.00	E0.1	52.2	38.7	71.3	26.5	17.8
+	_							-		

THE RESERVE TO SHARE THE PARTY NAMED IN	and the second	MANUFACTURE AND ADDRESS OF THE PARTY AND ADDRE	Special residence
-	HP	N.P	N.P

Centractor

Consultant

Mastan

المعمل المركزي شركة جمعه بدرنوح Do

Contractor Company	AL-MOSTAFA COM	IPANY		Desi	gner C	ompa	ny	K.K			
toward but	Name	Sign		Date				Time			
Issued by Contractor	MOSTAFA THABET	Mostala The	be	11-0	4-202	3					
Received by				CT.	Π	B	00	MM	YY	HH	MM
ER ER			MIR	534	E.W.	D.T	32	04	7023		

€00€-1	S1 to S21 Station Reference	D1 to 53 Depot Reference	Kp XXX Note For Kilometer point only Start Km is used
CODE-Z		Work Activity	
CODE - 3		Sub Element of Activity	

Descr	iption of Materials		PREPAR	RED S	SUBGRADE N	MATERIAL RES	ULTS
Locat	ion to be Used	524+780 524+500	70 525+000 525+000		B 1 (+0.25) B 2 (+0.50)		
MAR	Approval No					Date	
Suppl	lier Name						
Test F	Requirement			Spe	cification	Clause	
Refer	ence Photos	Yes attach	ed / No	Oth	ner		
Item	Description		Unit		Quantity	Arrival Date	Note
.1.	Sieve and	alysis	1	VI3	5000	11-04-2023	
2	Classifica	ation		M3	5000	11-04-2023	
3	Proctor &	O.M.C		M3	5000	11-04-2023	
4	LL&P.L	& PI	1	M3	5000	11-04-2023	
5	C.B.1	3	1	M3	10000	11-04-2023	
Comr	ments by:				Comments by		

A sample has been taken from fill material by K.K office to (Al NOUBI LAB) and the results founded meet the

specifications and accepted.

		APPROVAL STATUS		-
Organisation	Name	Sign	Date	A-AWC-R
Contractor	Histor Trobet	Match The 20th		
QA/QC*	Aluballah SAMY	Abbether		
GARB**				
Employers Representative				

^{*} Designer ** Augmment / Bridges: Culvert Only

SUBMISSION of TEST RESULTS

Contractor Company	AL-MOSTAFA CON	MPANY		Desi	gner C	ompa	ny	K.K			
town the	Name.	Sign		Date				Time			
Issued by Contractor	Mostafa Thabet	Hostala 7	Tubet	11-0	4-202	3					
Received by			1 700	CI	CZ	C3	DD	MM	AA	H.	MM
ER			MAR	K.P 524	EW	0.7.	33.	214	2023		

COME-7	S1 to S21	01 to 53	Kp XXX Note
	Station Reference	Depot Reference	For Kilometer point only Start Km is used
CODE - 2		Work Activity	
CEIDE - 3		Sub Element of Activity	

		NB: Package 1 Only (Pac	kage 2 via Aconex)	
	THE FOL	LOWING TEST RESULTS A	RE ATTACHED FOR REVIEW	
Description	on of Test Materials		Soil (A-1-a)	
Location (of Test		K.P (524)	
Item	Specification	Test Requirement	Test Result Attachment	Remarks
1	ASTM D 75	Aggregate sampling	According to specification	
2	ASTM C 136	Sieve Analysis	According to specification	
3	ASTM D 1440	Passing sieve #200	8.30	
4	ASTM D 4318	Atterberg limit	N.P	
5	ASTM D 2974	Moisture content	6.50	
6	ASTM D 1557	Modified proctor	2.175	
7	ASTM D 1883	C.B.R	89.90	

Comments by:	
	Comments by:

		APPROVAL STATUS		
Organisation	Name	Sign	Date	A-AWC-R
Contractor	Mostals Tracket			A
Designer	Yourses Ray of	1/20st		A
GARB *				
Employers Representative				

^{*} Alignment / Bridges: Culvert Only

From El Alli El Solonia City To El Alamein - MATROUH

Suction - 7 From FORA To MARSIA MATRIDUM

From Bonson 194-000 To Simon 568-177

الهدة التجديد لإنتاب المدركان والمداري

Opreating Lab

AL Nuby Central Lab

PARTICLE SIZE DISTRIBUTION OF SOIL

TESTING DATE:	11-4-2023	Code		Zone 524+500 525+000	
LOCATION	K.P (524+800)	MO (P-1)	Zone	524+500	525+000
NAME COMPANY	Al Mustafa	INO (F-1)			

1-visual inspection test

2-Gradient test

-gradation of bulk ma	ierials			SAMPLEY	VEIGHT (g)	174	19.00	gm	Table	lassify
steve size	2	1.5	1	4/3	2/1	8/3	#4	PASS	Soil Classify	A-1-a
Mass retained (g)	122.0	1636.6	2489.0	012.0	961,0	1008.0	4079.0		PRO	2.175
Committee Retained (g)	122.0	1958.0	4457.0	5069.0	6030.0	7128.0	11207,0		WC.	6.50
Cumulative Retained %	0.7	11.2	25.6	29,1	34.6	40,9	64.3		CBR	
Completive Passing %	19.3	88.6	74.4	70.9	85.4	59.1	35.7		Los Angles	30.96

soft material gradation	on_			WT.OF sample	500.00	gm
sieve size	10	-40	200			
Comulative Relained (g)	133.00	258.00	383,00			
Consistive Released %	26.60	51.60	76.60			
Cumulative Passing %	73.40	48.40	23.40			

C-General gradient										
sieve size(in)	2	1,5	1	3/4	1/2	3/8	#4	# 10	# 40	# 200
sieve size(mm)	50.0	37.5	25.0	19.0	12.5	9.5	4.75	2.00	0.425	0.075
Completive Passing %	99.3	38.8	74.4	70.9	65.4	59.1	35.7	26.2	17.3	8.3
-								1		
1										1

Annual sales	LIQUID LIMIT (LLL.)	PLASTIC LIMIT (P.L.)	PLASTIC NOEX (P.4)
ATTERBERG LIMTS	N.P	N.P	N.P

Contractor

Consultant

Youssef Ragar

Weight of empty mold :

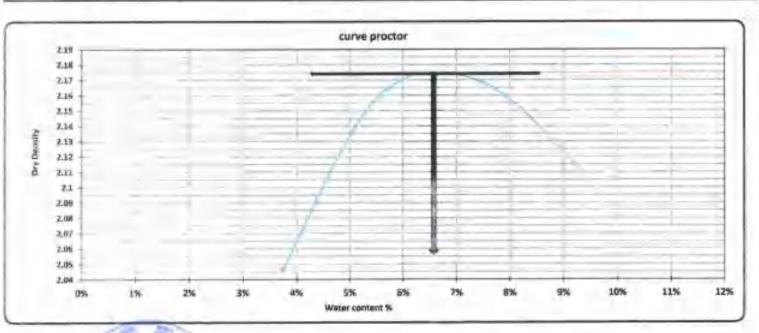
Electric Express Train - HSR

From El Ain El Sokhna City To El Alamein - MATROUH Saction - 7 From FOKA TO MARSA MATROUH

From Station 504+000 To Station \$60+177

2,175

PROCTOR TEST


TESTING DATE:	11-4-2023	Code			
LOCATION	K.P (524+800)	MO (D.4)	zone	524++500	525+000
NAME COMPANY	Al Mustafa	WO (P-1)			

MAX Dry Deasity

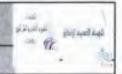
6037.0

	-		_		-	_	_	-	
Mald Volume:		2113.6			A	ater content	76		6.5
trial set !		1		2		3		4	
Wt. Of Molar wet sail	105	523.0	386	54.0	109	62.6	19	1699	
WT. WET SOIL	14	86.0	48	17.6	492	25.0	48	62.0	
Wr. Density	2,	123	1	280	2.3	331	2.	301	
Ture No.	75	16	22	46		iś	26	19	
Tare wt	35	13.9	84.1	46.4	46.9	369	55	44.4	

Ture No.	75	16	22	40		15	26	19	
Tare wt.	35	33.9	54.1	46.4	46.9	309	55	44.4	
Wt. Of wet soil & ture	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	
Wt. Of dry soil & pare	146,5	145.9	145.0	144.5	142.7	141.8	14L7	140.7	
Wr. Of water	3.5	4.1	5.0	5.5	7.3	R.2	8,3	9,3	
Wt. Of dry soil	91.5	112.0	90.9	98.1	95,9	109.9	86.7	96.3	
Water vanient %	3.8%	3.7%	5,5%	5.6%	7.6%	7.5%	9.6%	9,7%	
AV. Water content %	3.1	7%	5.0	6%	7.5	5%	9,0	8%.	
Dry Density	2.0	146	2.1	60	2.1	167	2.0	(KD/S)	

Contractor

Consultant


Yousself Roford

Electric Express Train - HSR From El Ain El Sabres Oty To El Alamain - MATROUH Section - 7 From PDKA To MARSA MATROUH

Seem Station Stateball To Station Stillage?

TESTING DATE:	11-4-2023	code			
LOCATION	K.P (524+800+)		zone	524+500	525+00
NAME COMPANY	Al Mustafa	MO (P-1)			
	Los Anglos	abrasion A	ASHTO-T96		

Results:-

Weight of sample before test (gm)	Weight of sample after test (gm)	Abrasion ratio (%)
5000	3452	30.96

Lab. Specialist

Name:

Sign:

Lab. Engineer

Name : U

Sign :

Consultant Engineer

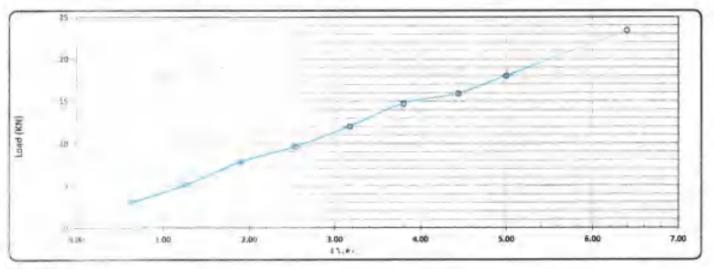
Sign:

Correlating Lord AL Mility Control Lab

California Bearing Ratio TEST

Destring 171-	13-4-2023	Code			
Lauren	K.P (524+800)	MO (P-1)	FROM STA	524+500	525+000
Company Time	Al Mustafa	wo (r-1)			

-: Test Result:


Lorespection % for Mold	
Neki No	3
Visited Year (ETTE ³)	2025
Main W. Lypnic	5034
Mold WT Was Oil (gar)	9725
West 2017 (1988)	1691
finitimo (g/m²)	2.317
Dev Design (g/rm²)	2.179
Place Sents g/cm ²)	2,179
Company (No.	100.0

Mositure Ratio After Compac	ted Mold
Ture No.	15
Tare WT. (gm)	H.S
Tare WT. +Wet WT. (gm)	150
Tare WT. +Dry WT. (gm)	142.8
Water WT. (gen)	7.3
Dry WT. (gm)	3.10.5
Moisture Contest %	6.5

Swelling	Swelling				
Mold No.					
Date	13-4-2023				
latial Beight (mm)	0,00				
Fixed Height (rum)	0.00				
Difference	-0				
Sample Hoight (1918)	(20.00				
Swelling Ratio %	0.0%				

Loading Resting

46.50	0.64	1.27	1.91	2.54	3.1%	3.80	4.45	5.00	6.40
(and Reading (mm)	0.10	4.17	5.26	0.32	0.46	6,49	9.53	0.60	0.78
Lord (KV)	3.6	5.1	7.8·	9.6	12.0	34.7	15.9	18.6	23.4

Cateulations:

Personation:	Lend	Stundard Lone	CBR	Mold - Compactors	Compaction	CBR
(mm)	(Nn)	(16)	(%)	1961	(%)	10 444 14 76
(34)	9.60	13.4	7L9%	400		70.5%
4.06	18.00	20.0	89.9%	100	98	88.1%

Lak Spernips

Name:

Night.

Lab. Epeineer

Amme

Same

Committent Engine

Name: Yoursef Rafet

Sign :

Contra		AL-MOS	STAFA CON	IPANY			Desig	gner	Compa	iny	к.к			
		Name		Sign			Date				Time			
Issued Contra		MOSTAR	A THABET	C	لمغی شا ،	eso	10-09	9-202	23					
Receiv	ed by					0.00	Et .	CZ	13	DD	MM	YY	HH	MM
ER	coup					MIR	524	No.	2.7	10	09	2023		
CO08-1			to \$21 Reference		D	D1 to		_	Fo	r Kilomet		XX Note	art Km i	is uses
CODE :						Work Act	ivity of Activity							
Descri	otion of	Materials			SUB-BA	ALLAS	T MA	TER	RIALF	RESUL	TS			_
	-	171903012432	Stone	to.				-				_	_	
Locatio	on to be	Used	524+500 524+500	525+0 525+0			AST 1 (+ AST 2 (+							
MAR A	pproval	No							Dat	e				
Supplie	er Name													
Test Re	equirem	ent			Sp	ecificat	tion		Cla	use				
Refere	nce Pho	itos	Yes attach	ed / No	Ot	her								
Item	Descrip	tion		Uni	it		Quant	ity	Arrival	Date	N	lote		
1		Sieve and			M3		5000	-	-	9-2023	_			
2		Classifica		-	M3		5000	\rightarrow		9-2023				
3		LL& P.L			M3	-	5000	-		9 2023	_			
5	-	C.B.F			M3 M3	-	1000			9-2023 9-2023	_			_
	ents by:		`		141.3	Com	ments		10-0	3 2023	-4			
A samp	le has b	een taken fr L LAB) and t	om fill mater he results for is and accept	unded m										
				-	APPROVA	LSTAT	US							
Organis	sation	Name			Sign				D	ate		A	-AWC	-R
Contra	ctor	Cu	issan	100	Cu	世	بطغ	4						
QA/QC		Ho	issan		1	10	2	AR3						
GARB*	*				1	7								

Employers

Representative

* Designer

** Alignment / Bridges: Culvert Only

Contractor Company	AL-MOSTAFA COM	AL-MOSTAFA COMPANY					пу	к.к			
	Name	Sign	Sign					Time			
Issued by Contractor Most	Mostafa Thabet	- 12 - 1		12-0	9-202	3					
Received by		1	1	d	CZ	3	DD	MM	YY	+	MM
ER		N.	MAR	524	EW-	DIT	12	115	2021		

CUDE-1	S1 to S21	D1 to 53	Kp XXX Note
	Station Reference	Depot Reference	For Kilometer point only Start Km is used
CODE-Z		Work Activity	
CODE-3		Sub Element of Activity	

		NB: Package 1 Only (Pac	ckage 2 via Aconex)	
	THE FOLI	LOWING TEST RESULTS A	RE ATTACHED FOR REVIEW	
Description	on of Test Materials		Soil (A-1-a)	
Location	of Test		K.P (524)	
Item	Specification	Test Requirement	Test Result Attachment	Remarks
1	ASTM D 75	Aggregate sampling	According to specification	
2	ASTM C 136	Sieve Analysis	According to specification	
3	ASTM D 1440	Passing sieve #200	4.65	
4	ASTM D 4318	Atterberg limit	N.P	
5	ASTM D 2974	Moisture content	7.10	
6	ASTM D 1557	Madified proctor	2.23	
7	ASTM D 1883	C.B.R	93.4	
		1		

Comments by:	Comments by:

	A	PPROVAL STATUS		
Organisation	Name	Sign	Date	A-AWC-R
Contractor	Cultivakeo	Cult jekes	0	A
Designer	Hassan	1012/ 2013		A
GARB *		7		
Employers Representative				

^{*} Alignment / Bridges: Culvert Only

From El Ain El Sokhna City To El Alamein - MATROUH

Section - 7 From FOKA To MARSA MATROUH

From Station 504+000 To Station 568+177

Al Tawkol Central Lab

PARTICLE SIZE DISTRIBUTION OF SOIL

TESTING DATE:	10-09-2023	code	ZONE	524+500	525+000	
LOCATION	K.P (524+750)	(mas) SUB BALLAST (1)	Material	SUB BA	LLAST	
NAME COMPANY	Al Musiafa	Juliani and Barrati (1)	QUANTITY	5000 M		

visual inspection test

Gradient test

gradation of bulk mat	erials			SAMPLE W	EIGHT [gm]	4140	6.000	gm	1	table classify
slove size	2"	1.5 *	T'h	3/4 *	1/2 "	3/8 =	#4	PASS		soil classify
Mass retained (g)	0.0	1254.0	4775.0	4523.0	6850.0	6960.0	5070.0	12054.0	CLASS	A-1-a
umulative Retained (g)	:0.0	1264 0	6029 0	10552.0	17452.0	24361.0	29432.0		PRO	2.230
Cumulative Retained %	0.0	3.0	14.5	25.4	41.9	58.7	70,9	4	WC:	7.1
umulative Passing %	100.0	97.0	46.5	74.6	58.1	41.3	29.00		CER	93.40
									LA	25.4
									3.G	2.520

oft material gradation				WT.OF sample	500.00	gm
sleve size	#10	#40	#200			
imulative Retained (g)	150.00	320,00	420.00			
:umulative Retained %	30.00	84.00	84.00			
umulative Passing %	70.00	35.D0	16.00			

2"	1,5 *	17	3/4 "	1/2 "	3/8 -	#4	#10	# 40	# 200
50.0	37.5	25.0	19.0	12.5	9.5	4.75	2.00	0.425	0.075
100.0	05 /B	85.5	TAME	50,1	91.2	29.1	293	10.5	A 65 L
	-								
	50.0	50.0 37.5	50.0 37.5 25.0	50.0 37.5 25.0 19.0	50.0 37.5 25.0 19.0 12.5	50.0 37.5 25.0 19.0 12.5 9.5	50.0 37.5 25.0 19.0 12.5 9.5 4.75	50.0 37.5 25.0 19.0 12.5 9.5 4.75 2.00	50.0 37.5 25.0 19.0 12.5 9.5 4.75 2.00 0.425

ATTERBERG	LIQUID LIMIT (L.L.)	PLASTIC LIMIT (P.L.)	PLASTIC INDEX (PI.)
LIMTS	N.L	N.P	N.PI

Contractor

ENG

HMED HALEEM

Consultant

Hassan-

W

الهيئة أقومة الإغابي أس الساغران

Electric Express Train - HSR From El Ain El Sostina City To El Alamoin - MATROUH

6-7 From FOKA To MARSA MATROUH From Station 504+000 To Station 568+177

Absorbtion & Aggregate specific gravity AASHTO-T85

TESTING DATE:	10/09/2023	code	Station	524+500	525+000
LOCATION	K.P (524+750)		Material	SUB B/	LLAST
NAME COMPANY	Al Mostafa	(mos) SUB BALLAST (1)	QUANTITY	5000 M	

Weight of sample	2500	gm
Weight of saturated surface dry sample (B)	2540	gm
Weight of saturated sample in water (C)	1553	gm
Weight of dry sample after heating (A)	2490	gm

Results:-

Bulk specific gravity = A / (B-C)	2,523	
Bulk specific gravity (S.S.D) = B / (B-C)	2.573	
Apparent specific gravity = A /(A-C)	2.657	
Absorbation = (B-A)/A	2.008	.%

Los Anglos Abrasion AASHTO-T96

Results:-

Weight of sample before test (gm)	Weight of sample after test (gm)	Abrasion ratio (%)
5000	3730	25.40

Lab. Specialist

Sign:

Lab. Engineer

Consultant Engineer

Name:

Sign :

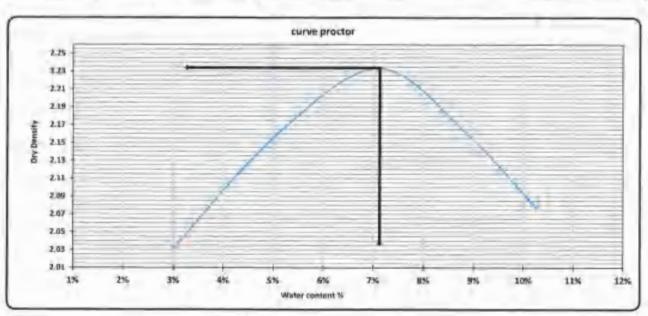
Name :

Sign:

From El Ain El Soknna City To El Alamein - MATROUH

Section - 7 From FOKA TO MARSA MATROUH

MODIFIED PROCTOR TEST ASTM D-1557


TESTING DATE:	11-09-2023	code	ZONE	524+500	525+000
LOCATION	K.P (524+750)	K.P (524+750) Material		SUB BALLAST	
NAME COMPANY	Al Mostafa	hund and dyrrver.	QUANTITY	5000 M	

Weight of empty mold:	5620.0
Maid Volume:	2124.0

MAX Dry Density	2.20
Water content %	7.1%

trial no c	.0	2	3	4	5
Wr. Of Mold+ set sail	19070.0	30430.0	(0700,0	10615	18465
WT. WET SOIL	4450.0	4810.0	5080.0	4905.0	4565,0
Wt. Density	2.095	2.265	1.392	1.352	2.290

AV.Water content %. Dry Density	-	133		156		33	_	160	10.	Pik-
Water content %	3.0%	3.1%	5.1%	5.0%	7.2%	7.054	9.0%	8.7%	10.5%	19.05
Wt. Of dry sail	93.9	44.0	89,1	92.2.	88.5	90.1	88.8	86.4	85.7	88,6
Wt, Of water	2.8	2.9	4.5	4.6	6,3	6.5	8.0	7.5	0.0	8.8
Wt. Of dry soil & ture	347,2	147.1	145.5	145,4	143.65	143.79	142,0	142,5	141,0	141.
Wr. Of wet soil & tare	150.0	150.0	150.0	150.0	450.0	190.0	159.0	150.0	150/0	150.
Tare wt.	53.3	53.1	56.4	53.2	55.2	51.6	53.2	:56.1	55,3	53.2
Tare Nu.	10	1)	1	2:		4	.5	6.	1	. 8

Contractor

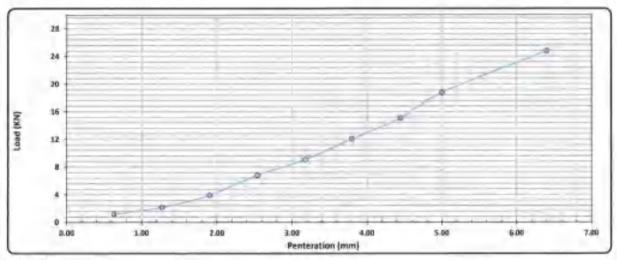
Consultant

222

California Bearing Ratio TEST

Testing Date :	12/9/2023	Code	FROM STA:	5241500	525+000
Location :	K.P (524+750)	(mos) SUB BALLAST(1)	: Material	SUB B	ALLAST
Company Name	Al Mostafa	(most and BALLAST(1)	1 Layer Thickness	41	(oiM

-: Test Results


Compaction % for Mold	
Mold No.	-1
Muté Vat.(cm²)	2129
Meld WT. (pm)	5314
Meld WT Wer WT. (gm)	10355
Wat WT. (gm)	5975
Wet Density (g/cm ²)	2.394
Dry Density (#/cm²)	2.238
Process Dennity (g/cm2)	2.231
Compaction %	100.5

Masiture Ratio After Compac	ted Mold		
Ture No.	is		
Tare WT. (gre)	.93		
Taca WT. +Wei WT. (pm)	150		
Tare WTBrs WT (gm)	143,1		
Water WT. (grs).	6.2		
Dry WT. (gui)	81.4		
Mobilare Centent %	7.6		

Swelling	
Mald No.	t
Date	12/9/2023
fatial fleight (min)	1.00
Final Height (mm)	6.00
Difference	0.00
Sample Height (mot)	120
Swelling Ratio %	0.00%

Loading Reading:

Penteration (mn)	9.64	1.27	1.91	2.54	3.18	3.80	4.45	5,06	6.40
Louil Rending (Kg)	130	2411	435	755	DMS	1340	1675	2595	2755
Lord (KN)	12	2.2	3.5	6.8	9.0	12.1	15.1	18.8	24.8

Calculations :-

Pentersition	Load	Standard Load	CBR	Modd - Congression	Compariso	CBB.
(mm)	(Kn)	(16)	(76)	1501	(%)	100 أسية 100
2.50	6.80	13.4	50.9%	100.0	ini	50.7%
5.00	19.77	20.0	13/75-	100.5	106	93.4%

Lah. Specialist

A MED HALEEM

Lab. Engiseer

Name: Hassa

Consultant Engineer

Company Name

Al Mustafa

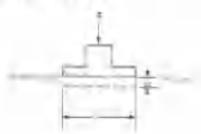
Location

524+820 To 524+920

Taste Date

21/3/2023

Layer level


-1.5

Station 514+900

EOUTEMENT AND TEST PROCEDURE

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the actilement of a circular rigid plate with the diameter D.

The load is applied in a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under such load step is recorded. The following sketch shows the principle of the test.

Friend.

M - pettiamen

d - diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained maintai also plates with diameter D=0.60 m and D=0.762 m are used

The load is applied in 6 load increments of equal size. Under each load slep the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin, After that, the place is reloaded in 5 steps. A loaded truck, an excavator or a rather usually serve as counterweight for the hydraulic jack

Diameter = 300mm

Linding	Lmii	Link	Street	9601	19tal 2	Digital	Seit 1	Set (5en , 3	Avg.
Nage No.	Her	KN	MN/MZ	1991	ner	3776	ann	inst	1000	1000
0.000	6.0	0.000	0.00	14.92	13.45		0.006	0.000		0.000
1,000	2,4	0.707	0.01	14,50	13.40		0.120	0.050		11.085
2.000	18.8	5.652	11.08	14.40	13.15		0.520	0.300		0.410
0.080	37.7	11.304	0.16	14.02	12.95		0.900	0.500		0.700
4.000	58.9	17.663	0.25	13.80	12.85		1.120	0.600		0.860
5,000	17.7	23,315	0.33	13.55	12.70		1.370	0.750		1.060
6.000	08.9	29.673	0.42	13.35	17.60		1.570	0.850		1.210
7,000	117.8	35,325	0.50	13.10	12.50		1.820	0.950		1.385
8,000	58.9	17.663	0.25	13.15	12.58		1.778	0.870		1.320
9,000	29,4	8.831	0.12	13.25	12.65		1.670	0.800		1.235
9,000	Zá	0.707	10.0	13,85	13.02		1.070	0,430		0.750
19,000	2.4	0.707	0.01	13.85	13.02		1.070	0.430		0.750
11,000	18.8	5.652	0.08	13.60	12.85		1.320	0.600		0.960
12,000	37.7	21.304	0.16	13.40	12.75		1.520	0.700		1.110
13,000	58.9	17,663	0.25	13,30	12.70		1.620	0.750		1.185
14.000	77.7	23.315	0.33	13.15	12.65		1.770	0.800		1.285
15,000	98,9	29,673	0.42	13.00	12.55		1.920	0.900		1.410

		- 6	Δ5	Ant
0.7 n;	0,35	1.05688		
0.3 m ₁	0.15	0.66375	0.39315	8.2
0.701	0.35	1.31278	n terre	
11.301	0.15	1.17092	0.14276	8,2
(inni) U	300			
Exp	114.47			
Fire	115.22			
Area (Sq.m)	9.870(6)			

Bi-2/Est	2.7%	

F. +0.75 . D . da / dx

f. a deformation modulus

de = fond increment

di = enttiement increment

= diameter of the plate, generally 0.30 m

For this calculation are and it is one usually taken from the loss mann between 8.3 or and 6.7 or no.

MN/M2 Set:

Lah. Specialist

Name:

Sign:

Name: Sign !

Name :

Sign :

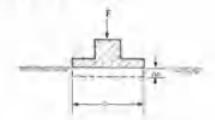
Tα

524+920

Company Name Location المصطفى 524+800

Taste Date

11-04-2023


Layer level ferma

States 524-R80

EQUIPMENT AND TEST PROCEDURE: :-

The basis of the given equation is Bosseinesq's theory of the relationship between the modulus of clasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

Sill hold.

at wantieren

Displanting of the part

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minuts). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

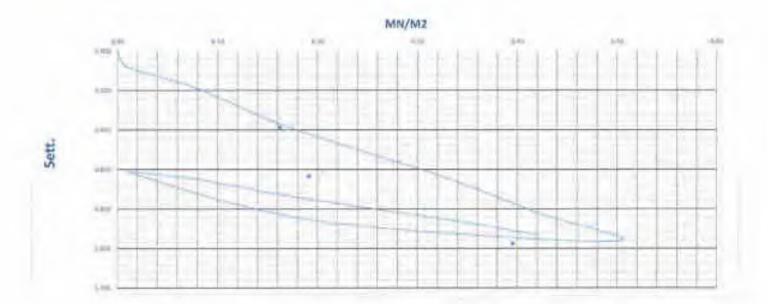
Diameter = 300mm

Loading	Land	Link	Street	Bial's	Ibid 2	that I	Sitt 1	5m.1	Sitt: 5	Avg.
Singe No.	Bar	6.9	MMMZ	nin	mm.	me	mm	mm	nn)	mar.
0.000	0.0	0.000	0.00	20,00	20,00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.94	19.90		0.060	0.100		0,080
2.000	17.1	5,652	0.08	19.62	19.80		0.180	0.200		0.190
0.080	34.2	11.304	0.16	19.55	19.72		0.450	0.280		0,365
4.000	53.3	17.563	0.25	19,36	19.61		0.640	0.390		0.515
5.000	70.5	23,315	0,33	19,19	19.52		0.810	0.480		0,645
6.000	39,8	29,673	0,42	18.96	19,40		1,040	0.600		0,820
7.000	106.8	35,325	0,50	18.76	19,31		1.240	₩.690		0,965
R:000	53.4	17.663	0.25	18.84	19,38		1.160	0.620		0.890
9,000	26.7	11.831	9.12	18.94	19:49		1,060	0.510		0.795
9,000	2.1	0.707	0.01	19.18	19.60		0.820	0.400		0.610
10.000	11	0.707	6,01	19.18	19.60		0,820	0.400		0.610
11.000	17.1	5.652	0.08	19,14	19.56		0.860	0.440		0.650
12.000	34.2	11.384	0.16	19.05	19.50		0.950	0.500		0.725
13,000	43,3	17.663	0,25	18.95	19,46.		1,050	0.540		0.745
14,000	70.5	23.315	0.33	18.88	19,41		1.120	0.590	-	0.855
15,000	N.U.N	29.073	0.42	18.78	19.36	1	1.220	0.640		0.430

			AS	Am
IL7 et .	6.35	0.69313	0.35	0.2
11.3 c	11.15	0.34313	11.35	H.A
0.7g	0.35	0.87167	0.18166	0.2
0.lo ₁	0.15	0.69	H'TW1PP	11.2
D (mm)	200			
Et.	128.57		V	
Evg	247.71			
Ares (Agan)	ILITHAS			

EvziEvi	191	-

F. - 124 - D da / As


L. = deformation mudulus

D. = load Increment

D: = sattlement increment

D - Siamuler of linigilate, generally 0.30 m

For this calculation for and to one sessably taken from the load spen federace 0.2 man and 0.7 man

Company Name

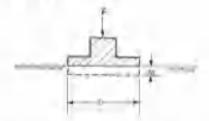
Location Taste Date

Layer level

524+800

To

524+920


11-04-2023 ferma

524+840 station

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The had is applied to a circular rigid sizel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F . land

AL TARRESTOR

If it discussed in the pastic

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter B = 0.50 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 6.62 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

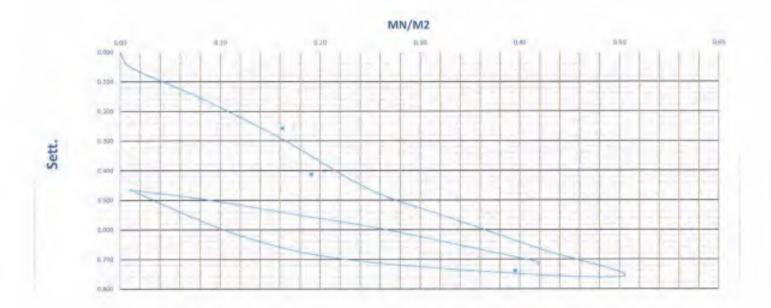
300mm Diameter =

Louding	Lind	Link	Street	Dist.	Dial 2	Didit	Set.1	Sec.1	Sei 3	Avg.
Slage-Su	Bar	RN	MNMI	mm	mm	inn	mn	mo-	min	min
0.000	0.0	0.000	0.00	20.00	20.00		11.000	0.000		0.000
1,000	2.1	0.707	0.01	19.94	19.96		0.060	0:040		0.050
2,000	17.1	5,652	80.0	19.81	19.88		0.190	0.120		0.155
0.080	34.2	11.304	0.16	19.61	19.81		0.390	0,190		6,296
4.000	53.3	17.663	0.25	19.35	19.72		0.650	0.280		0,465
5.000	70.5	23.315	0.33	19.20	19.68		0.800	0.320		0.560
6,000	89.8	29,673	0.42	19.05	19.62		0.950	0.380		0.665
7,000	106.8	35,325	0.50	18,90	19.58		1,100	0.420		0,760
8-000	53,4	17,663	0.25	18.95	19.63		1.050	0.370		0,710
9.090	26.7	8.831	0.12	19.06	19.69		0.940	0.310		0.625
9.000	2.1	0.707	0.01	19.28	19.79		0.720	0.210		0.465
10.000	2.1	0.707	0.01	19,28	19.79		0.726	0.210		0,465
11.000	17.1	5.652	0.08	19.24	19.77		0.760	0.230		0.493
12.000	34.2	11.304	0.16	19.16	19.76		0.840	0.240		0.540
13,000	53.3	17,663	0.25	19,10	19.72		0.900	0.280		0.590
14,000	70.5	23,315	0.33	19.05	19.66		0.950	9.340		0.645
15.000	H9.N	29,673	0.42	18.98	19.60		1.020	0.400		0,716

			AS	Air:	
#.7-d ₁	6.35	0,58187	0.30875	0.2	
0.5 m,	0.15	0.27313	II JIIN /S	16.2	
0.702	0.35	0.65944	0.13444	0.2	
0.30)	11.15	0.525	(L13444	11.2	
D (min)	300				
Day	145.75		7		
. Dil	334.71				
Aren (Squir)	0.0005				

Ev2/E/d	7.10	

E. - 0.75 D det A ..


= theformation modulus £,

0. = load increment

= sattlement increment Di

- diameter of the place, generally 0.30 m. D

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

Name:

Sign:

Consultant Engineer

Name:

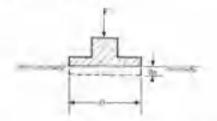
Sign:

Company Name

العصطفي

Location

524+820 To 524+900


Smilin 524+880

Taste Date Layer level 16-04-2023 P.S.G + 0.5

EQUIPMENT AND TEST PROCEDURE :-

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a vircular rigid steel hearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F= load

ar = sentiment

D - murratur of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 immiminute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

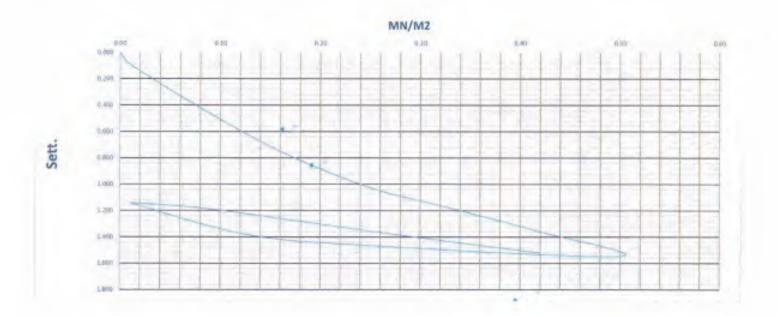
Diameter = 300mm

imeter =	3400mm	1								
Leader	hmil	A.med.	Sityii	(fini.)	Bul 2	Phil.7	Set /	5812	sizes. 3	Avg.
Sings No.	Piec	1629	MN/M2	mm-	ne	om	mer	om	mo	ms
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	9.707	0.01	19,95	19,87		0.050	0.130		0.090
2.000	17.1	3.652	80.0	19,55	19,61		0,450	0,390		0.420
0.080	34.3	11.364	0.16	19.10	19.40		0.900	004,0		0.750
4.000	53.3	17.663	0.25	18.85	19.10		1.150	0.900		1.025
5,000	70.5	23.315	0.33	18.66	18.98		1.340	1.020		1.180
6.000	8.45	29,673	0.42	18.46	18.82		1,540	1.180		1.360
7.000	196.8	35.325	0.50	18.25	18.66		1.750	1.340		1.545
8.000	53.4	17.663	0.25	18.33	18.74		1.676	0.260		1.465
9.000	26.7	8.831	0.12	18.42	18.82		1.580	1.180		1,380
9.000	2.1	0.707	0.01	131,69	19.03		1.310	0.970		1.140
000.01	7.1	0.707	10.01	18,69	19.03		1317	0.970		1.140
13.000	17.1	5.652	0.08	18.64	19.0H		1.360	1.000		1.180
12.000	34.2	11.304	0.16	18.55	16.93		1.450	1.070		1.260
13,000	53,3	17,663	0.25	19.44	18:85		1.560	1.150		1.355
14.000	70.5	23.315	0.33	18.36	18,77		1:640	1,236		1.435
15.000	84.8	29.673	0.42	18.16	18.70		1.740	1.300		1.520

		. 4.	AS	80	
0.7 a _n	0,35	1,19813	9.48937	0.2	
11.3 m;	0.15	0.79875	9,48437	10.4	
41.70;	0.35			0.2	
II.3m;	0.15	1.22	0.23388	0.2	
D (mm)	300				
E*,	91,93				
EV:	192.46			1	
Arrel Sque	0.07065				

Region	1.61	

F. = 6.75 | B - An / At


E: # deformation modulus

D. = load increment

Dx = settlement increment

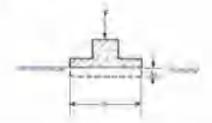
p. - diameter of the plate, generally 9:30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm mix}$ and 0.7 $\sigma_{\rm mix}$

	E	
Lab. Specialist	Lab Engineer 3	Consultant Engineer
Name:	Name:	Name: 100 21
Sign:	Sign:	Sign: 12/7/2020

Company Name

Location 524+820 To 524+900


Status 524/538

Taste Date 16-04-2023 Layer level P.S.G + 0.5

EQUIPMENT AND TEST PROCEDURE : >

The basis of the given equation is Boustinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The semiement under each load step is recorded. The following sketch shows the principle of the test.

Friday

dra-settlesent

D = diameter of the place

The diameter D of the plate is generally 0.35 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are used

The load is applied in 5 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

Diameter = 300mm

Londing	Loud	Lead	Street	Diel 1	Digit I	Dist2	Set	Sen 2	Sm A	'Aug.
Sup No.	Ber	KN	MOVINE	min	1000	11117	rivu.	1999	988	11111
0,000	0.0	0,000	0.00	20.00	20.00		0.000	0.000		0,000
1.000	2.1	0.767	0.01	19.75	19.98		0.250	0.050		0.150
2.000	17.1:	5.652	80.0	14.15	19,65		0.850	0.350		0.600
0.060	34,2	11,304	0.16	18.75	19.40		1.250	0.600		0.925
4.000	53.3	17.663	6,25	18.42	19.15		1.580	0.850		1.215
5.000	70.5	23.315	0.33	18.15	19.03		1.850	0.978		1:410
6.000	MA'N	29,673	0.42	17.92	18.85		2.090	1.150		1.615
7.000	106.8	35.325	9.50	17.68	18.71		2.320	1.290		1.805
8.000	53.4	17.663	0.25	17.75	18.80		2.250	1,200	1	1.725
9.000	26.7	H.831	0,12	17,85	18.90		2.150	1.100		1.625
9.000	.2.1	0.707	6.01	18.15	19.12		1,850	0.880		1.365
10.000	2.1	0.707	0.01	18.15	19.12		1.850	0.880		1.365
11:000	17.1	5.652	0,08	18.07	19:06		1,930	9,940		1.43
12.000	34.2	11.304	0.16	18,02	19.00		1.980	1.000		1.496
13.000	53.3	17.663	0.25	17.87	18.91	1	3.130	1.090		5.616
14,000	70.5	23.315	0.33	17.77	18.85		2.230	1.150		1.69
15,000	89.8	29,673	0.42	17.65	18.78		1.350	1.220		1,785

_			Δ5	Los	
0.7 m	0.35	1.44875	0.56437	6.2	
6.3 m	0.15	N.SAMAJA	0.30437	94	
9.7et	0.35	17000	0.2061	0.2	
9.3a ₂	8.15	1.59561	9,2801	9.4	
D.(sem)	300				
Eva.	79,73				
Evy	218.34				
home / Signif	0.07865				

BAZIEVI.	274	

E. - 4.25 - D Ad (A)

E = deformation madulus

0. = load Increment

De - settlement increment

D = diameter of the state, generally 0.30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

	3/19	
Lab. Specialist	Lab. Engineer	Consultant Engineer
Name:	Name:	Name: work i
Sign:	Sign:	Sign: _vb
	7	17/7/2027

Company Name

المصطفى

Location

524+820 To 524+900

Stuint

524+860

Taste Date Layer level 16-04-2023 P.S.G + 0.5

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The seitlement under each load step is recorded. The following sketch shows the principle of the test.

r-ins

A TABINITION

B = diameter of the plat

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 moviminute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavalor or a roller usually serve as counierweight for the hydraulic jack.

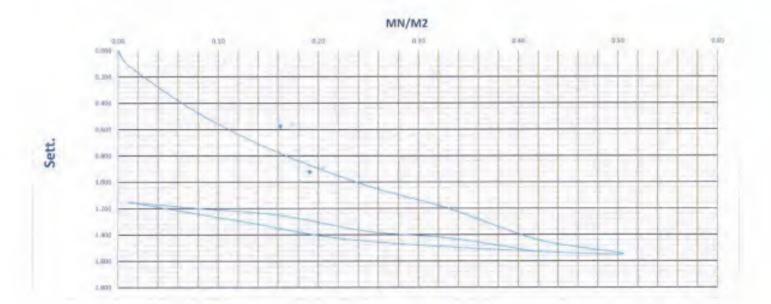
Diameter - 300mm

Linking	Jant	lind	Street	Digit.1	Dist 2	Dist3	Seit. I	Seni. 7	5mt . J	Asp.
Stage No.	Bar	1629	515/012	There	me	President	me	insi	inn	me
0.000	0.0	0.000	0,00	20.00	20,00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.88	19,90	14	0.120	0.100		0.110
2.000	17.1	5.652	80.0	19,40	19.65		0.600	0.350		0.475
0.080	34,2	11,304	0.16	19,15	19.30		0.850	0.700		0.775
4.000	53,3	17.663	0,25	18.82	14.12		1,180	0,280		1.030
5.000	70,5	23.315	0.33	18.70	18.96		1,300	1.100		1.200
6,000	8,98	29.673	0.42	18.42	18.70		1.580	1.300		1.44
7.090	106.E	35.325	0.50	18.30	18.60		1.700	1,400		1.550
8,000	53,4	17.663	0,25	18.46	18:70		1,600	1,300		1,450
9,000	26.7	8.831	0,12	18,60	18.80		1,400	1,200		1.30
9.000	2.1	0.707	0.01	18.70	19.00	1500	1,300	1.000		1.15
15,000	2.1	0.707	0.51	18.70	19.00		1.300	1.000		1.15
11.000	17,1	5.652	0,08	18,65	18.95		1.350	1.050		1,200
12,000	34,72	11,384	0.16	18.60	18.90		1.400	1.100		1,250
13.000	53.3	17.663	0.25	18.45	18.80		1,550	1.200		1.37
14,000	78.5	23.315	0.33	18.40	18.75		1.690	1.250		1.425
15.000	3,9,5	29,673	0.42	18.32	18.62		1.680	1.380		1:53

			45	3/7	
0.7 o.	0.35	1.34375	0.60625	N .	
6.5 e,	0.15	11.7375	n'avan't's	6.2	
67et	11.35	1.44533	9,19833	0.2	
E.ler	0.15	1.25001	0.17033		
D (mm)	389				
Ety	74.21				
Ey1	216.90				
Area (-Squin)	0.07065				

|--|

E.	- K 7	 0 4	ter II.	A.
				-


E. a disformation modulus

D. = load increment

D. = sattlement increment

21 - Hameter of the plate, generally 0.30 m.

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

Lab. Specialist

Name:

Name:

Sign:

Sign:

Lab. Engineer

Name:

Name:

Name:

AIT/LaU

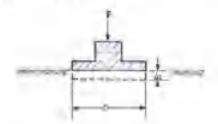
524+580

Company Name

AL MOSTAFA

Location

524+500 To 524+528


Taste Date Layer level

9-09-2023 P.S.G +0.50

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following skotch shows the principle of the test.

F = load

it is themoter of the page.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are HEAD

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable and (< 8,82 mentinimate). After the maximum load is reacted the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excevator or a railer usually serve as counterweight for flie hydraulic jack

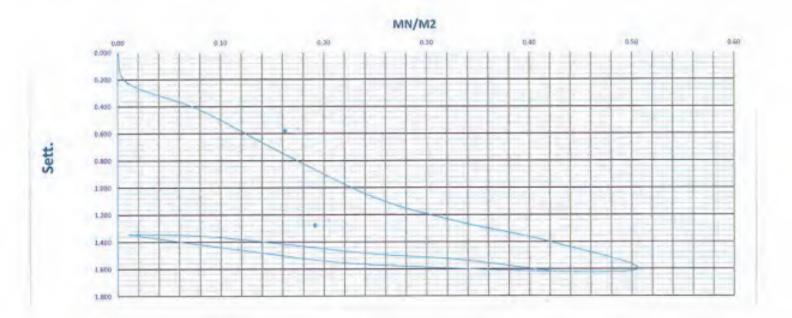
Diameter = 300mm

C CO. I	SHORESEE	-				_			-	
Territor	Line	Load	Street	0001	Dist.1	mu3	Sett	580, 2	Sett -3	VAYA- Self.
Stage No.	Bire	KN	MNINE	Bress	ms	am	em	pro	imm	iam.
0,000	0.0	0.000	0.00	20,00	20.00		0.000	0,000		0.000
1,000	2.1	0.707	0.01	19.80	19.75		0.200	6.250		0.225
2,000	17.1	5,652	0.08	19.60	19.55		0.400	6.450		0.425
0,080	34,2	11.304	0.16	19,25	19.26		0.750	6,746		0.745
4,000	53,3	17:663	0.25	18.50	19.05		1.200	0.950		1.075
5,000	70.5	23.315	0.33	18.55	18.95		1.450	1.050		1,250
6,000	89,8	29.673	0.42	18,40	18.86		1.600	1.200		1,400
7,000	106.8	35.325	0.50	18,05	18.72		1.950	1.280		1.615
8,000	53,4	17.663	0.25	18.10	18,76		1.900	1.240		1.570
9,000	26.7	8,831	0.12	18.18	18.89		1.820	1.110		1:465
9,000	2,1	0.707	0.01	1831	19.00		1.690	1.000		1.345
16,600	2.1	0.707	0.01	1831	19.00		1.690	1.000		1.345
11,000	17.1	5,652	0.08	18.30	18,99		1.700	1.010		1.355
12.000	34.2	11304	0.16	18.22	18.95		1.780	1.050		1,415
13,000	53.3	17.663	0.25	18.16	18,86		1.840	1.140		1.490
14,000	70.5	23.315	0.33	18.14	DRAKE		1.860	1.200		1.530
15.000	89.8	29.673	0.42	18.06	18.71		1.940	1,290		1.615

		- 6	45	.5o	
B.7 ms.	11.35	1.21168	0.50688	8.4	
0.3 m	6.15	0.705	II.SIIIIAA	0.2	
0.7m2	0.35	1.54889	0.18389	0.7	
0.3mj	0.15	1,365	0.19393	0,2	
D (mm)	300				
Eve	KH.78				
Ety	244.71				
Arra (Spin)	0.47805				

Est/Est	2.70	
The second second		

E, = 2.75 - D . Act / As


 E_{α} = deformation modulus = load increment

= sattlement increment D.

15

= diameter of the plate, generally 0.30 m. ti.

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max} .

Lab. Specialist

Name:

Sign:

Lab. Engineer

Sign:

Con

Name:

Sign:

524+540

Staline

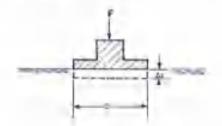
Plate Load Test Results

Company Name

AL MOSTAFA.

Location

524+500 To 524+580


Taste Date 9-09-2023

Layer level P.S.G +0.50

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of clusticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel hearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sheich shows the principle of the test.

= load

D = settlement

p = description old

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.00 m and $D \approx 0.762$ m are used.

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable and (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

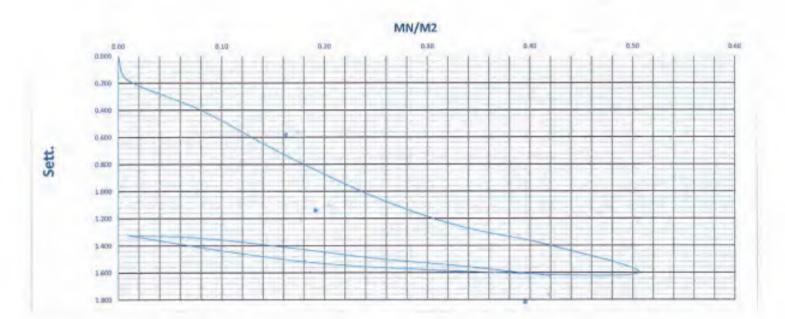
Diameter = 300mm

Linding	Link	Jone	Seesi	finit f-	Blatt.	Dist 3	SHLT	Sec. 2	Seif. A	A1g. 5(0)
Stage No.	fine	8.8	MN/N2	- inter-	-1000	mri.	inst.	ine	·mm-	-imi
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	10.0	19.85	19.79		0.150	0.210		0.180
2,000	17.1	5,651	0.08	19.63	19.57		0.370	0.430		0.494
9,080	34.2	11.304	0.16	19.27	19.28		0.730	0.720		0.725
4:000	53.3	17,663	0.25	18.85	19.06		1,150	0.940		1.045
5.000	70.5	23.315	0.33	18.50	18.99		1.500	1.010		1.253
6.000	89.8	29,673	0.42	18.35	18.85		1.650	1,150		1.400
7.000	106.8	35.325	0.50	18.07	18.70		1.930	1.300		1,615
8,000	53.4	17.663	0.25	18.12	18.76		1.880	1.240		1.560
9.600	26.7	8.831	0.12	18.17	19.90		1.830	1.100		1.465
9,000	2.1	0,707	0.01	1833	19.02		1.670	0.980		1,325
10.000	2.1	0.707	D.01	18.33	19.02		1.670	0.980		1,325
11.000	17.1	5.652	0.08	18:32	18.09		1.6NO	1.010		1.345
12.000	34.2	11.304	0.16	18.25	18.93		1.750	1.070		1.410
13.000	53.3	17.663	0.25	18.17	18.84		1.030	1.160		1,495
14.900	70.5	23.315	0.33	18.10	19.80		1,900	1.200		1.550
15.000	89.8	29,673	11.42	18.05	18.70		1.950	1.300		1.625

		- 6	1/5	M	
0.7 in	0.35	1.21188	0.5275	0.1	
0.3 m	0.15	0,68439	0.5215	10.4	
B.76;	0.35	1.56667	0.20166	6.2	
0.30;	0.15	1365	0.240766		
D (mm)	386				
Kr.	85.31	-			
Pri	223.14				
Arsa (Sque)	UUM65				

		-	
tent	1.61		

F. 2	0.75 - D	da / de	
	_		-


= deformation modulus

Ds = had increment

Ds = sattlement increment

is a diameter of the plate, generally 9:30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

Lab. Specialist

Name:

Sign:

Name :

در بعرشو کی دورو ۱۱

Consultant Engineer

Name:

Sign:

Company Name

AL MOSTAFA

Location

524+500 To 524+580

Station 524+560

Taste Date Layer level 9-09-2023 P.S.G +0.50

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The toud is applied to a circular rigid steel bearing plate by a hydraulic juck in several steps. The settlement under each load step is recorded. The following elected shows the principle of the test.

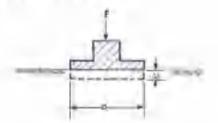


Fig. Kod or numbersoni IT w comments of the piteto.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.50 m and D=0.752 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a unitovable and (< 0.02 mm/minute), After the maximum load is reached the unloading procedure can begin. After that, the plate is reliaded in 5 steps. A loaded truck, an excavator or a relief usually serve as counterweight for the hydraulic jack

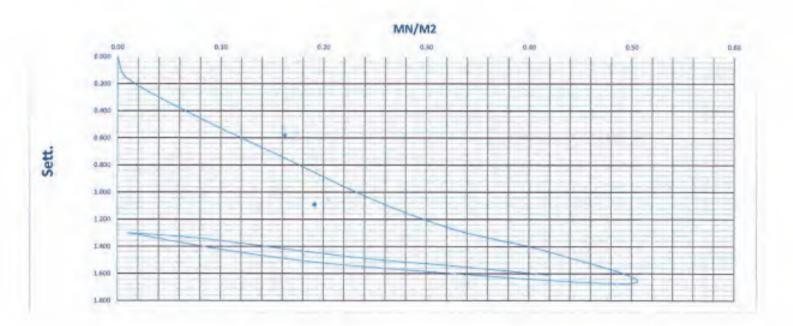
Diameter = 300mm

meter =	30Hmm	L								_
Lording	Rest	Land	Stress	Doll	Dal 2	Dist3	nett 1	5en, 2	Seq. 3	Atra.
Street No.	Bac	629	MWMZ	meri	omi	1044	prim	him	inst	Hesi
0.000	-0,0	0.000	0,00	20.00	20.00		0.000	0.000		0.000
1,000	2,1	0.707	10.0	19.87	19.80		0.130	0.200		0.165
2,000	17.1	5,652	0.08	19,50	19.59		0.500	0.410		0.455
0.080	34.2	11,304	0.16	19.20	19.32		0.800	0.680		0.740
4.000	53.3	17.663	0.25	18.80	19.08		1.200	0.920		1.060
5.000	70.5	23,315	0.33	18.51	18.93		1.490	1.070		1.2100
6.600	89.8	29.673	0.42	18.25	18.87		1.750	1.130		1.440
7,000	106.8	35,325	0.50	18.64	18.62		1.960	1.380		1.670
8,000	53.4	17,663	0.25	18.12	18,77		1.880	1,230		1.555
9,000	26.7	8,831	0.12	18.17	18.93		1,930	1.070		1,450
-9.000	2.1	0.707	0.01	18.35	19.05		1.650	0.950		1.300
10.000	2.1	0.707	0.01	18/35	19.05		1.650	0.950		1,300
11.000	17.1	5,652	0.08	18.33	18,99		1,670	1.010		1,340
12,000	34.1	11.304	0.16	18.22	18.95		1.780	1.050		1.415
13,000	53.3	17.663	0.25	18,18	18.83		1,820	1,170		1,495
14.000	70.5	23,315	0.33	18.13	18.78		1.870	1.220		1.545
15,000	89.H	29.673	15.42	18.08	18.70		1.920	1.300		1,610

	_	-	AS	Ser.
0.7 m	0.35	1.23875	425150	4.1
0.3 h	0.15	0.70438	9,2343.1	200
0.7a	0.35	1.55944	B 170044	
0.34	0.15	1.38	0.17944	Mos.
D (mm)	300		20	and the
Evi	54,21		400	
EVL	254.78			
Aires (Sijim)	9,97965		4	444

#12/EVF	2.98		
---------	------	--	--

 $F = h \cap A \cup Aa / Ai$


A, * cirformation modulus

Ds = load Increment.

Ds = neitforwest increment

diameter of the plate, generally 0,30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist Name:

Sign:

Lab. Engineer

Name:

Sign:

Consultant Engineer Name:

Sign :

Contacto Complete

To

524+585

Station

Plate Load Test Results

524+660

Company Name

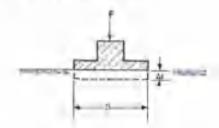
AL MOSTAFA

Location

524+580

Taste Date

9-09-2023


Layer level

P.S.G +0.50

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid place with the diameter D.

The lond is applied to a circular rigid steel bearing plate by a hydraulle jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

F = bresi

As a horningston

er o diameter of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.80 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the sattlement must come to a noticeable end (< 0.02 minulminuts). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

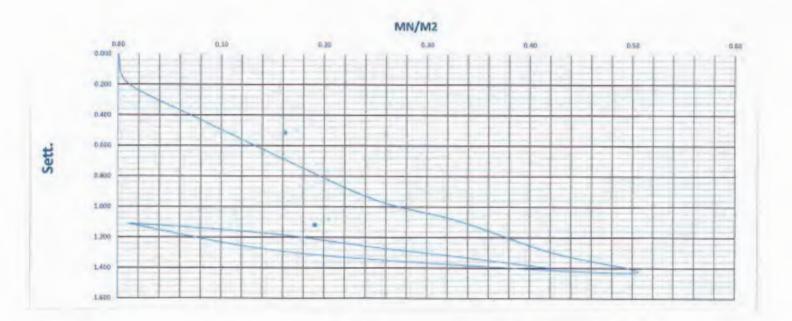
Diameter = 300mm

Lunting	Last	Lost	Simus	Plat f	Min 2	Diai 8	Sm. t	Sett 2	Sett 3	Ave.
Single Steel	Bar	68	MNNIZ	mm	mm.	itim	imi	tion	mn-	not
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2,1	0.707	10,0	19.85	19,76		0:150:	11:240		0.195
2.000	17.1	5,652	0.09	19.62	19.52		0.380	0.486		6,430
0.080	34.2	11,304	0.16	19.34	19.29		0.660	0.718		0.685
4,000	53.3	17.663	0.25	19.00	19,09		1.000	0.910		0.955
5,000	70.5	23,315	0.33	18.89	19.93		1.110	1.070		1.090
6,000	89,8	29,673	0.42	18.55	18.86		1.450	1.140		1.295
7.000	106.8	35,325	0.50	18.44	18.70		1.560	1,300		1.430
8,000	53.4	17.663	0.25	18.49	19.92		1.510	1.180		1:345
9.000	26.7	H3H31	0.12	18.56	18.92		3.440	1.080		1.260
9,000	2.1	0.707	0.01	18.69	18/18		1.310	0.910		E.116
10,000	2.1	0.707	0.01	19.69	19,09		1.310	D.910		Lin
11,000	17.1	5.652	0.05	18.67	19.05		1.330	0.950		1:140
12,000	34.2	11,304	0.16	19.62	19.01		1.380	0.990		1.185
13,000	55.5	17.663	0.25	18.55	19.92		1.450	1.080		1.269
14.000	70.5	23,315	0.33	19.51	38.84		1,490	1.160		1:325
15,000	89.8	29.673	0.42	19.48	18.72		1.520	1.280		1.400

		1	AS	Arr	
11.7 d ₁	0.35	1.17688	W *****	6.2	
0.3 %	0.15	0.65313	0.52375	9.2	
0.7m	0.35	1.34167	N. HEGG	0.2	
11.301	0.15	1.17	0.17166		
D (mm)	300				
Eve	#5,9Z	-			
Et	762.14				
Area (Sq.mi)	9A1963				

		 _
E+2/E/1	3,65	

E, =0.75 | D = Art As


E. = deformation modulus

Ds = load increment

D. = softiament increment

B = diameter of the piate, generally 0.30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

Lab. Specialist

Name:

Sign:

العمل الركزى رقبرداء

Name:

Sign:

Name:

Sign:

Consultant Engineer

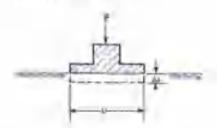
Company Name

AL MOSTAFA

Location

524+580 To: 524+660

Shiller


524+600

Taste Date Layer level 9-09-2023 P.S.G +0.50

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Baussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

Fielded

Art settlement)

it is oftensive of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the selflement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is resched the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

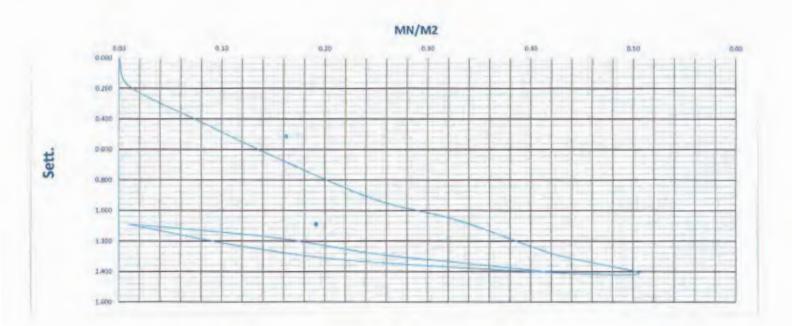
Diameter = 300mm

	Sec. a little	-					_	_		
Lasting	Lost	Lint	Hirasi	Dist1	Dist.	Clini E	NetE 6	541.5	mil.7	Sett.
Singe Six	Bac	KA	MANAE	nun	4000	aum	mm	trail	-	part
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1,000	2.1	0.707	0.01	19,85	19.76		0.156	0,220		0.185
2.000	17.1	5.652	0.09	19,61	19.55		0,390	0.450		0.420
0.080	34.2	11,304	0.16	19,33	19.32		0.670	0.680		0.675
4.000	53.3	17,063	0.25	19.02	19.12		0,980	0.880		0.930
5.000	70.5	23,315	0.33	18,92	18,95		1,080	1.050		1,065
6.000	89.8	29.673	0.42	18.57	16,67		1.430	1.130		1,280
7.000	196.8	35.325	0.50	18,45	28.74		1.550	1.290		1.420
H.000	53.4	17,663	0.25	18.49	18.83		1.510	1.170		1.340
9,000	26.7	9.831	0.12	18,57	18,95		1,430	1.050		1240
9,000	2.1	0.707	0.01	18,70	19.12		1,300	0.880		1.090
10.000	2.1	0.707	0.01	18.70	19.12		1.300	0.880		1.090
T1.000	17.1	5,652	0,08	18.67	19.07		1,330	0.930		1/130
12.000	34.2	11304	0,16	18.63	19.00		1.370	1.000		(.185
13.000	53.1	17.663	0,25	18.50	18.93		1,500	1.070		1.285
34,000	70.5	23,315	0,33	18.47	18.85		1.530	1.150		1340
15,000	6,09	29,673	0.42	18,42	18.77		1.580	1.230		1,465

		- 5	AS	54	
0.7 m ₁ .	0.35	1,1575	0.51437	0.2	
0.3 mj	0.15	0.64313	11.51431		
0.70	0.35	1,35444	name.	6.2	
0.3er	0.15	107	0.18444		
D (mm)	500				
Ety	87.48				
Kts.	245,00				
Serie (Square)	0.07015				

	_	_
Ev2/Ev1	1.75	

E, +075 - D da / de


deformation modulus

 de load increment

D_k = settlement increment

dismeter of the plate, generally 0,30 m.

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

Lab. Specialist

Name:

Sign:

Name 3

and a state of parties

Name:

Sign :

Consultant Engineer

524+628

Smiller

Plate Load Test Results

Company Name

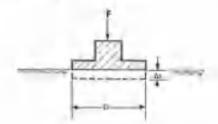
AL MOSTAFA

Location

Taste Date

524+580 524 | 660 To

9-09-2023


Layer level

P.S.G +0.50

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The suitlement under each load step is recorded. The following sketch shows the principle of the test-

If we distribute of the Salari

The diameter B of the plate is generally 0.30 m. For very coarse grained material also plates with clamater B = 0.60 m and B = 0.762 m are

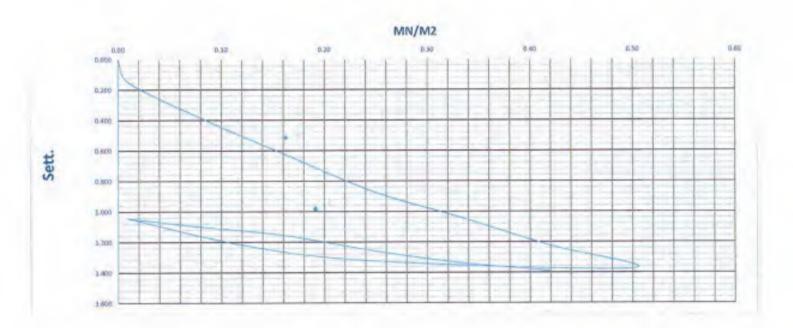
The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plans is releaded in 5 steps. A loaded lruck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

300mm Diameter =

merer -	Samm						_			
Leading	Load	Eurd	Stress	Diel 1	Dial 2	Dial 3	Sett.1	Setti Ž	Sen.2	36%
Strp Sc.	Bor	KN	MN/M2	orie	mini	1000	min	pfts	mer	tritte
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		6.000
0.000	2.1	0.707	0.01	19.90	19.80		0.100	0.200		0.150
2.000	17.1	5,652	0.08	19.65	19.58		0.350	0.420		0.385
0.080	34.2	11,364	0.16	19,38	19.38		0.620	0.620		0.620
4:000	53,3	17.663	0.25	19.07	19.18		0.930	0.820		0.875
5,000	70.5	23.315	0.33	18,94	18.99		1.060	010,1		1,035
6.000	89.8	29,673	0.42	18.65	18.90		1.350	1.100		1,225
7.000	106.8	35325	0.50	18.47	18.78		1.530	1,220		1.375
8,000	53,4	17.663	0.25	18.52	18.83		1.480	1.170		1.325
9,000	26.7	B.831	0.12	18.59	18.96		1.410	1.040		1,225
9,000	2.1	0.707	0.01	18.75	19.16		1,250	0.840		1.045
10.000	2.1	0.707	0.01	18.75	19.16		1.250	-0.940		1.045
11.000	17.1	5.652	0.08	18.70	19.10		1.300	0.900	-	1.100
12.000	34.2	11,304	0.16	18.65	19.04		1.350	0.960		1.155
13,000	53.3	17.663	0.25	18.55	18.93		1.450	1.070		1.260
14,000	70.5	23,315	0.33	18.48	18.85		1.520	1.150		1.335
15,000	89.R	29.673	0.42	18.43	18.79		1.570	1.210		1.390

		- 5	Δ5	Se
0.7 n	8.35	1.00375	henres	0.2
0.3 d ₄	6.15	0.59063	0.50313	1074
11.741	6.35	1.34722	0.19222	0,2
11.361	0.15	1.15501	11.19212	11,2
D (mm)	300			
EV	82,44			
Evi	234/11			
Arm (5 m)	0.07065			

		_	
E32/EVE	2.62		


F = 875 H dn / ds

E, deformation modulus.

05 = load increment

* halflament Increment DI

b " diameter of the plain, generally 0.30 m. For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

Lab. Specialist
Name :

Sign:

Lab. Engineer
Name :
Sign :


Consultant Engineer

Name:

Sign:

524+640

Scaling

Plate Load Test Results

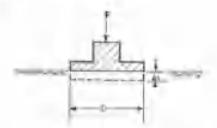
Company Name

AL MOSTAFA

Location

524+580 To 524+660

Taste Date 9-09-2023


Layer level

P.S.G +0.50

EQUIPMENT AND TEST PROCEDURE:-

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are used

The load is applied in 5 load increments of equal size. Under each load step the petitement must come to a noticeable and (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

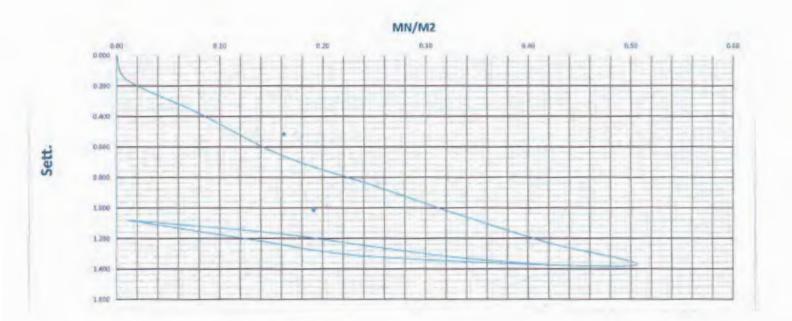
Diameter = 300mm

Louding	test	Laur	Strew	Dist.L	Dmi 2	Dist 5	Sec. (Car a	Radii N	Ave
1-month	Load	Lan	atress	Dist C	Mar 2	Dasty	Nett. 1	Sm.2	Seri S	Sett.
Stage Sri.	Bar	EN	MARKE	- ши-	tim	une .	2000	mm.	mm	19911
0.000	0.0	9.000	0.00	20,00	20.00	1,00	.0,000	0.000		0,000
1.000	2.1	0.707	10,01	19.85	19.83		0,150	0,170		9.160
2.000	17.1	5.65Z	0.08	19.63	19.61		0.370	0.390		0.380
0.080	34.2	11.304	0,16	19.35	19.34		0,650	0.660		0.655
4,000:	53.3	17.663	0,25	19.17	19,12		0.830	9.889		0.655
5.000	70.5	23,315	11,33	18.98	18,94		1.020	1.060		1.040
6.000	R9.R	29.673	0.42	18,68	18,86		1.320	1,140	10	1,230
7.000	106.8	35,325	0.50	18.46	18.78		1.540	1,220		1,380
8.000	53.4	17.663	0.25	18.52	18.84		1,480	1,160		1,320
9.000	267	8.831	0.12	18.61	18.99		1,390	1.010		1.200
9.000	2.1	0.702	0.01	18.72	19,12		1.280	0.880		1.080
10.000	2.1	0.707	11.01	18.72	19.12		1.280	0.880	40	1.080
11.000	17.1	5.652	0.08	18.68	19,68		1.320	0.920		1.120
12.000	34.2	11:384	0.16	18.62	19.04		1.380	0.960		1.170
13.000	53.3	17.663	0.25	18.55	18.94		1.450	1,060		1.255
14.000	70.5	23.315	0.33	18.49	18.86		1.510	1,340		1.325
15,000	89.8	29.673	0.42	18,45	18.80		1.550	1.200		1.375

		-4	35	det	
0.7 mg	9.15	1.09875	Waters		
(13 a)	0.15	0.62063	6.47813	0.3	
6701	0.35	1.33611		4.5	
0.361	0.15	1.10	0.17611	4.2	
D (mm)	300				
Es,	94.02				
Log	255.51				
Arrie Sugar	0.0065				

_		
ENTEN	4.71	

K = 0.24 - D | Acr / A4


Ł, = deformation modulus

1/5 = fined increment

7. - sattlement increment

D + illumoter of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist

Name:

Sign:

Lab. Engineer

Sign:

Consultant Engineer

Name:

Sign:

Seatler

Plate Load Test Results

Company Name

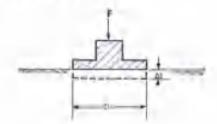
AL MOSTAFA

Location

524+660

8-09-2023

Taste Date Layer level


P.S.G +0.50

To 524+740 524+665

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of clasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

P = total

D = diameter of the plant

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mim/minute), After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

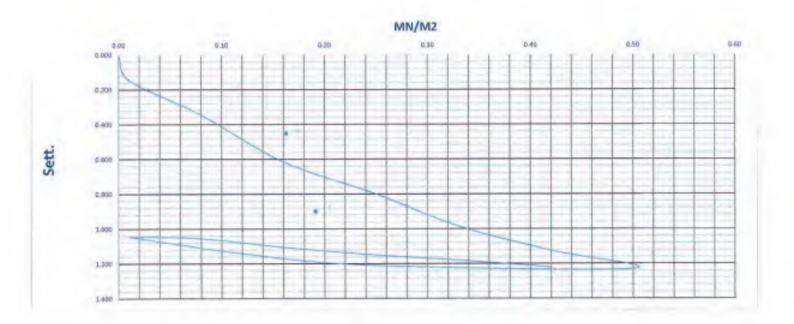
300mm Diameter =

English	Loni	Lead	Stress	Diair	Dist2	Dist.1	5m. 1	5m3	Sem , 1	Sett.
Stage No.	Bar	SN-	MNIME	rems	Witt	w	JHHs	Utto	, mer	, min
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	0.01	19.86	19.85		0.140	0.150		0.14
2.000	17:1	5.652	0.08	19,71	19.60		0.290	0.400		0.34
0,080	34.2	11.304	0.16	19,47	19.30		0.530	0.700		0.61
4.000	53.3	17.663	0.25	19,30	19.10		0.700	0.900		0.80
5,000	70.5	23.315	0.33	19.10	18,93	1	0.900	1.070		0.98
6.000	89.8	29.673	0.42	18,95	19.80		1,650	1.200		1.12
7.000	196.8	35,325	0.50	18.81	18.73		1.190	1.270		1,43
8,000	53.4	17.663	0.25	(8.83-	18,75		1.170	1.250		1.21
9,000	26.7	8.831	0.12	18,90	18.81		1.100	1.190		1.14
9.000	2.1	0.707	0.01	18,98	18,93		1.020	1.070		1.04
10.000	2.1	0.707	0.01	18.98	18.93	1	1.020	1,070		1.04
11.000	17.1	5.652	8.03	18.97	19.92		1,030	1.080		1.05
12.000	34.2	11,304	0.10	18.93	19.80		1.070	1,140		1.10
13.000	53.3	17.663	0.25	18,90	19.80		1.100	1.200		1.15
14.000	70.5	23,3(5	0.33	18.88	18.76		1.120	1.240		1.18
15.000	89.8	29,673	0.42	18.84	18,72		1.160	1.280		1.22

		- 4	A5	Air
9.7 ffe	0.35	1.02313	h 75100	44
930)	11,15	0.58125	0,45188	-0.2
0.70;	0.35	L18889	6.12389	0.2
11.367	11.15	1.065	11.12.389	40.2
D (mm)	300			
E.v ₁ .	99,59			
Ev,	363.23			
Arcal Squit	9,47865			

	_	_	
EvZEvI	3.45		

E. - H. E. H. Set Z.Ax


E. deformation modulus.

Dis = load increment

24 = settlement increment

= diameter of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

Lab, Specialist

Name:

Sign:

Lab. Engineer

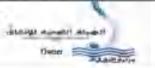
Name:

Sign:

المصس المركزي رثمارا ا

Consultant Engineer

Name:


Sign:

524 740

To

Company Name

AL MOSTAFA

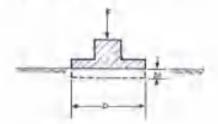
Location

524+660

Taste Date

8-09-2023

Layer level


P.S.G +0.50

Staffini 524+690

EQUIPMENT AND TEST PROCEDURE :-

The basis of the given equation is Boussinesy's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The hard is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

Z=man

is a pettiment

is a dimmular of the plate

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D=0.60 m and D=0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 minimizer). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavetor or a roller usually surve as counterweight for the hydraulic jack.

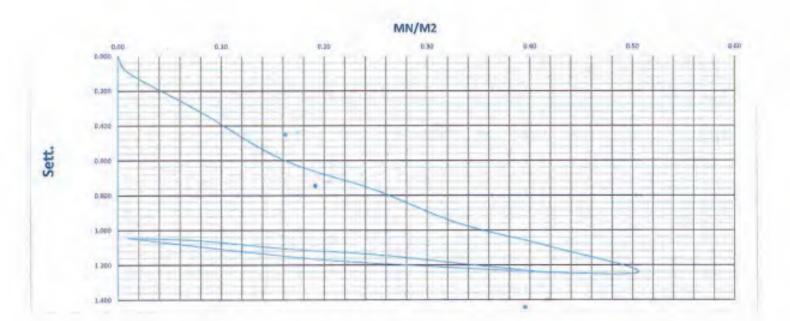
Dinmeter = 300mm

Louding	Link	1-4	Steves	0603	D(a)):	Dista	Said 1	Seil, 2	Self-3	Aria. Serii.
drags No.	Bar	-KN	MR/M2	IIMI	.900	mm:	(m)	1100	prin-	4900
0.000	0.0	0,000	0.00	20.00	20.00		0.000	0.000		0.000
1:000	2.1	0.797	0.01	19.99	(9.92		0.110	0.080		0.095
2.000	47.1	5,652	0.08	19.73	19.63		0.270	0.370		0.320
0.080	34.2	11.304	0.16	19.45	19.36		0.550	0.640		0.595
4.000	53,3	17.663	0.25	19,32	19.14		0.680	0,860		0.770
5.000	70.5	23,315	0.33	19.13	18.95	-	0,870	1.050		0.950
-6.000	89.8	29.673	9.42	18.97	18.84		1.030	1.160		1.095
7,000	106.8	35,325	0.50	18,80	18,70		1.200	1,300		1,250
8.000	53.4	17.663	0.25	18,65	18.77		1.150	1,230		1.190
9,000	26.7	8,831	0.12	18.92	18.83		1.080	1.170		1.125
9.000	2.1	0.707	0.01	18.97	18.94		1.030	1,060		1.045
10.000	2,1	0,707	0.01	18,97	18.94		1.030	1,060		1.045
11.000	17.1	5,652	80.0	18,95	18.93		1.050	1,070		1,000
12,000	34.2	11.304	0.16	18.92	18.87		1,080	1,130		1.105
13.000	53.3	17,663	0.25	18.90	18.82		1,100	1,180		1.140
14,000	70,5	23,315	0.33	18,87	18.75		1.130	1,250		1.190
15.000	89.8	29,673	0.42	18.81	18.70		1.190	1,300		1,245

		- Y	45	An	
0.7 0	0.35	0.95938	W TRACTIC	0.2	
10.3 mg	0.35	0,55063	0.39875	100	
16.702	0.35	1.20222	A 15755	0.2	
11.302	0.15	Lijts	0.12722		
D (mm)	300				
Er,	112,85				
Ev ₂	353,72				
Area (Squri)	P. 17704.5				

Evallet	4.14	

E = 0.71 + D + 40 / As


E. = deformation modulus

Ds = load increment

Dr = sottlement increment

p. = diameter of the plate, generally 0.30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 σ_{max} and 0.7 σ_{max} .

Lab. Specialist

Name:

Sign:

Lab, Engineer
Name:

العمل المركزي رقم (١)

Consultant Engineer

Name:

Sign:

Company Name.

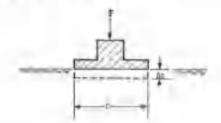
AL MOSTAFA

Location

524+660

524+740

Smiler 524+720


Taste Date Layer level

8-09-2023 P.S.G +0.50

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied in a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

PERM

D = Girmoter ad time plots

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 last increments of equal size. Under each load step the settlement must come to a noticeable and (< 0.02 mm/minute). After the maximum lead is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack

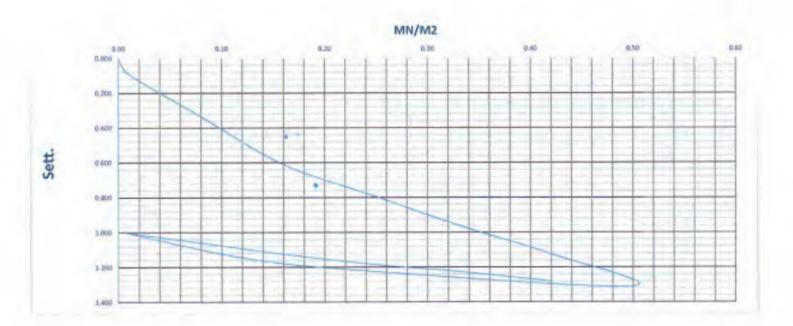
Diameter = 300mm

CIVE -	-2000111111									_
Landing	Enel	Loud	Sires	0mi.1	Dist 2	Dist	Sent. [Sen 2	Sent . 21	Avg.
Stoge No.	Har	KN	MNRAIZ	mm	11110	/Itel		11111	Jime .	11111
0.000	0.0	0.000	0.00	20.00	20.00		0.000	0.000		0.000
1.000	2.1	0.707	10.0	19.92	19.90		0.080-	0,100		0.090
2.000	17.1	5.652	80.0	19.74	10.59		0.260	0.410		0.335
-0.086	34.2	11,304	0.16	19.50	19.28		0.500	0.720		0.610
4.000	53.3	17.663	0.25	19,25	19.16		0.750	0.840		0.795
5.000	70.5	23,315	0.33	19.17	[8.9]		0.830	1.090		0.960
6.000	89.8	29.673	0.42	18.94	18.81		1.060.	1.190	J.	1,125
7,000	106.8	35.325	0.50	19.70	18.68		1,300	1.320		1310
9,000	53.4	17.663	0.25	18.80	18.75		1,200	1.250		1.225
9.000	26.7	8.831	0.12	18,90	18,80		1.100	1.700		1.150
9.000	2.1	0.707	0.01	19,05	18.94		0.950	1.060		1.005
10.000	2,1	0.707	0.01	19,05	18.94		0,950	1.060		1.005
[1.000	17.1	5,652	80.0	18,98	18.90		1,020	1.100		1.060
12.000	34,2	11.304	0.16	18,90	18,85		1,100	1.150		1,125
13,000	53.3	17.663	0.25	18,81	18.82		1.190	1.180		1.185
14.000	70.5	23.315	0.33	18,82	18.73		1.180	1,270		1,225
15,000	H9.8	29,673	0.42	18:74	18.70		1.260	1.300		1.280

		. 7	A5	Air	
0.7 m	0.35	0.96313	0.3072		
0.3 (B.15	0.57583	0.3875	6.2	
D,7m ₃	0.35	1.23722	0.12222	9.2	
11,367	0.15	1.11501	0.12222	10.2	
D (mm)	300	-			
Evi	416,13				
5%	368,28	1			
Area (Sq.m)	0.67065				

Examel:	331	

E, -678 - B - Ac / As


 E_{r} * difformation modulus

05 = load increment

Di = settlement increment

= diamning of the plate, generally 0.30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lah. Specialist

Name:

Sign:

Lab. Engineer Sign:

Consultant Engineer

Name:

Sign: Abbols

524+760

Matient

Plate Load Test Results

To

524+820

Company Name

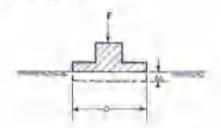
AL MOSTAFA

Location

524+740

Taste Date

7-09-2023


Layer level

P.S.G +0.50

EQUIPMENT AND TEST PROCEDURE: -

The basis of the given equation is Boussinesq's theory of the relationship between the undulus of elasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is recorded. The following shetch shows the principle of the tost.

r-had

to a mediament

it is diameter of the place shall

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reloaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

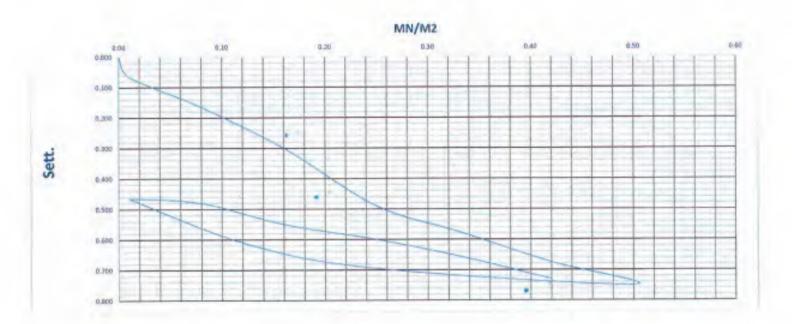
Diameter -	300mm
Diameter -	2000000

Losting	1-0	Lind	Street	haif	Duit	Dist	Sett. 1"	me, 2	Sett 12	Avg.
Surger Story	Bar	305	SWINE	inn	fori	-mu	mm	turn.	· mm	*****
0,000	0,0	0.000	0.00	20.00	20.00		0.000	0.000		0,000
1.000	2.1	0.707	0.01	19.92	19.95		0.060	0,050		0.065
2,000	17.1	5.652	6.08	19.80	19.87		0.200	0.130		0.165
0.080	34.2	11.304	8.16	19.60	19,80		0.400	0.200		0.300
4.000	53.3	17.663	0.25	19.32	19.70		0.690	0.300		0,490
5,000	70.5	23.315	0.33	19.20	19.65		0.000	0.350		0.575
6,000	89.8	29.673	6.42	19.05	19.60		0.950	0.400		0.675
7,000	106.8	35.325	0.50	18.91	19,59		1.090	0.410		0.750
8,000	53,4	17,003	0.29	18.96	14.65		1.040	0,350		0.695
9.000	26.7.	8.831	0.12	19.07	19.70		0.930	0.300		0.615
9.000	2.1	0.707	10.0	19.28	19.79		0.720	0,210		0.463
10.000	2.1	B.707	0.01	19.28	19,79		0.720	0,210		0.465
11.000	17.1	5.651	0.08	19.26	19.78		0.740	0,220		0.489
12.000	34.2	11.304	0.16	19.15	19.75		0.850	0,250		0.550
13,000	53.3	17.663	0.25	19.10	19.70		0.900	0,300		0.60
14.000	70.5	23.315	0.33	19.04	19.65		0.960	0,350		0,655
15,000	89.8	29.673	0.42	18.96	19.5%		1.040	0,420		0.730

		-1-	48	30	
11.7 o ₁	0.35	0.60937	0.32625	0.5	
0.3 m	0.15	0.28312	11,32025	0.2	
0.7e2	0.35	0.67167	# 18679	9.2	
0.302	0.15	0.495	0.17967		
D (mm)	300				
Eyy	137.93				
Eye	151.72				
Area (Signal)	Dartous.				

icent	188	
Arrest	1-0	

M. -0.71 - D - Ad / D+


F. = deformation modelus

Ds = load increment

Ds. = settlement increment

D = diameter of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

Lab. Specialist

Name:

Sign:

Name :

.....

To the second

Sign:

Name :

Consultant Engineer

Sign :

Stathen

524+730

Plate Load Test Results

Tα

524+820

Company Name

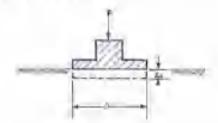
AL MOSTAFA

Location

524+740

Taste Date:

7-09-2023


Layer level

P.S.G +0.50

EQUIPMENT AND TEST PROCEDURE :-

The basis of the given equation is Boussinesq's theory of the relationship between the modulus of elasticity and the settlement of a circular rigid place with the diameter D.

The land is applied to a effection rigid steel bearing plate by a hydraulic jack or several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

J = Hadt

ALT BENTHMENT

n - drametar at the plant.

The diameter p of the plate is generally 0.30 m. For very coarse grained material also plates with diameter p = 0.60 m and p = 0.762 m are used

The tood is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unlineding procedure can begin. After that, the plate is refeated in 5 steps. A loaded truck, an exception or a roller usually serve as counterweight for the hydraulic jack.

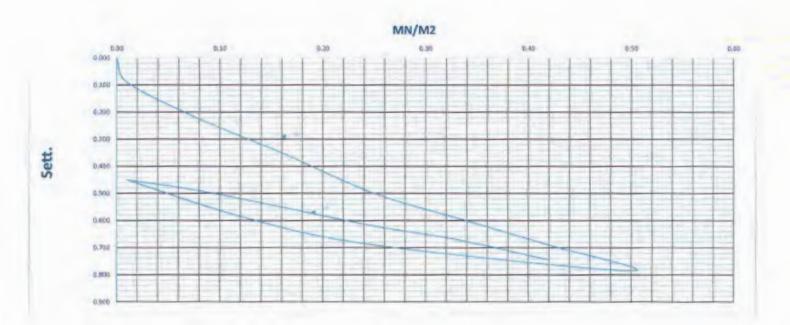
Diameter = 300mm

Landing	Lant.	Lint	Stirre	Blatt	Chil Z	Bisty	Self. U	Sat-7	Seri 3	Aig.
Stepl W.	Bor	ES	MS/M2	ind	nue	.000	9000	inin	-mm	tun
0.000	0.0	0.000	9.00	20.00	20.00		0.000	0.000		0,000
1.000	2.1	0.707	10.0	19.90	19.92		0.100	0.080		0,090
2.000	17.1	5.652	0.09	19.70	19.85		0,360	0.150		0,225
0.080	34.2	11.304	0.16	19.52	19.78		0.480	0.220		0.350
4.000	53.3	17.663	0.25	19,32	19.65		0.680	0.320		0.500
5.000	70.5	23.315	0.33	19.16	19.64		0.820	0.360		0.590
6.000	89.8	29.673	0.42	19,02	19,60		0.980	0.400		0.690
7.000	106.8	35.325	0.50	18.88	19,55		1.120	0.450		0.785
8.000	53.4	17.663	0.25	15,97	19.65		1,030	0.350		0.690
9,000	26.7.	N.831	0.12	19.10	19.72		0,960	0.280		0.590
9:000	2.1	0.707	0.01	19,30	19.80		9,789	0.200		0.450
10.000	2.1	0.707	0.01	19.30	19,80		0.700	0,200		0.450
11.000	17.1	5.652	0.08	19.25	19.77		0.750	0.230		0.490
12,000	34.2	11,304	0.16	19.16	19.74		0.840	0.260		0.550
13.000	53.3	17,663	0.25	19.06	14.70		0.940	0.300		0.620
14:000	70.5	23,315	0.33	19.00	19,66	-	1.000	0.340		0.670
15,000	89.8	29,673	0.42	18.92	19,59	-	1.088	0.416		0.745

		-	45	Arr	
0.7 σ ₁	0.35	11.60687	A sees	44	
0.3 dy	8/15	0.33438	0.2725	0.2	
0.7az	0.35	0.08647	0.15155	11,2	
0.3e ₂	0.15	11.53	0,15666		
D (mm)	300				
Bigg	165,14				
Err	287,24				
Ann (Sq.m)	6.07945				

П

R. -0.25 . D . Act / As


II. * deformation modulus

Ds = toad increment

(7) = settlement increment

p - diameter of the plate, generally 0.30 m

For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist

Name:

Sign:

Name:

Sign:

Name:

Consultant Engineer

Sign: Abdeful

Plate Load Test Results

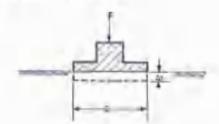
Company Name

AL MOSTAFA

Location

524+740 To 524+820

Station


5241800

Taste Date Laver level 7-09-2023 P.S.G +0.50

EQUIPMENT AND TEST PROCEDURE :-

The basis of the given equation is Roussinesq's theory of the relationship between the modulus of clasticity and the settlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a hydraulic jack in several steps. The settlement under each load step is revorded. The following sketch shows the principle of the test.

Panie.

de v pattiement

It williamnian of the plane

The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are used

The load is applied in 5 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unloading procedure can begin. After that, the plate is reliaded in 5 steps. A loaded truck, an excavator or a roller usually serve as counterweight for the hydraulic jack.

Diameter = 300mm

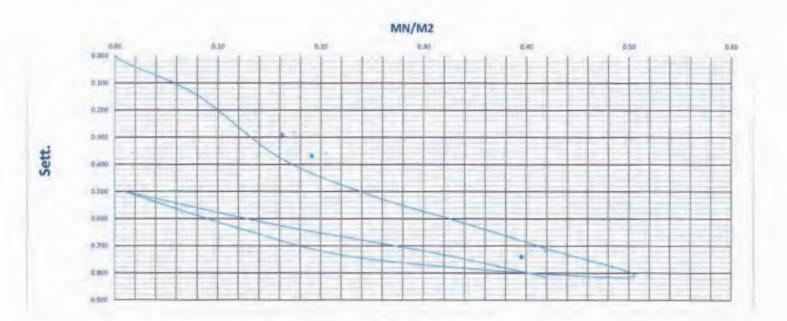
icier -	200000	1		_				_		
loading	Line	Lmt	Street	0(4)	19662	Disks	Sett T	500.7	Sett -N	Ayn
Storge No.	Dec	RN	MNMT	mer	ime .	jum	1000	inun	Heat	.000
0.000	0.0	0.000	0.00	20,00	20.00		0.660	0,000		0,000
1,000	2,1	0.707	0.01	19.97	19.98		0.030	0.020		0.025
2.000	17.1	5.652	0.08	19,83	19.88		0.170	0.120		0.145
0.080	34.2	11.304	0.16	19,50	19.75		0.500	0.250		0.375
4,000	53.3	17,663	0.25	19,30	19.67		0.700	0.330		0.515
5,000	70.5	23.315	0.33	19.15	19,64		0.850	0.360		0,605
6.000	89.8	29.673	6,42	19.00	19.58		1.000	0.420		0.710
7.000	106.8	35.325	0,50	18.85	19.52		1.)50	0.480	-	0.815
9.000	53.A	17,663	0,25	16.90	19.60		1.100	0.400		0.750
9.000	26.7	8.831	0.12	19.00	19.72		1.000	0.280		0.640
9.000	2.1	0.707	0.01	19.20	19.80		0.800	0.200		0.500
10,000	2.1	0.707	0.01	19.20	19,80		0.800	0.200		0.500
71.000	17.1	5.052	80.0	19.18	19.70		0.820	0.300		0.560
12.000	34.2	11.304	11.16	19.10	19.65		0.960	0.350		11.625
13,000	53.3	17.663	0.25	19,06	19.57		0,940	0.430		0.685
14.000	70.5	23.315	0.33	39.00	19.52		1,000	0.480		0.746
15.000	89.8	29.673	0.42	18.92	19.45		1.080	0.550		0.815

		5	AS	Aer .
0.7 n ₁	6.35	0,61813	n 42500	
n.inc	0.15	0.34625	0.27188	0,2
0.761	0.35	0.75667	0.13666	0.2
0,302	11.15	9.62001	.Q.13000	0.2
Ti (mm)	300			-
Fre	165.52			
Fig	329,28			
Area (.5q.m)	8.07065			

		_
ESTATES	Far.	

E #75 D for /_1)

E = deformation modulus


DS = load increment

Dr. = settlement increment

n = diameter of the plate, generally 0.30 m

For this calculation $\Delta\sigma$ and Δs are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$

Lab. Specialist

Name:

Sign:

العسل المريكزي والمرزال

Consultant Engineer

Name:

Sign :

Plate Load Test Results

Company Name

AL MOSTAFA

Location

524+740

Tuste Date

524+820 To 7-09-2023

Station

524+915


Layer level

P.S.G =0.50

EQUIPMENT AND TEST PROCEDURE : -

The basis of the given equation is floursinesq's theory of the relationship between the modulus of elasticity and the sertlement of a circular rigid plate with the diameter D.

The load is applied to a circular rigid steel bearing plate by a bydraulic jack in several steps. The settlement under each load step is recorded. The following sketch shows the principle of the test.

Friend

II - marrower of the plant

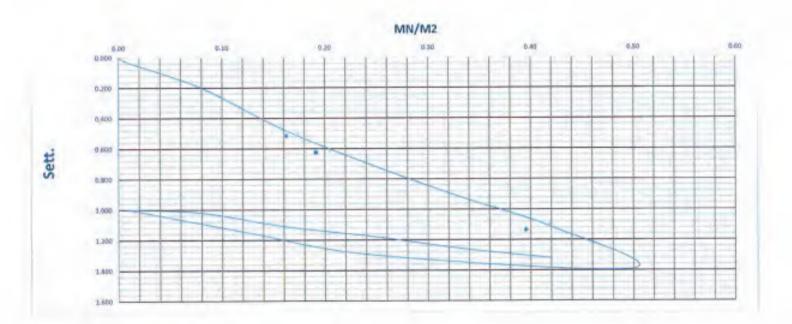
The diameter D of the plate is generally 0.30 m. For very coarse grained material also plates with diameter D = 0.60 m and D = 0.762 m are

The load is applied in 6 load increments of equal size. Under each load step the settlement must come to a noticeable end (< 0.02 mm/minute). After the maximum load is reached the unleading procedure can begin. After that, the plate is reloaded in 5 steps. A leaded truck, an excavator or a roller usually serve as counterweight for the hydraulic lack.

300 mm Diameter =

eter =	300 ma	_						_		_
Luning	trad	Loui	Strein	Dist7	Dist.2	Tital 3	Sen. 1	Smrt	Sm. 5	Avg.
Street No.	1lar-	us	MN/M2	mes	mn	dres	sam	mitti	Her	mm
0,000	0.0	0,000	0.00	20.00	20.00		0.000	0.000		0.000
1.680	2.1	0.707	0.01	19.97	19.96		0.030	0.040		11.035
2,000	17:1	5.652	0.08	19.80	19,80		0.200	0.200		15.200
0.080	34.2	11.304	0.16	10.50	19.55		0.500	0.450		16.475
4.000	53.3	17.663	0.25	19.25	19,31		0.750	0.690		0.720
5,000	70.5	23.315	0.33	19.05	19.12		0.950	0.880		0.915
6.000	89,R	29,673	0.42	18.84	18.93		1.160	1.070		1.113
7.000	106.8	35.325	0.30	18.62	18.60		1.380	1,400		1.390
8.000	534	17.663	0.25	18.72	18.68		1.280	1.320		1,300
9,000	26.7	8.831	0.12	[8.80	18.90		1.200	1.100		1.150
9,000	2.1	0.707	0.01	18,93	19.67		1.070	0.930		1.000
10,000	2.1	0.707	0.01	18,93	19.07		1.070	0.930		1.000
11.000	17.1	3,652	0.08	18,92	19.04		0R0.U	0.960		1.020
12,000	34.2	11.304	0.16	18.88	18.90		1.120	1.100		1.110
13,000	53.3	17.663	0.25	18.82	18.82		1.180	1.180		1,180
14.000	70.5	23.315	0.33	18.75	18,74		1.250	1,260		1.255
15,000	89.8	29.673	0.42	18.70	18.66		1.300	1.340		1.320

	-		A5	50
B.7-m	6.35	0.87038	0.43375	-0.4
0.3 m	6.15	0.44063	11/43373	0.2
0.741	0.35	1.20944	0.22944	0.2
0.361	9.15	1.04	11.22344	9.2
O (min)	.300-			
BV,	103.25			
Ev,	196.12			
Area (Sq.m)	0.050045			


\$12/Ev1	1.10	

	E_{i}	E ES	ħ	30/30
E_1		dufam	natio	ri modulus

load increment

settinment Increment Di

D sidemater of the plate, generally 0.30 m. For this calculation $d\sigma$ and ds are usually taken from the load span between 0.3 $\sigma_{\rm max}$ and 0.7 $\sigma_{\rm max}$.

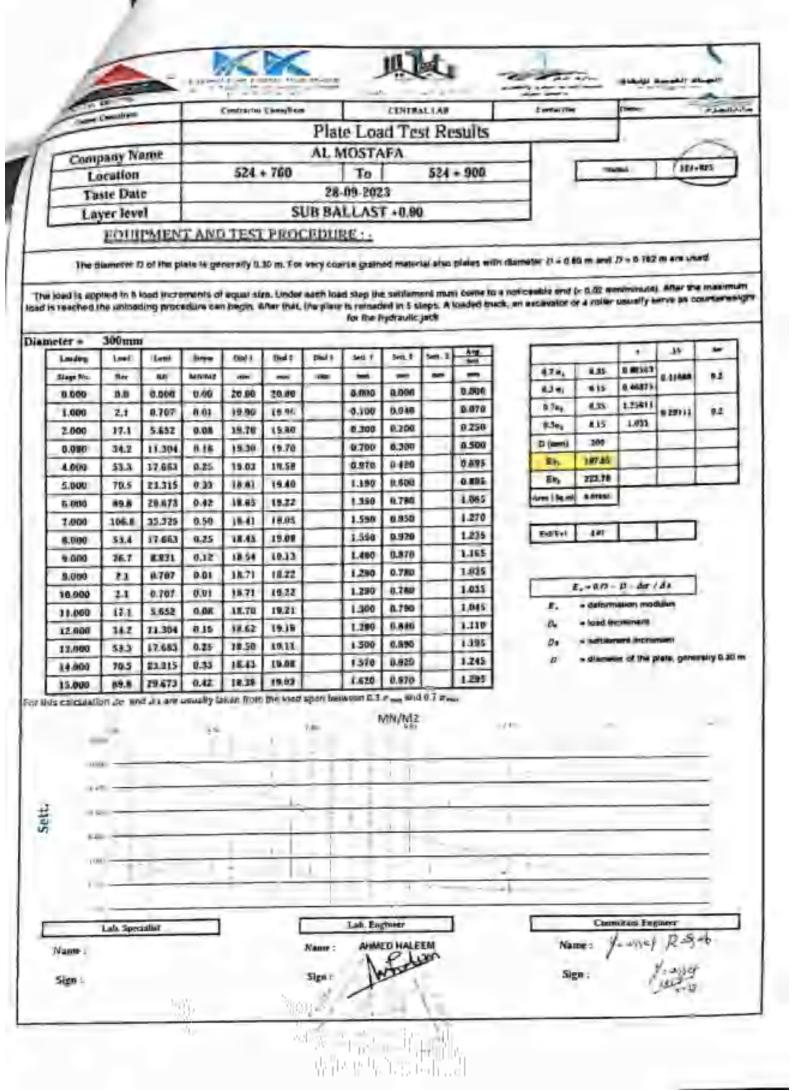
Lab. Specialist
Name :

Sign:

Lab. Engineer
Name:
Sign:

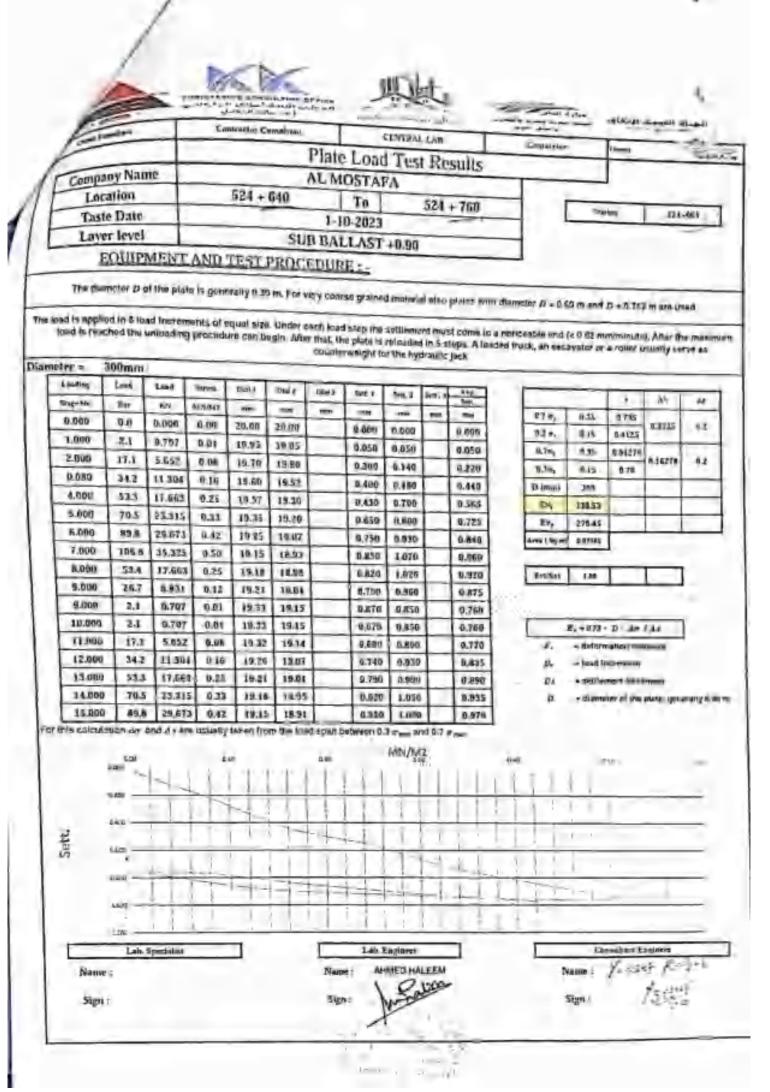
Mary C

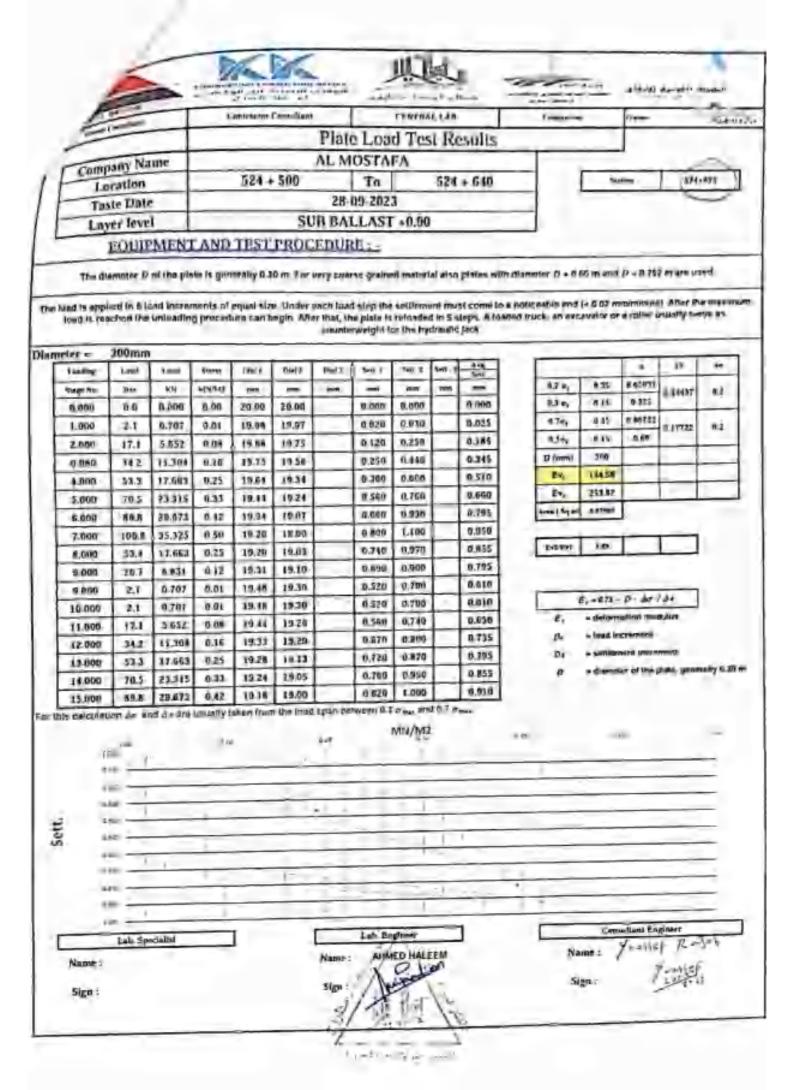
Name:

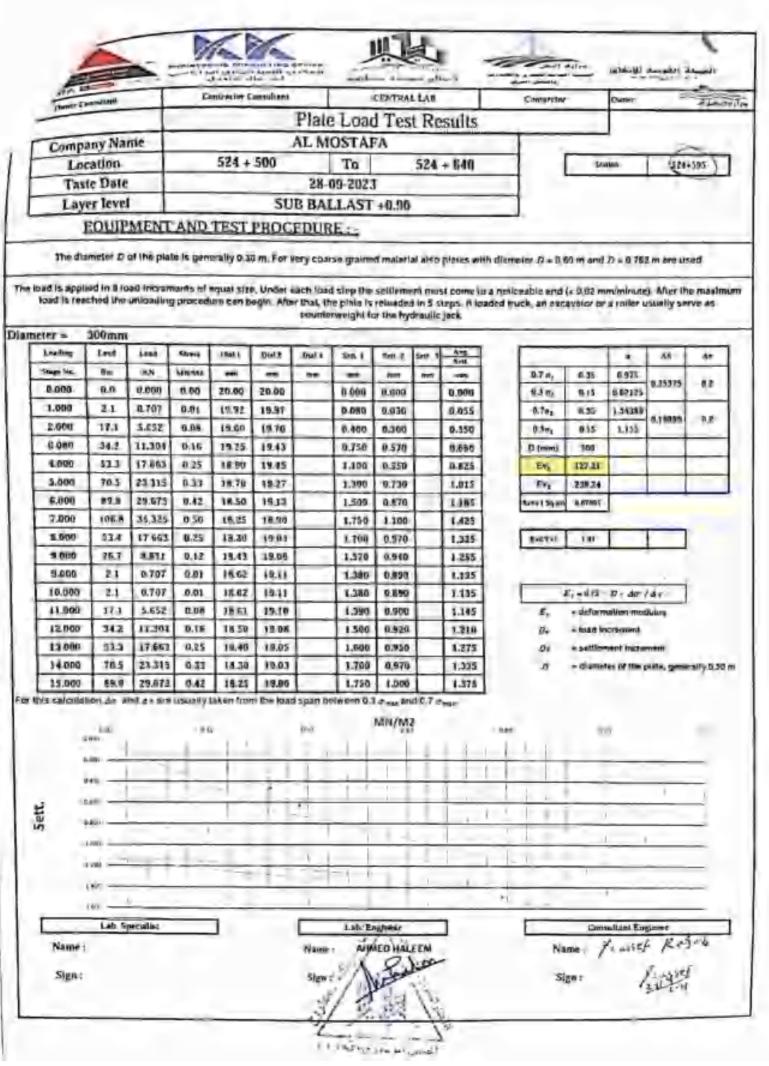

Consultant Engineer

Sign :

1		× :	59				1		U	7	-	- I	guage a	-A0 34	-
Den Ca	culture:		Cu	nement Co	mediane			CENTRAL	LAB		Desarries		Dwee	-	-
-						Plate	Load	Tes	Re	sulfs		_	-	_	-
Compa	ny Nan	ne		_		_	OSTA	_	1100	PHILES.	1				
_	ation			524 +			To		524 -	000	1 1	ties		F 141	-
Tas	te Date			-		28.1	03-2023		464	500	- 1	504		151-	895
Lav	er level				SU	_	LLAST		_	_	-				
_	EDUIE	MENT	AND	TEST				40.00	_						
		_	_			_	_	_							
The di	arrector D	of line prai	ui is gen	erally 0.30	m Fpry	ery con	na graine	d materi	el piso i	photos with d	ameter D = 0.50	m and I	0 = 0.762	m are us	rd
		ng proces	nems of Surt can	nquel sus begin Af	i, Under e ler Hurt, i	nach ion ha plain	d step the is reload: for the h	AND ALL PRES	mps. A i	committee of contract of the c	oficerble and i	0.02 mr	nimmutul usually s	After the	maxim
Set =	300mm	in I	-	- T	-	2000		_							
Page 10	The same	The state of	MARIE	State	Dest	Distr	541.1	See 2	Sec. 3	Avg. Sen.			4	AT	100
000.0	0,0	6.000	0.00	26.00	-	-	(MA)	mrs	-	-	A5 0;	0.35	3.43625	2.55667	èz
1.000	21	0.707	0.01	10.95	19.96	_	0.000	0.000		0.000	12.01	6.15	0.47938		
1,000	17.1	5.632	0.06	19.80	19.60	_	0.000	0.405	-	n.300	0.7e,	0.15	1.025	0.173	9.2
0.050	34.2	11.304	0.16	19.57	13:45	_	0.410	0.600	-	0.505	D (mm)	300	4.023		
6.000	513	17.663	0.25	19.40	15.20		0,600	6,800		0.700	En.	120.00			
5 Days	70.5	23315	0.31	19.50	10.92		0.700	1.060		0.850	Ev.	257.14			
6.000	47.4	29,675	0.42	19.10	16.80		0.510	1.200		1.020	Ame (No.m)	о отрем			
7.000	TOLK	15.121	0.50	49.00	18.54	. 1	1.000	1.600		1.230					
6,000	574	17.562	0.25	39.02	78.35		0.980	1.450		1.215	Del/del	2.04		-	
8.000	26.7	##31	6.12	14 00	160		0.920	1.390		1.155					,
9.000	2.3	0.707	0.01	19.38	1830		9,820	j.100		1.005					
10,000	2.1	0.707	0.01	76.18	14.81	-	0.410	7.455	-	1.005		F. + \$15	D- de	144	
11.000	_	5451	6.00	19:37	78.80	-	0.810	-	-	1,011	4.		nation mu	(LA)	
12.000	-	17.563	-	19:10	14.56	-	0.900		-	1.065	0.		mary trees		
14.000	_	-	-	-	-	-	0.070	_	-	1,500	Da D			plate, gon	-
15 000	-		-	_	-	1	g jegg	-	-	1.235		-	in in mil	Link Sec	and a
n intel	_	4,00	Linus	-		A bejour fo	Address of		_						
								MN/M	1						
	-											- 7	7		
	-					_	_	_	_		-	-	_		_
	_		-					_		- 4. "	الأملية		. 7		- 0
4	_					1						- 1			
201															
															-
	-					_				_		_	_	_	-
	-		_			-	_	_	-	-			_	-	_
	-		_				-		-	_			_		_
	Lab	iperlaito					Lab	Ligher				Cu	multiert E	ingher.	
Name				2		Num		MED HA	LEEM		N	ame:	from	FRO	300
Sign						Sign	1	who	1 Con			las -		1	5
-440						-Aigh		1			2	ilgn:		lesil	9

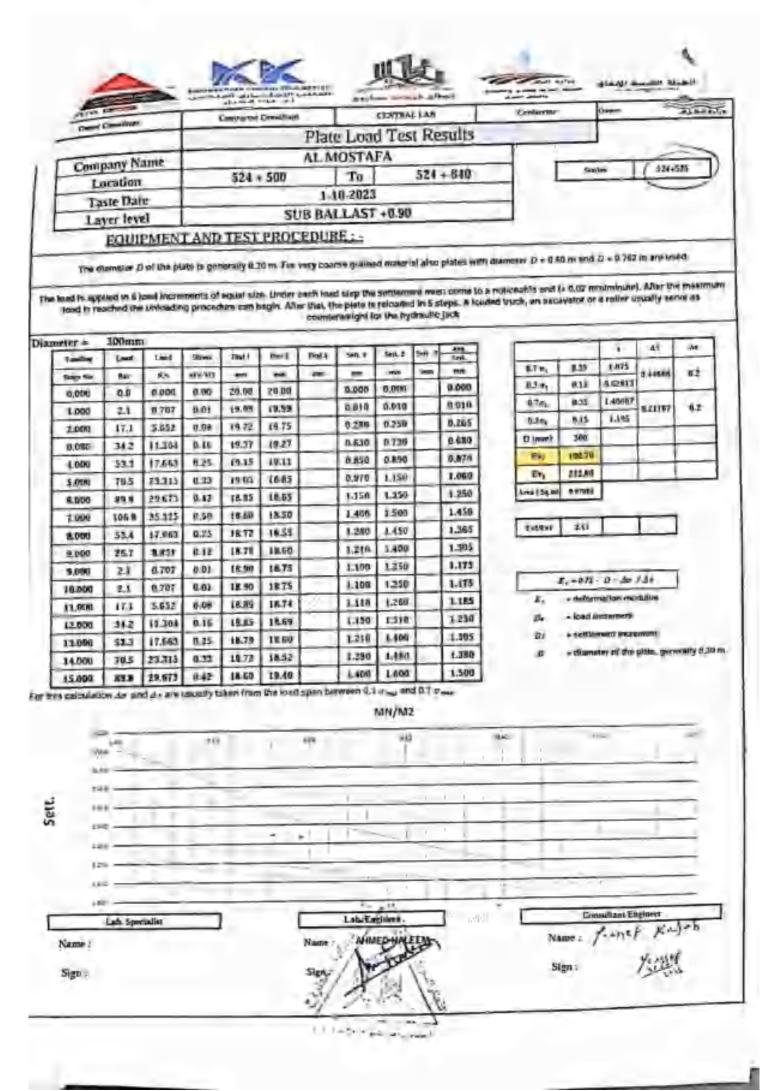

Charles C				Companie	-			FINTE		1	timelie	_	_	_	-
	and he			20011-04			e Loa	1.5		esults	Lampyin	_	Diam.	_	21
Comn	any Na	ime	_		_		IOSTA		H. IV	20113	-	_	1		
	cation			524	760		To	-	524	+ 900		-	ries.	1 620	-865
Tas	te Date					1-	10-2022	1	94.3	. 000		_	-	-	_
	er leve	_			SU	_	LLAST		-		-				
_	_	MENT	CANO	TEST				10.00							
			_	_	-	_		ed erwiari	a disa	nutei auto	Samuel D = 0.	bos m 04	0-076	T ma domina	-
red is appli load it rea	ied in § is ched the	oed incre unloadin	ments of	equal six	n Under	sech loan	d attentio	scillen	end enu	si come to 4	noticeable and ed truck, an exc				
	300mm				-				_						
trating.	1-4	1-0	formi	their .	test.	There	en i	See E.	5-0 -1	Sec.				M	- Ar
6.00c	0.0	6.000	0.00	-	-	-	-	-	-	-	87 m;	0.35	B 64582	934675	0.2
1.000	21	0.707	5.01	20.06 16.66	18.97	-	0.000	0,000	-	0.000	67.07	0.15	0.286an	-	_
2.000	17.1	5 852	0.00	19.78	19.88	-	0.040	n.com		0.015	A.Tay	6.55	6.57279	9.16777	0.2
0.080	34.2	11,304	0.16	10.39	19.78		0.210	0.120	-	0.170	n.in,	0.15	2.605		_
4.000	31.1	17 483	0.25	15.40	19.67		0.410 0.410	0.22p		0.315	O (map)	200			_
5.000	783	22.219	6.21	19.21	18.5m	-	0.770	0.500		0.635	Eva	119-01			_
£.000	10.0	29.675	0.42	10.12	19.84		0.850	nsan		0.728	EV.	121711			_
7.600	INCA	85.525	6.56	10.02	19.27	-	0.840	0 630		0.728	Area Square	ASTRAL	1		
N.000	55.4	Pt.kea	6.25	19.00	18.61		6,840	0.590		0.765	EVERY	7.00			1
6.000	26.7	4.621	9017	19.14	bran.	-	6,860	0.520		6 690	246271	7.00	_		
\$ 600	1.1	0.707	0.01	19.54	10.01		0.640	n.390	-	0.525					
10.000	2.)	9.757	0 81	1934	15.61		0.500	0.350		0.525	1	F. + 1175 -	0 - de /	41	
1.(.040	17.1	5450	6.0e	19.27	15.55		9.886	0.430		0.565	1.	- deliant			
12.800	31.2	11,200	634	1621	16.52	100	0.750	0.100		0.613	De .	- lead in			
11.900	53.3	17.862	13.4	14.14	\$4.87.		O.Busy	nin		208.0	0.	= Letter		ment	
14.000	10.5	22,515	5.23	18.00	18.61		0.940	0.530		h.705	.11			itaté, gora	raffy 0
13.000	41.4	20 873	4.42	1842	1938		N HAT	0.628		10,000					
	_		-		-	-		es/ses				-			
	Ξ														
	Ξ														
	Lais Spec	ruities			1		Lab Eng	liner				Cons	ultant Eng	inaer.	
Name:						Name:	NHM	D HALE	EDA .		Nac	1.0	+5) e)	Ps	10-6


- 2		_		1	36			115	画		-				,
		-	-	-	-	1	- 5	100	-		al dead and and	2014	markey)	1	-
-	11		-	-11-	Consider	_	1	_	ALLAN		Chairman	,	(representation)	100	10.0
Comm	Controllers	-	-	Commission			to I re	ad Te	si Ri	esults					
			_	_	_		MOST		20 400	Jane			•	1	
	pany N		_		- 760	ALL	To	T	574	+ 900		bi	nie.	/ 824	.845
	ocador		-	254	+760	- 20	-09-207	12	961	1 500				1	
T	aste Da	(e	-		-	_	LLAS	_	0						
1.4	yer lev			-		_	_	1 +0.3	_						
		PHIEN							_		_	_	_	_	_
Tria.		n of the o	are is ge	nerally 0	iom, For	very co	erse grain	mater Com	ial átsit	plates with	damein D = 0.5	time m (s)	N = 0.793	m am is	et
		_	_		_	_	id step th		ent mo	7.0	nolicoable end , an extagalor c		and the life	A America	d mad
ter =	300min									-		_	L	45	Àrr
Limite	Load	Lord	line	bert	Disk	DMI	Sitt. T	Sec. I	Sell. 1	N. A.	414	035	in	-	
Sangir No.	Ital	909	AUMAS	ann	inet.	mm	intr	- OF	win.	a ban	0.7 4,	0.15	8.05	17.25	10.2
0.000	0.0	0.000	0.00	20.00	20.00	-	0.000	U 000		0.000	8.76	4.75	1.22331		0.5
1.000	7.1	0.707	0.8t	19.97	18.93	_	6.030	5.076	-	0.476	Edn)	0.15	1.055	IF THE REAL	0.0
2.000	17.1	5.652	p.pe	18.53	19.51		0.460	0.490	-	0.675	D (mat)	ana			
0.000	24.2	10111	D.16	19.41	19.24	-	0.590	1.050		0.835	- Bri	STATES.			
4.000	55.2	11.663	0.25	19.76	18.95	-	0.620	1.240	-	0.940	Erp	287,33			
5.000	10.5	23,315	0.31	14.76	18.76		0.740	1.490		1.115	Arms (Square)	9,07083			
6.000	99.8	59.623	D.AZ	19.26	18.57		0.790	1.680		1.235	1				
7.000	106.4	35.325	0.75	19.21	18.37		0.780	1.630	- 11	1.205	tiento	Life	-		
#1000	53.4	17,663	0.12	19.24	18.25		0.760	010.1	1	1.185					
9 000	26.7	0.707	0.01	19:36	18.57		0,640	1.430	1	3.035	-			3. 1	
0.000	2.1	0.707	0.01	19.36	19.53		0.640	1,430		1.035	1	,-an-			
11.000	17.1	5.852	0.09	19.35	18.56		0.250	1.440		3.045		- deforme		Total .	
12,000	34.2	11.304	0.16	19.31	18.52		0.660	1.480		1.670	.00	e land inc		neni	
13,000	52.3	17.663	0.25	16.31	10.45		0.000	1.580		1435	D+			wit, gune	uity D.
14.000	70.5	25.215	0.31	19,28	18.30		0.720	1.700	-	1.210					
15,000	89.5	29.673	0.42	19.21	18.23		0.700	1.750	01+	1.270					
CNUUM	on to pro	E A S HOUSE	-170	ter trem	The found o	DIA SH	F	07/30				_			
	-		-11			T		-0		-		***			-
-															
	-	_											1		
	-	_	_							1					_
-	-	_	_	T	1			- 4			11	1 =		1	
	-	_	_	_	-				1	T		-	1.6	4-1	-
146				_	-		-				11-	1			
						_	-	_	-		1	-			7
-						_		_	_						_
_	Lab. Speci	a Gut	_				Late Eng	Care:				Crinwi	lant Eng	neer C	Ē.
	Las. speci				1	lame :	AHME	HALE	M		Nam	e: 7	met	2.3.	*
ame :						-X	1	25	200		Sign		7	right	
ign :						Sign 3	M	***			Silin		0	EH	
						28	1	11.7							



2		-	-	1		15-9	ا	II.	4	-3		in w	-		-
5114K	en en			antiwette C	_		_	CENTRA	_		Construer	-	Nite:	-	-
-						Plate	Load	d Tes	t Res	sults					
Como	any Na	me					OSTA		4417		1			1	7
_	cation			524 +	760		To		524	900		999	. 1	124-8	90
	te Date				-	28-	09-202	3			7			_	
	er leve	_			SL	B BA	LLAST	+0.90							
	FOUR	PIMEN	TAND	TEST	PROC	EDIJE	E								
The d	ameter D	of the pl	ato is ger	wally D.3	0 m. For	vory con	rse grains	nd makert	el elso	plates with d	lamelor D = 0.50	m and C	- n 767	m are use	d
id is app	læd in 64 ha unload	ead Incre	monte of	equal size login. A	n Under	each loa the plate	d step pro is reined: for the h	nil in 5-si	eps. A	oneded truck.	enticeable end (- an excavator or	0.02 mm e roller i	vonouna) satrality si	After the erve as on	maxima
er =	300mm														_
ambry	Louis	Circl	Time	Dull	Della	(mr)	Bet F	Sett 7	to the	Avg. Sett	-		1.	AS	An ·
age No	Bet	2000	MESH	-	-	200	-	-	-	-	A7 n.	4.35	0.82373	631125	0.2
0.000	0.0	0.000	0.00	20.00	20.00		10.000	a noa.	_	0,000	43 m	0.15	0 A 12.5		-
2.000	17.1	3.657	D.01	19.07	19.83		0.000	0.170		0.)00	0.5 ₉₄	8.15	0.00 0.00	0.18667	0.2
0.000	34.2	11.204	0.16	19.78	19.54		0,100	0.420	-	0.360	Dimen)	im.	9.74		
4.000	55.3	17.663	0.25	19.50	19.10		0.290	0,920	-	0.500	En.	131.87			
5.000	70.5	23.315	0.31	19.40	16.87	-	0.500	1.130	-	0.865	Eva	241.07			
6.000	19.0	19171	0.43	16.27	18.75		0.730	1.230		0.200	Arra (Name	altitle)	-		
7.000	106.0	11.321	9.50	12.12	18.52		D.RHU	1.480		1,160	and the same		,		
9.000	33.4	17.661	0.25	15.10	1854		0,840	1,460		1.150	n-pa-i	100			
E 600	76.7	BAT!	21.0	19.19	(6.64		0.510	1.360	1	0.005			_		
9.000	2.1	10707	9.01	1830	18.80		0.700	1.200		0.050					
009.01	7.1	6.707	0.01	19.59	18.80	-	D.700	1.200		0.950		E, - 1175	D - 40	140	
17.009	17.1	5352	h ne	19.26	19.79	-	0.770	1.210	100	0.005	Pr.	- defor	nation ma	eutute	
12.000	16.2	11.204	0.16	19.28	18.79		D.760	1.300		1.010	D.	i famili	numera.		
13.000	23.3	17.861	0.25	10.22	18.60		6.780	1.400		1.090	D)	+ 4100m	mis inco	ements.	
14.000	78.5	23.315	0.21	18.20	18.50		0.800	1.500		1.450	p.	- dam	ter of the	prers, Dr.	espaily II :
5.000	III.A	29.872		19.12	18.43		0.880	2. 2. 11.	_	1,225					
	_			teren fran		-		Merchi			1				0
														_	_
-	_					× 1					11				
	-	_	-	-	-	_	_		_				_		
	-		_	_				-	-		-	_	_	-	-
	Lish Spe	rialist		1			La6-1	bylaver	=	7		Cu	msultand !	Linghustr	_
Vante :						Nume	: (4)	MEDHA	LEEM			lame :	1.05	- 17	9-1.
Sign :						Sign	1	win	ما والم		1.	Sign 2		Years!	e.F

Steems Co	- ind		- 1	emperative (Committee			-	- 4	-		-	444	-	-
		_					-1	CHYPAN	LLAN	14.5	Caldedan		-	-	7.5
Compa	any Na	uie		_	_	Fran	e Loa	d Tes	Re	esults					Time
Lo	cation			524+	7cn	ALM	OSTA	FA							
Tas	ie Date			act +	1.Pil	_	To		524	+ 900		the	-	fite	701 3
	er leve	_	_	_			0.2023				٦,			150	-
		EOUTE	MEND	r Antre	30	BBA	LLAST	+0.90							
		EOUTP	MES.	BND	TEST	PEOC	EDUR	Ein			7				
The die	eticin. D	of the pla	ite is gen	iorally 0.3	0 m For	VETY COS	tid graves	ed makes	ii aliso	Names hells o	liameter O = D.I		200		71
load is rea	ched the	untolidin	g proces	une can b	egin. Alte	er that, hi	u plate is	refrancisc	ni mie	to a transfer of	rollerable and distant, an eac	9 82 m	d) in order	L After The	d (Newsym
_	300mm					Example	rwinght fo	or libra by	HUUK	jsich .	G KINA, SA SEC	SAMICE. IN	a roller s	Charles and	34.25
Language	Land	Anni	-		_								_	-	_
Sipte	Apr.	KN.	NAME	But i	Out?	19667	Sen. I	Seil	ier t	- A-16			1.1.	44	-
0.000	0.0	0,000	0.00	Min .	-	100	mri.	-	-	100	0.7 da	0.35	a.simi		
1,000	2.1	0.707	9.01	19.87	20.00	_	0.000	0.000		0.996	9.5 mg	9/5	9-451	MARKE	11.2
2,000	17.1	5.652	2.00	19.63	19.72	-	D.130	11.100		0.130	R74y	635	9.66832	a justif	44
0.080	31.2	11.304	0.16	19.4€	19.12	-	0,370	0.234		0.325	534,	6.13	9.62	1144	14
4.000	52.3	17.660	0.25	19.30	19.42	-	0.540	0.430		0.485	33 femani	300			
5.000	70.5	23.515	0.31	19.14	19.25	-	0.700	0.560	-	0.640	Ev.	DNAS			
5.000	69.6	29.673	0.48	19.02	15.14	-	0.860	0.750	-	0.805	P%	767.33			
7.000	106.8	35.325	10.50	18.96	19.61		1.100	0,990	-	1.045	Arrest Squad	Arres	1		
6.000	53.4	17.663	11.25	111.92	19.05		1.080	0.050	-	1.015	Taban.	1.64	-		
9.000	ERT	5.521	0.12	19.00	19.18		1.000	0.820		0.010	Entra	2.46	_		
9,000	2.1	9.707	10.0	19.10	19.30		0.900	0.700		0.900					
10.900	2.1	6,707	0.0	19.10	19.30		0.000	0.700		0.800		F. + 8.75	D - An	rAs .	
11.000	17.1	5,652	0.08	19.09	19:29		0.510	0.710		0.810	6.		lation (no		
12.000	34.2	71.304	91.9	15.05	19.22		0.950	0.780		0.865	D.		Erennet.		
13,000	53.3	17.661	0.25	19.00	19,15		1.000	0.850		6.925	n,		wed loan		
14.000	70.5	23,315	0.33	11.56	19.49		1,046	0.910		0,975	io.	n diame	-	para, gera	rany ou
15.000	33,8	29.675	0.42	18.90	19.03		1,164	0.970		1.035					
calcimi	nri de se	27126	DESCRIPTY D	iken from	Une imad	Spain bie				Page 1					
	4		411			Sec	1	MK/M2			tall				
							э,								
44	-	-	_	-		_	-	_	_						_
-					÷										
															_
4.4	-					_	-	_	_			_	_		_
-					-	-		-		-					
											1				
		-				_		_		-		-		_	-
u		-			1				_						
	Lah Spe	cialist		1			Lab.Es	dinear	-	1		Cimi	ndtan Eo	nmetr.	
Name :						Name :	-4.5	en oli e	EM	•	N.		lo asse	- 40 0	-0
						· ·		2	300		174	un: /	4.00	The se	



State of	medical		_	any sent				-		had a		-	HULL.	August .	-
_				-111111	- Contraction		-	EENTRA	LLAB		Conserve	-	-	_	-
Comm	any Na	ume	_	_	_	Plat	e Loa	d Tes	t Re	sults			-	_	84
_	_	ine	-	-	-	AL M	IOSTA	FA		-		_	1	-	
	cation	-		524 4	500		To	-	524	+ 640	-		_	-	>
	te Date	-	_		77.	153	0-2023		-	- 0.40	-	34	Sire .	524	+571
	er leve				SU	BBA	LLAST	+0.90	_		-				_
	EOUT	PMEN	LAND	TEST	PROC	EDUR	Œ:-	10000	_		_				
The di	ameter D	of the ph	um in gen	mraffy 9.3	d m for	very con	noi graine	el materi	al interes		flammeter D v n.s		-		
ood is rea	schied ffin	Unitoscie	merris of 9 proced	equal siz	Under	BACH FOR	d step the te plate to rweight to	artiime reloades	in 5 i	of come to a	noticeatie and	in 0.02 m availor or	D = 0,78;	After the	end ornes
	Note that					_	-		-	Jensy					
Leefing	les .	led	Street	Xibir I	Time	256.5	Sen a	Sen 7	tari.	Ass					
D DOG	ter	10.00	101112	-	-	100	-	-	-	Bell.	-		40.	45	- 4
1 996	0.0	11.000	0.00	20.00	20.00		0.000	0.006		0.000	130	0.35	4.525	4.21184	0.5
2.000	2.1	11.797	0.01	19.00	19.67		0.246	0.130		0.165	0.7a,	0.15	0.71313	******	
0.060	17.1	3.652	0.60	19.33	19.52		0.570	0.450		0.525	0.30,	9.35	1245	2115	-0.2
4.000	34.2	11,304	B.16	19.21	1931		0.790	0.550		0.740	D (com)	9.65.	343	-	-
5,000	511	17.661	0.25	19.07	19.21		0,910	0.790		0.860	Et.	211.35			_
6,000	70.5 85.8	73.316	0.22	14.90	19.60		1.100	0,920		1.010	Ev.	533.54	-		-
7.000	106.8	29.571	0.42	48.00	18.99		1.130	1.010		1.100	Armi/dam		-		
8.000	51.4	35.325	0.50	18.60	16,10		1.400	1.200	11	1.300	-	-	1		
5.000	26.7	17 663	0.25	16.65	11.03		1,350	1.170		1.200	Everey	Lit			
2,000	2.1	0.707	31.0	16.81	18.59	_	1.090	1-110		3.150			_		1
10.000	2.1	0.701	6.01	18.95	16.97		1.010	1.020		1.040	4				
11.000	17.1	3.652	0.0m	18.81	15.97	-	1.050	1.030		1,040		F. + #15 ·	D- 20	143	
12.000	342	11,304	9.15	16.91	18.54	-	1.090	1.060		1.075	6	withhirm	alise en	nint.	
33.000	53.3	17 663		18.74	18.92	-	1.170	1.080		4.329	D,	a load in	-		
14.000	70.5	23.315	6.33	15.69	18.85	-	1.250	1.120	-	1.196	O:	- selien			
5.000	65.8	25.673	8.42	18.62	19.82		1.380	Liter	-	1.215	Ď.	= Samui	er of tree	alleria, grant	amy (
cecutio	on de an	di- or	Usually II	kan from	the load	span be	thrown D.3	T 200	20.7 .	1.280					
								MN/M2							
	6		14			100		19.65			100	- 64	0		-
14	-		_							1.5					
0.0		5	3-3					.50	11	175	7-21				_
		- 7	5	TI	TI	7.1	11	1.1	7	171	-	_		_	-
				7-1		-	-	-	+		-	_	_		_
**	-	_		+-	-	-	44	-	_						
14					1.00										
				44	4.0				-		7				
9.0				14		-	-	-		51-	1-1			_	_
	-			10.0					-	-			_		_
	Lah. Spe	cialist					Lish Bo	giorni ;				Cons	witam En	giver?	
Name:						Name:	AHM	ED HALE	EEM		No	me:)	1.000	FR.	-7-1
							1 1	~ V	-0-		1,50				

1		e.	100	II all the same	Addition to		-	~	7	3	The section	24	44.40	-	-
JA D		-13		nitractor Co	No. of Street, or other Persons		_	ENTRAL	_		Designation		linur.	- 3	1
partie	-	-	- 0	ultailité Ci		771			-	milio	, panel 1	_		_	_
							Load		, INC	Sinis	-	_		-	-
Compa	my Nar	ne			_	ALM	OSTAI		_		-	-	0.0	(324	91
	ation			524 +	500		To		524	+640	_ 1	-	dia.	1324	1354
	e Date						0-2023				_				
	r level				SU	B BAI	LAST	+0.90			_				
1	DUIP	MENT	AND	TEST	PROC	EDUR	Eir								_
The dia	main D	of the plan	te is gan	maily 0.50	m Fire	my can	sa graine	d convers	e disa	plants with d	Remoter D = 0.8	ten m te	D-978	t en ère la	ted
ed is appui	ed in 8 is ched in a	ad increm	butter of a	igual shor an can bi	Under s rg/m. Alte	TO SHEET AND	t jamp tine ne plate is nevelght to	T STATE OF THE PARTY OF THE PAR		and the second	naticuable and ad truck, tel sisc	o 8 Etg ins armics of	e roller s	L After for	nysk bak
itra -	300mm									hts.		_	1	Ae	
Loring	Lord	Line	Steen	Deliv	MMI.	CREET.	44.1	Sen 2	Sec. 5	East.	Alm	E31	9,595		
Frag No	Ni	-gn-	ATTWATE	Inter	-	Best	party.	any .	100	10.000	130	# 15	a meee	6 29916	4
6,000	0.0	0.000	0.lin	20,00	20.00	_	0.000	0.000	-	0.000	0.7a,	W.15	U 23004		1
1.000	2,3	0.707	0.01	19.95	19.95	-	9,050	0.050		6.145	B.Se.	9.15	D.tes	M 12AAK	u
2,000	17.1	3.857	0.0%	16.86	19.96	-	0.150	0,140	-	0.230	D mm	200			
0.660	31.2	11.384	8.45	10.65	10.60	_	0,350	0.310	-	0.485	lin.	15638			
4.000	53.5	17,503	65.0	10.51	19:52	_	0.490	0.466	-	0.620	Ev.	.234.73			
5,000	70.5	21.015	6.33	19:36	19.40	_	0,640	0.600	-	0.735	Artistam	-			
6,000	99.5	29 672	0.42	19,73	13.20	-	8.770	3.700	-	0.725	and the	-	4		
7.000	196.6	35.325	0.59	19:18	19.11	-	9.900	0.000	-	0.050	THE PERSON	2.17			
B.000	51.1	17 663	0.25	19.15	19.15	_	0.850	B #50	-	0 175					
9.000	26.7	6.831	0.12	18:20	11.25	-	0.880	0.750	-	0.095					
9.000	21	0.707	10.01	19.79	19.34	-	0,710	0.660	-	0.685		E, - 1.75	D · do	41	
10.000	2.1	0.707	10.01	19.29	19.24	_	0.718	0,570	-	0.695	ž,	- deferre	ALIEN INN	interi	
000.11	17.1	3.852	0.08	15/28	18-32	-	9.776	9.720	-	0.745	di-	- titel in	eremed.		
12,000	34.2	11.306	-	19.23	19.28	-	0.120	0.750		0.785	Ds.		ment Proces		
12.000	51,3	17.663	_	19.10	19.25	-	0.650	-	1	0.012	.0	s Come	as of the	-	шилу п.
14.000	70.5	25.515		19.35	-	-	0.300	0.600	+	0.890					
ts ban	89.8	29,872	0.42	19.10	19.12										
	ion de V	nd Av an	Loyeny			+8.		MN/M	1	1-1-1	J.	-	100		1
	150	7							_	Lalat	- 1		_		
	100	1			1	35	-14	40	4						
	101			- 6	-	1			-	1 0					_
	OM:					-	-	-	+	+10					_
			_	_	11.5	-			Æ	7.1.1	-	_		_	-
			-		-1-7	-1	- 1	-1-1		115		_	_	-	-
	am -			- 5-1	11	-			11	1712					
	_		-		-		1.11	200	_	7		Cam	witum Ex	giserit'	b
	Labor	per tallat						aginer.	FFE	-	N	me: /	-unef	K.3.	1
						Name	is Ay	MET HAL	Ti	^				1:00	I.
Name						Sign	18/1	wood	100		5	gn i			
Name															
Name:						2	1/ 1	Bo	-11	8					

	View.	= 1	Terr	-	-
() Frenchas	Committee Committee	- 13	NIPAL LAS	Castorius	-
	P	ate Load	Test Resul	is	
Company Name	A1	MOSTAF			
Location	524 + G10	To	524 + 70	10	Terre Miletin
Taste Date		28-09-2023			
Layer level	SUB I	BALLAST +	0.90		
	AND TEST PROCED	URE:			

ries +	300 mm														
Louising	lind	Lest	Steni	DIME	tieta	mai 3	Sen. I	Seef 3	See . 2	Arg.				2.0	M
Ringe No.	Rar	- 88	669743	-	- ine	med .	leni -	i degr	-	-	97.	0.25	ATTE	1000	
0.000	0.0	0.000	0.00	20.00	20.00		600.0	0.000	100	0,000	450,	18.15	8 12 NT	* 17917	*
1.000	2.1	0.707	10,0	10.95	19.95		0.040	0.050		0.045	0.74	P.25	340	24	
2.000	17.1	3.652	0.08)9.90	19.64		0.100	0.360		0.230	0.5mg	0 (3	973	921	6.2
0.000	34.2	11.394	0.16	19.80	19.32		0.200	0.680		0.440	D (em)	366			
4.000	15.3	17,663	0.25	18.75	18.67		0.250	D.930		0.550	Bry	12544			
5.006	79.5	21.315	0.35	19,70	1.8.80		0.200	1.200		0.750	En.	214.25			
0.000	B2 H	28.623	9.42	19.61	18.50		0.290	1.400		0.895	Acres Singer	n repeat		_	
7,000	106 9	13.775	0.50	19.50	18.41		0.500	1.570		1.005			•		
8 900	33.4	17.663	0.25	19.61	18.5N		0.379	1.420		0.895	troit-i	179			
9.000	26.7	8.833	air	19.68	1971		0.320	1.290		0.803			_	-	
9.000	2.1	0.707	0.01	19.72	18.95		0.290	1.020		0.450					
10.000	2.5	0.707	0.01	19.72	18.08		0.280	1.020		0.650	129	r. + em-	D- Art	44	
11.000	17.1	5.652	0.08	19.69	18.91		0.319	1.070		0,690	1.	+ deliner	The free	Sam.	
12.000	24.2	11.104	0.16	19.64	1841	1.5	0.360	1.190		0.775	Oh.	- least in			
13.000	533	17,663	0.25	19.60	18.73		0.400	1.270		0.835	a.	-	-	-	
14.000	70.5	23,315	0.33	19.57	18.59		0.430	1,410		0.926	D			date, garan	railly (I
15,000	89.4	25.813	0.42	19,55	29.45		0.470	1.559		1.010		3.00		-	
	-		jų			14		V:N/M2			*				-
						77									_
	-				1	1			_	_	_		_	-	-
		_	_		1	-									
				-											
	-				F		-		-	-	1	_			_
-	-	_								-					
															_
- ''	-					-	_	_	_	_					
_	Lalı Spe	cialist			1		Lab Eng	inner				Come	Marel Evy	Louis	_
Name ;						Name :	AHM	DHALE	EM		200	100	and the same	200	4
Sign:							1	Sen	استعفا		Nas	1	-	1.4	j.
						Sign	1.0								

in the	0			*****	-16		-		_	Harri -			are the		الحية
Cleans	Committees	-		Contrariae	Convillan	_		CDITTU	-		Cantilizate		-	-	
	_								st R	esults					-
_	any N					ALN	IOST/	FA		100			,		-
Le	cation			524	+ 640		To		524	+760		Su	-	600	rm
Ta	ste Dat	p.				1.	10-202	1						500	-111
La	yer levi	el			51	JB BA	LLAS	+0.90	1						
	EOUT	PMEN	TAND	TEST							7				
The d						_		nd matter	al also	plates with	diameter D = 0	En m and			-
nt is app and is pu	ma ma	oad incre	ments of	ers and rela	a District	ench (ca		sidilem	era ima	si come in a	nucleoable and ed truck, an end	_	-		
er =	300mm	1							-			_	-	_	_
andley.	Lead	Lend	Time	Phile.	196)2	IDist.	5m. 1	Set 2	Sain 3	Avg				44	-
Digit free	By	57	HINE	1995	les	-	Det :	m	-	Sect.	127 de	5.10	1341	14	-44
0.000	0.0	0.000	0.00	50.00	20.00		0.000	0,000		0.000	43 r.	nti	il (m)	D. H.L.	8,
1.000	2.1	0.707	0.01	19.99	19.97		0.010	0.930		0.020	0.Tm	n.55	B 41187		_
2.000	17.1	5.652	0.08	35.97	19.54		0.030	0.060		2015	6.10,	0.15	w.£4501	0.12545	0.2
(F.O.B)	342	11.303	0.16	13.68	19.80		0.120	0.170		0.120	D (mm)	300			-
4.000	53.3	17,661	0.25	19.90	19.82		0,200	0.180	-	0.196	E4,	244.07			-
5,000	70.5	23.715	6.23	19.72	12.74		0.260	0.200		0.270	£s,	111,23			-
6.000	117.0	28.673	0.47	19.55	19.65		D.410	0.370		0.365	Arriv I Square	# PTM I		-	_
7.000	106.8	35,125	0.30	19.51	19.60		0.490	0.400		2.443		-			
X.000	52.4	17,663	0.25	19.56	19.64		0.440	9.366		0.400	Extra	10			
9.000	26.7	8.831	8.12	19.64	19.71		0.300	0.290	15.	0.325					
9.000	2.1	0.707	0.01	15.78	19.85		0.220	0.150		0.165					
0.000	2,1	0.707	10.0	19.79	19.82		0.220	0.150		0.185		+0.73+	01.607	41	
1.000	17.1	5.632	0.00	19.70	19.81		0.300	0.170		0.235		» ileipmi	_	-	
2.000		11.304	0.16	19.65	19.87		0.350	0.190		0.270	De	- told in	-	7	
3 000	513	17,663	0.25	19.60	19.76	-	O. AIRO	0.240		0.320	Di	is MeriDom		nei .	
1.000	70.5	23.313	0.53	19.50	14.71		0.500	11.290	-	0.395	0			w. 9	ally di
5,000	89.8	29,673	0.42	18.45	10.01		0.550	0.190		0.470					-
		duty works	78			egun bez		IN/MZ	0.7 0		**	-			
**					7.3	-	_		-	-					
8.4	1				1.4	15			_			_	_		_
- 64	-										-		_	_	_
120	-		_			<u></u>			-					-	-
100	-	-	_												-
194	_		_	_											-
74		_		_	-	_				1000					
					_		_								
	Lab Spec	Milit					Lab Eng	Text	7			Cornel	hant Engir	etr	
tme ;						Name:	-	O HALEE	M		Nam	V	AN F		ъ
							-	A 100 PM	444		Nam	. 1		41.04	

1		J.	100	2	5	-	M	U	t _u	-					-		1
A				Carrie sile	SHARP COM		-	-	-14	California (California California	4-1-		- 40	- British	40.00	AT	1
Chatter Con	-Dige:	_	Can	trector Con	militani		EF	NTRAL (AR		Ow	- Jeggrang	Du-	-	-	benail.	1
					F	late	Load	Test	Res	ults							1
Campa	ny Nan	ne l				_	STAF						-		-		1
1.00	ation			524 + 8	40	1	Ta	-	524 +	760			Feet	T	(steen	1	
Tasi	e Date					28-0	0.2023				1			-	1000	-11	
Laye	r level				SUP	_	LAST	0.90									
		MENT	AND	DOT D				v.ave	_		_						
			_	_	_	_	_				C No	G.75	-	_	_	_	_
d is applie	ed in 6 lo	ad increas	erents of w	man sien	Under au gin. After	that, the	stan inc s	ettlement tenterole	ni masi in 5 si	iones with come to s ope. A load jack	noticea	hin and (r	0.00 mm	delected		-	mi
er =	300mm														_	_	_
appear.	Cest	Lent	Similar	There-	mae	1943	841.1	Nict	Ser 3	Arth.	T			10	15	60	
lage tri	No.	N.N	MANA	~		-	-	term	men	in the	1	8.7 mg	6.55	0,94002			ı
0.006	0.0	0.000	0,00	20.00	20.00		0.000	0.000		0.000		11.3 mg	615	0.385	mJSSE2	9.0	
1.000	2,1	0.707	10.0	19.98	19.97		0.020	0.030		0.025	Ī	670,	9:35	£.29197		7.4	1
2.000	17.1	5.652	16,00	19.7%	19.50		0.230	0.500		0,375	1	9.3e,	718	1.01	a term.	0.1	ł
0.040	142	11301	0.16	19.62	1513		0.380	0.850		0.615		Ti (mm)	.ms				1
4.009	53.7	17.603	0.25	19.52	18.92		0.480	3 080		0.760	1	Ting .	175.54				1
5.000	70.5	21.715	0.33	19.43	TRAC		0.550	1.000		0.075	I	Eve	207.71	-			1
6.000	85.8	20.613	0.42	19.37	18.46		0.630	1.540		1.095		Ame Squi	0.079kj				7
7.000	\$116,A	35.325	0.50	19:20	18:50		0.800	1.700	6	1.250				-			
8.000	53.4	17.665	0,25	10,29	16.33		0.710	1.670		1.190		Politica	1.34			1	
9.000	26.7	2.811	0.12	19.43	41.37		0.570	4,000		1.100						-	
9,000	24	0.707	0.01	15,51	19.59		0,470	LAN	0	0.540							
3.0 0/10	2.1	0.707	0.01	19.51	15.59		0.470	1.41	0	0.540			E,-0.15	D + pte	144	T	
11.000	47.1	5 652	9.08	19.52	10.52		0.480	1.42	0	0.975		E.	- defe	rhallori r	edutus		
15.600	242	11.204	-	19.48	18.46	1	0.520	1.34	œ.	1.030		B.	- load	Incremen			
13.000	53.4	17.663	-	19.44	-	-	0.500	1.68	σ	1.120		Dr	× setti	amon inc	remove		
14.000	70.5	_	_	19.40	-		0.600	1.75	70	1.175		.0	- diam	neter of p	ni plate; gr	market &	20
15.000	69.8		_	19.37			0,681			1.250							
P HANDLE	flon ac 1	nd 2 x No	or conceptly	Nikeri Nu	m the los	d span !	bullwein b	5 0 pe	and 0.7	il me	7						
	_							MN/	M2								
	-		-	j _e		184			alo:	TI	1			4.6		-	
	-	_	-	_	-	_		_	-	-	-	_	_		_		
	HE -		-	-	_	-	-	-		-	-	-	_	_		_	
	-			_	-	-	4-4-	-	1	-	-		_				
	181	-	_	_	-	_	-		_			1 7					
	(6. —		_	_			1	1	1)-								
	100-				ы		-										
	im -	1										_		-			
-	1.4	Specialisi		4													
		yercia/Bi	_			_		Englan					-	Consolite	el Enganee		_
Name						Na	me: /	HMED	HALEE	M			Name:	100	sef 1	(-)-1	
Sign :						100	38/	1.5	والموم	<i>D</i> .			***		7.	pef	
- 61							DI S	1	1				Sign:		118	100	
						3	1/1		1	Na.							
						100											-

-	and sec		c	enizacted (mediant			CENTRA	C LAB			Contaction		15	5	1
						Plat	e Loa	d Tes	t R	esults						
Comp	ny Na	me				AL N	OSTA	FA.								
	cation			524+	640		To		524	+ 760			, te	der	524	-655
Tas	ie Date					1-1	0-2023							_		
	er level				SU	BBA	LLAST	+0.90								
_	EDUIP		AND	TEST	PROC	FDUE	Œ:-									
				_						1116		47.4		5		3
The dia	meter D	of the pta	in is gen	urally 0.3	D.m. For	very com	rse grains	d maler	ni niso	planes with	diamen	er 17 = 0	so m aret	1/ = 0.76	th are in	263
and its appoin	ed to E to	ad lineven	mode of	second alle	. Under	nách lon	d where the	seilione	and hour	at come to p	noticu	abin and	(= 0.02 m	miminute	1. Affirm (P	ie in
lised is me	ched the	unicacim	proced	ure can b	egin. Afte	or that, if	w plate 16	reinadm	dim 5 s	dops. A toed	that Huch	B, an avo	avenus as	a roller s	isually se	IVE
						CONTAIN	rivinighi b	or the hy	draulla	jeck						_
ter -	300mm										-			_		_
Looking	-	-	tirra	100	2007	1961	SML II	Sen 7	Sem. 4	Sen.	-				A5	-
trap ve	Aur	9.5	MAME	-	-	-	-	-	-		-	8.7 e,	0.15	0.01562	0.34667	
0.000	0.0	0.000	0.00	20.90	10.00	_	0.000	0.000	-	9.000	-	8.2 4,	0.15	0.54875 1.0803&		-
1.000	2.1	0.707	18.6	19 85	15.90		0.150	0.100	-	0.125	-	9.7e,	0.15	0.02	# 14ms5	
0.081	312	11.381	0.06	19.63	19.60	-	0.378	0.600		0.505		D (mm)	300	7.65		
A.bod	313	12.643	0.10	19.22	19.21		0.780	0.790		0.795		Ev.	129.72			-
5.000	765	25.515	6,33	19.15	19.04		0.900	0.960		0.930	-	Eve	210.28			
E 000	***	29.671	0.42	10.01	18.84		0.990	1.060		1.025	1	ana i Squari	_			
7 000	106.8	35.325	0.50	16.80	28.80		1.100	1.200		1.150	-	100				
1,000	52.0	12.661	0.25	12.94	10.05		1.065	1.150		1.105		THE PARTY	2.18			
8.000	26.7	6.831	0.12	19.01	16 26		0.960	1.100		1.030					_	
9.000	2.1	6.701	0.61	19.17	1841		0.830	0 840		0.860						
10.000	2.1	0.707	9.07	19.17	19.11		5.A10	0.690		0.800			r, -475 -	11 - At 1	31	П
11,000	(7.)	Acte	0.04	1115	19.07		0.850	0.930		0.890		F.	* dolorm	ption mod	ulux	
4 T Descri	162	15.304	6.16	19.13	18.97		D.870	1.030		0.050		p.	- fund in	rement		
12,000	113	17.643	0.25	1400	1481		9.920	1.070	-	0.005		174		eri incano		
13,000	70.5	25.815	0.23	19:00	14.67	_	1.000	1.150	_	1,005		D	n (Samm)	of the p	ute, gener	4Hy
	***	25.672	8.42	13.97	18.81		1.080	1.100		1.135						

Late Bughteen

Late Specialise

Sign:

Sign :

Young English

		23 25	4		-	
Combine	Contractor Committee	- 01	DYTRAL LAD	Contactor	Dynasi	
1.10	P	late Load	Test Results			
ompany Name	Al	MOSTAF	A .			-
Location	524 + 640		linter .	524-685		
Taste Date		1-10-2023				
Layer level	SUB	BALLAST +	0.90			
EQUIPMENT	AND TEST PROCED	URE:-				
A Laboratoria Grand Co.	to is generally 0.10 m. For every		70. 13 W.Y.	COLUMN TO LA		

Dismeter = 500mm tent W Land 100.5 . -9.735 S.Te. 0:21 500 MAME 0.2 9.3225 19.000 0 900 0.00 26.00 50.00 0.000 9,000 654, 9 15 0.4163 6.00% 8.7mg 1.000 0.707 19.95 9.15 9.84278 0.01 19.85 0.050 0,050 0.059 8.2 2.000 17.1 5.652 0.08 18.70 19.86 0.740 0.220 134 815 8.79 0.300 0.090 34.2 11.304 0.16 19.80 18.57 6.400 0.490 0.440 D (man) 300 A BOIL 513 17.561 0.25 ISHAT 19.57 19.30 0.410 0.700 0.565 5.000 70.5 23,215 0.22 19.35 27EA5 19.70 0.650 0.800 0.725 8.000 89.E 75.575 9.42 19.25 0.840 19.07 0.750 0.900 will figure MITTER 7.000 106.8 35 325 0.50 19.15 12.53 0.056 1.079 0.950 E-000 53.4 17 865 19.16 0.25 (ES 1,028 Billeri 1.00 0.620 0.920 S DEN 26.7 8.831 0.12 19.21 15.04 0.790 0.5400 0.875 9 000 2.1 a ruf 10,01 19.33 19,15 0.250 0.570 p.760 10.000 2.1 0.707 19.45 0.01 15.03 9.570 0.850 0.760 £1-1100 17.5 5652 ID ON 15.32 13.14 0.680 0.860 0.770 34.2 12,000 11.304 19.26 15.07 D 16 5.740 0.930 0.635 13,500 53.3 17.843 0.25 18.11 15.01 0.050 0.750 0.820 14,000 70.5 23.315 0.33 12.58 18.95 8.829 1.050 0.915 19.15 18.51 9.856 0.570

15.000 St. 25.672 C.A2 IS. 18.51 C.A50 C.A

مشروع: أعمال الجسر الترابي والاعمال الصناعية لمشروع القطار الكهرباني السريع (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح محضر تحديد مسافة نقل (الأتربة)

أنه في يوم الأحد الموافق 2024/01/02 وبناءاً على طلب شركة المصطفى للمقاولات لتحديد مسافة نقل الأتربة من محجر (المصرية) على طريق وادي النظرون العلمين للمشروع المذكور أعلاه تم زيارة المحجر من قبل:

مهندس جيولوجي مكتب د.خالد قنديل مدير مشروع شركة المصطفى للمقاولات

1. المهندس / حسن عبدالسلام سليمان

2. المهندس / مصطفى محمد ثابت

وتبين أن المحجر على مسافة 302.5 كم من منتصف قطاع شركة المصطفى للمقاولات

N 30° 33′ 19.7″

E 29° 45' 06.7"

إحداثي المحجر:

وعلى ذلك تم التوقيع,,,

- Us ples .2

1. دستر الم

مشروع: أعمال الجسر الترابي والاعمال الصناعية لمشروع القطار الكهرباني السريع (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح

محضر تحديد مسافة نقل (طبقة الأساس)

أنه في يوم الأحد الموافق 2024/01/02 وبناءاً على طلب شركة المصطفى للمقاولات لتحديد مسافة نقل طبقة الأساس للمشروع المذكور أعلاه تم زيارة الكسارة من قبل:

مهندس جيولوجي مكتب د خالد قنديل

1. المهندس / عبدالله سامي

مدير مشروع شركة المصطفى للمقاولات

2. المهندس / مصطفى محمد ثابت

وتبين أن الكسارة على مسافة 233 كم من منتصف قطاع شركة المصطفى للمقاولات

N 36° 38′ 33″ E 29° 42′ 28″

إحداثي الكسارة:

وعلى ذلك تم التوقيع,,,

Cotile .2

of wire 1

مشروع: أعمال الجسر الترابي والاعمال الصناعية لمشروع القطار الكهرباني السريع (العين السخنة - العاصمة الادارية - العلمين - مطروح) قطاع فوكة مطروح

محضر تحديد مسافة نقل (طبقة التأسيس)

أنه في يوم الأحد الموافق 2024/01/02 وبناءاً على طلب شركة المصطفى للمقاولات لتحديد مسافة نقل طبقة التأسيس للمشروع المذكور أعلاه تم زيارة الكسارة من قبل:

مهندس جيولوجي مكتب د.خالد قنديل

1. المهندس / أحمد أبوزيد

مدير مشروع شركة المصطفى للمقاولات

2. المهندس / مصطفى محمد ثابت

وتبين أن الكسارة على مسافة 83 كم من منتصف قطاع شركة المصطفى للمقاولات

N 36° 38′ 33″

E 29° 42' 28"

إحداثي الكسارة:

وعلى ذلك تم التوقيع,,,

- 1. 1 rke .2